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Abstract

Fractal geometry applications have recently been paid great attention in ecology. In this paper, I summarize the
state of the art and introduce several updated developments in analysis and description of patch patterns and patch
dynamics by means of Mandelbrot’s fractal analysis, with an emphasis on my current research results and a personal
view. These topics include geometric fractals, statistical fractals, information fractals, the fluctuation-tolerant fractals
of dynamic patch size and shape, patch hierarchical scaling, fractal spatial patterns, multiple scale sampling and data
analysis, fractal fragmentation of the landscape habitat into patches, fractal correlation in patchy systems, fractal
cluster dynamics of vegetation systems, fractal mechanisms and ecological consequences, the spatio-temporal
integrated approach and so on. The ecological significance of fractals in patch pattern and patch dynamics is
discussed. A case study on fractal analysis of patch dynamics of southern Texas savanna landscape is given. Several
limitations of fractal analysis in ecological applications are also addressed. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

For about three decades, spatial analysis has
been dominated by a style of model building
which has sought high predictive understanding in
numerical terms but has paid little attention to the
geometry of spatial form. Mandelbrot’s concept
of a fractal, as one of these fast moving research
fronts coupled with concepts of complexity, criti-
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cality, and self-organization, extends our usual
ideas of classical geometry beyond those of point,
line, circle and so on into the realm of the irregu-
lar, disjoint and singular. Fractals represent many
kinds of patterns, including density, diversity,
dendritic stream networks, geometrical shapes,
mountainous terrain, and size distributions of is-
lands (Mandelbrot, 1983). It has the potential to
provide us with a new way to understand and
analyze such natural spatial phenomena, which
are not smooth, but rough and fragmented to
self-similarity or self-affinity at all scales.
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Landscapes are spatially heterogeneous, and the
structure, function, and change of landscapes are
themselves scale-dependent (or scale covariance,
although we normally use simple fractal descrip-
tion (or scale invariance) to present them in most
landscape ecology literature). A landscape patch
can be defined as a relatively homogeneous spatial
cell or body (two and three dimensions) differing
in appearance from its surrounding matrix (Wu et
al., 1992). Heterogeneity of environmental re-
sources, succession, and disturbance result in
patches of diverse size, shape, type, and ecotone
(or boundary) characteristics. The patch charac-
teristics may be important factors in ecological
diversity, stability, and function. The geometric
features of heterogeneity, multiple scales and self-
similarity/affinity are characteristic of a variety of
patch spatial patterns in landscape. More gener-
ally, there are pansymmetries of biological spatial-
temporal structure in nature, which are the
pansystem holography in space and the pansys-
tem repetition in time (Li, 1986). Recent studies
have included measures of the fractal geometry of
landscape and patch pattern analyses in ecological
literature, such as, soil and landscape data analy-
sis (Burrough, 1981, 1983a,b; Tyler and
Wheatcraft, 1990; Bartoli et al., 1991; Young and
Crawford, 1991), forest fire and cluster growth
(MacKay and Jan, 1984; Vannimenus et al.,
1985), root/tree and  habitat  structures
(Williamson and Lawton, 1991; Zeide, 1991;
Zeide and Gresham, 1991; Zeide and Pfeifer,
1991; Berntson, 1994; Haslett, 1994), spatial and
landscape pattern analysis (Franklin and Forman,
1987; Gardner et al., 1987; Goodchild and Mark,
1987; Krummel et al., 1987; Milne, 1988, 1990,
1992; O’Neill et al., 1988; Palmer, 1988, 1992;
DeCola, 1989; Wiens and Milne, 1989; Loehle,
1990; Rex and Malanson, 1990; Warner and Fry,
1990; Li, 1992; Li et al., 1992; Montgomery and
Dietrich, 1992; Garcia-Moliner et al., 1993; Li,
1993; Loehle and Wein, 1994; Loehle and Li,
1996), microbial transport through heterogeneous
porous media (Li et al., 1996), and ecological
phase transitions (Li and Forsythe, 1992; Li,
1995a; Loehle et al., 1996).

In this paper, I review and evaluate these differ-
ent fractal measurements in landscape ecology,

including geometric fractals, temporal (dynami-
cal) fractals, statistical (stochastic) fractals, infor-
mation fractals, etc., try to build new models to
describe dynamic patch shape and size by using
fluctuation-tolerant fractals, especially in marine
environments, and fragmentation of the habitat
into patches by means of number-size distribution
fractals, provide some methods to deal with dif-
ferent scale sampling data and fractal correlation
in patchy systems, propose the spatio-temporal
integrated methodology, and discuss mechanisms
and ecological significance of fractals in patch
pattern and patch dynamics. Fractal analyses of
patch dynamics in southern Texas savanna land-
scape and a cellular automata model of spatio-
temporal response of vegetation to disturbance
are included. Several limitations and estimation
problems of fractals in ecological applications are
also addressed.

2. What are fractals?

Fractals are conceptual objects showing struc-
tures at all spatial scales, with a scale-dependent
self-similarity (Mandelbrot, 1983, 1989; Barnsley,
1988). The shape of fractals is nonrectifiable, con-
sisting of an infinite sequence of clusters within
clusters or waves within waves. In rectifiable ob-
jects, increasingly accurate measurements based
upon successive scale reductions give series con-
verging to a limit: the true extent of the object. By
contrast, in fractals the same procedure generates
infinite series, according to the relationship
N(¢)oce P, where N(¢) is a number measure
corresponding to the scale unit ¢ and D is the
fractal dimension. The length of the object is then
L(g)oce' =P and D> 1. The length diverges as
£—0. In a volume of Euclidean dimension E the
volume occupied by an object of fractal dimen-
sion D is given by V(e)ocef~P. This parameter
exceeds the topological dimension d of the object
and is generally not an integer, but less than the
space dimension of the object, that is, d< D <
d+ 1. For example, the fractal dimension of
Koch’s snowflake is D =log4/log 3 = 1.2618.

Taylor (1986) suggested that a set should be
called a fractal if these different computations all



B.-L. Li / Ecological Modelling 132 (2000) 33—50 35

lead to the same value for the index, which we
then call the dimension of the set.

Fractals are characterized by so-called ‘sym-
metries’ or pansymmetries (Li, 1986; Li et al.,
1992), which are invariance under dilations and/or
contractions. Hence, the best fractals are those
that exhibit the maximum invariance. A fractal
invariant under ordinary geometric similarity is
called self-similar (Mandelbrot, 1983). ‘Self-simi-
lar’ has two meanings. One can understand ‘simi-
lar’ as a loose everyday synonym of ‘analogous’.
But there is also the strict textbook sense of
‘contracting similarity’. It expresses that each part
is a linear geometric reduction of the whole, with
the same reduction ratios in all directions. Self-
similar processes are invariant in distribution un-
der judicious scaling of time and space, which are
connected with the so-called ‘renormalization
group theory’, ‘critical phenomena’, ‘1/f noises’,
etc. Mathematically, the scaling coefficient or in-
dex of self-similarity is a non-negative number
denoted H (which is the first letter of the British
Harold Edwin Hurst’s last name); a process X =
{X(2), teR} is self-similar with index H if, for any
a>0, the finite-dimensional distributions of
{X(at), teR} are the same as those of
{a"X(1), te R} (Samorodnitsky and Taqqu, 1994;
Ch. 7). Self-similarity cannot be compatible with
analyticity. Random fractals are self-similar only
in statistical sense and to describe them it is more
appropriate to use the term ‘scale invariance’ than
self-similarity. By ‘scale invariance’ in ecology, we
mean that scales are ecologically equivalent so
that the same ecological conclusions may be
drawn from any scale statistically. There are many
different self-similar processes; however, most
studies have considered those that have stationary
increment. More recent developments have ex-
tended, in particular, to include self-affine, in that
the reductions are still linear but the reduction
ratios in different directions are different.

Fractals have been used to study nonlinear
spatial and temporal phenomena (such as D as a
measure of complexity), but they can also be
extended to abstract objects developing in a phase
space, such as models of dynamic complex sys-
tems. Size—frequency distributions describing
structured systems can also have a fractal dimen-

sion. There are several methods of measuring the
fractal dimension which include changing coarse
graining level, i.e. box-counting methods, infor-
mation fractals, etc., using the fractal measure
relations, i.e. perimeter/area/volume methods, us-
ing the correlation function, i.e. autocorrelations,
semivariograms, etc., using the distribution func-
tion, i.e. hyperbolic distribution, and using the
power spectrum, i.e. Fourier transformation,
filters, wavelets, etc. (Li et al., 1992). Although the
theoretical origins of fractals in measure theory
may seem abstruse, the basic ideas of fractal
geometry are extremely simple and intuitive, and
one can begin to work with them very quickly.

Fractal dimensions can be positive, negative
(Mandelbrot, 1990), complex (Pietronero and
Tosatti, 1986), fuzzy (Feng et al., 1991), and
multifractals (Mandelbrot, 1989), etc.

Generally, there are three properties of fractal
forms: heterogeneity, self-similarity, and the ab-
sence of a characteristic scale of length. These
geometric features are also characteristic of patch
patterns in landscape. The fractal dimension D
has been shown to be a useful way to characterize
the geometric structure of a number of these
patchy spatial patterns (Milne, 1988).

The fractal concept is also useful for character-
izing certain aspects of patch dynamics. Consider
a complex process of landscape patch change that
cannot be expressed in terms of a simple charac-
teristic rate, but instead is regulated by a self-sim-
ilar or self-affine mechanism in time. The
multiplicity in time scales will be reflected in a
power spectrum with a broad profile of responses.
The fractal scaling between variations on different
time scales will lead to a frequency spectrum
having an inverse power-law distribution. A frac-
tal analysis of a cellular automata model of spa-
tio-temporal response of vegetation to disturbance
in the later section is an example.

3. Current applications in landscape ecology

Recently, Milne (1990) and Sugihara and May
(1990) reviewed fractal applications in ecological
research and landscapes. Here I will select some
interesting aspects associated with spatial patterns
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and patch dynamics, combine my current research
in this field, and introduce them.

3.1. Perimeter versus area relationships

Krummel et al. (1987) used fractal models to
show that patch shape varies with patch size. The
relationship is generalized to fractal patches by
the equality between area and patch length,

A=pBLP

where A is patch area, L, patch perimeter, /3,
constant, and D, fractal dimension. By using data
of patch area and patch perimeter, and relation-
ships of logA=1logf+ D logL, we can easily
estimate the fractal dimension D. They found a
marked (P < 0.001) discontinuity or scale break-
ing in D, with D =1.20 4+ 0.02 at small scales and
D =1.52+0.02 at large scales. The discontinuity
occurred at areas around 60—70 ha. Their result is
interpreted to indicate that human disturbances
predominate at small scales making for smoother
geometry and lower D, while natural processes
(e.g. geology, distributions of soil types, etc.) con-
tinue to predominate at larger scales.

In general, the area of fractal patches can be
expressed as a function of perimeter raised to an
exponent which provides the information of com-
plexity change of average patch shapes; however,
such fractal measurement cannot be used to char-
acterize the nature of space-filling of ecological
objects such as forest expansion (Loehle et al.,
1996). Similar studies can be found in DeCola
(1989), Rex and Malanson (1990), Haslett (1994),
and Cheng (1995).

3.2. Information fractals of patch diversity

The information fractal dimension, D, is a
generalization of the box-counting method that
takes into account the relative probability of the
patchy types which cover the landscape. Such
dimension is related to the scaling relationship
between the information needed to specify the
position of a point and the accuracy to which the
position is known. Therefore, the information
fractal dimension as the natural measure dimen-
sion has been used in calculating the dimensional-

ity of strange attractors (Farmer et al., 1983;
Grassberger and Procaccia, 1983; Ruelle, 1989).

The information fractal dimension is given by
~lim H(e)

~ esoln(1/e)

where H(¢) is a given Shannon function (Shan-
non, 1948),

Dy

H(e)= — Zpi In p,

where p; is the probability of observing the ith
patch element measured using samples of ¢ units
in size. The information fractal dimension of a
measure corresponds to the dimension of the part
of the measure that contains an arbitrarily large
portion of the total measure as the cut-off o — 0.
For very complicated landscapes, e.g. n-phase
mosaics of different vegetation types in a natural
landscape, we can extend the above formula to a
generalized hierarchical diversity function, for ex-
ample, Pielou’s hierarchical diversity index
(Pielou, 1977), to count the total patch diversity
in the landscape. In practical applications, we
could use the following relationship to estimate
D,, that is, the diversity H(¢) will vary ¢ according
to

H(¢)=H0)—D;In¢

where D; as the lower bound to the Hausdorff
Besicovich dimension or information fractal di-
mension. In many cases, the lower bound is nu-
merically identical to it, e.g. linear regression
estimation. Comparing with the fractal dimension
D from the box-counting method, in general,
D > D; (Farmer et al., 1983). Only if all boxes
have equal probability of the patchy types, D =
D,.

In our research about fractals in ‘point’ patch
patterns, we found that information fractal di-
mensions varied with the different ‘degree of ran-
domness’ parameters (R) of Clark and Evans
(1954) (Li and Wu, unpublished manuscript). For
instance, when R > 1 indicates regularity, we have
fractals, 1.92 < D; < 2, where we used point pat-
terns based on Wu et al. (1987). Fig. 1 shows
different information fractal dimensions for a reg-
ular point pattern, random point pattern, random
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clumped point pattern, and aggregated clumped
point pattern. Because a fractal dimension is scale
invariant, it provides us with a new index to
measure ‘point’ patch patterns and diversity. In-
formation fractal dimensions also can be used in
quantifying landscape habitat diversity (Loehle
and Wein, 1994) and non-geometric ecological
properties such as permeability (Loehle and Li,
1996) and uncertainty in ecological systems (Li, in
preparation).

3.3. Patch hierarchical scaling

Different observational scales capture different
aspects of structure, and these transitions are
signaled by shifts in the apparent dimension of an
object. This latter fact suggests an interesting
application of fractals as a method for distin-
guishing hierarchical size scales of patches in na-
ture, such as how to determine boundaries
between hierarchical levels and how to determine
the scaling rules for extrapolating within each
level.
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Fig. 1. Information fractal dimensions (D)) in different point
patterns. (a) Regular point pattern; (b) Random point pattern;
(c) Random clumped point pattern; and (d) Aggregated
clumped point pattern.

Bradbury et al. (1984) examined the possibility
of hierarchical scaling in an Australian coral reef.
They used the dividers method in transects across
the reef to determine whether D depends on the
range of length scales. They found that three
ranges of scale correspond nicely with the scales
of three major reef structures: 10 cm corresponds
to the size of anatomical features within individ-
ual coral colonies; 20—200 cm corresponds to the
size range of whole adult living colonies; and
5—10 m is the size range of major geomorphologic
structures. This showed that the shifts in D at
different scales appear to signal where the break-
points occur in the hierarchical organization of
reefs.

In our recent study on simple patch patterns,
change of fractal dimensions seems to predict
hierarchical scales of patch size and structure in
nature, both of different mean grain densities
within patch and spatial patterns between patches
(Li, personal observation). Since the change in the
fractal dimension may tell us something about the
underlying physical and biological processes, D
could be used as a scaling indicator of patch
phase transition, and may help us decide the
appropriate scale of ecological experiment and
management. The concept of discrete-scale invari-
ance (i.e. the log-periodic correction to scaling)
(Sornette et al., 1996) may also provide a new way
to study patch hierarchical scaling relationships in
nature.

Recently, we also found scale-break property in
a semi-arid biome transition zone located at cen-
tral New Mexico, USA, by using a multifractal
approach to our Sevilleta vegetation transect data
analyses (Over and Li, in preparation).

3.4. Fractal spatial patterns and modified
Brownian dynamics

There are simple relationships between persis-
tence measured by the parameter H in modified
Brownian diffusion models, and fractal expo-
nents, D. Hastings et al. (1982) and Mandelbrot
(1983) have discussed how fractal exponents may
be incorporated into diffusion processes, as a
scaling factor for normalizing increments in space
and time. They find that D may be used as an
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index of succession in circumstances where simple
patch-extinction models are reasonable. Sugihara
and May (1990) consider that it would be interest-
ing to follow up these provocative anecdotes with
careful studies to determine to what extent D
computed from snapshots can be used as an index
of physiological state or persistence of patches in
time, and how such persistence may relate to the
spatial scales involved. Recent studies have shown
that many of nature’s seemingly patch shapes can
be effectively characterized and modeled as ran-
dom fractals based upon generalizations of frac-
tional Brownian motion (Voss, 1988). Extending
the ideas in fractal correlation analysis of patchy
systems will be addressed later.

3.5. Others

There are other fractal applications which I will
not expand upon. These include number/diameter
relationships, mass relations, habitat space and
home range (Lochle, 1990), geometry of plankton
patches in turbulent flows (Frontier, 1987), mixed
fractal models, percolation theory (MacKay and
Jan, 1984; Grimmett, 1989; Lochle et al., 1996), a
space—time multifractal theory (Over and Gupta,
1996), etc.

4. Multiple scale sampling and data analysis

Biotic and metric scale-dependent structures ex-
ist in landscapes. Biotic scale dependence origi-
nates from the different responses of organisms to
the abundance of a resource. Metric scale depen-
dence results when physical processes produce
statistically similar aggregations of abiotic quanti-
ties such as water, temperature, or minerals
(Milne, 1990). From a fractal point of view (Man-
delbrot, 1983, 1989), we consider a sampling space
dimension D, and a specific ecological phenomena
dimension D, embedded in a space of dimension
E. If D;+ D, > E, we will obtain a nonzero mea-
sure, that is, a specific sampling space dimension
D, used in space of dimension E can only detect
such phenomena of different dimension D, > E —
D,. Lovejoy et al. (1986) augured that the charac-
teristics of measuring network inhomogeneity by

the fractal dimension raises new problems con-
cerning the detectability of sparse phenomena.
They suggested a new criterion for evaluating
measuring networks: to detect geophysical phe-
nomena, not only must a network have sufficient
spatial resolution it must also have sufficient di-
mensional resolution. Because our sampling space
is at multiple scales, of course, such sampling is
multiple scale sampling.

In general, the sum of random variables with a
common distribution becomes a random variable
with a distribution of different form. Data from
different scales have their corresponding probabil-
ity distributions. However, statistical fractals
show us that the sum of a large number of
identically distributed random variables has self-
similarity with distribution as each of contributors
to the sum. The class of distributions having this
property is called the Levy distribution
p(X;o,0)oc X! with o # 2 (Mandelbrot,
1983; Samorodnitsky and Taqqu, 1994). An ap-
propriate linear transformation makes the sum of
random variables obey the same distribution.
That implies that when we blend data from differ-
ent sources, we first need to find a suitable trans-
formation to form a stable distribution, although
there are some statistical methods to deal with
data from unequal probability sampling and dif-
ferent scales, e.g. the weighted distribution
method (Patil and Taillie, 1989).

From this idea, the author obtained a practical
computation method for calculating the mean and
the variance of data from two different scale
samples (Li et al., 1992). We define weight mean
and variance as

e Var(1)

~ Var(l) + Var(2)
X=wx;+(1—w)x,
Var = w?Var(1) + (1 — w)*Var(2)

where w is the weighted factor; Var(l), Var(2),
variances from data of scale # 1 and # 2; x;, Xx,,
means from data of scale #1 and #2; X, Var,
the mean and the variance from blending two
scale data.

For example: data from Rougharden (1977) are
as follows.
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...100, 150, 150, 100, 50, 50, 100, 150, 150, 100,
50, 50, 100.... (1)

MEAN(1) =100, Var(1) = 1667, Patch length = 3;

...100, 125, 125, 125, 125, 125, 100, 75, 75, 75,
75, 75, 100,... Q)

MEAN(2) =100, Var(2) =521, Patch length = 6.

If we blend two sequences (having different
characteristic patch scales) together to calculate
their mean and variance, MEAN = 100, and
Var =997 (not 2188 in Rougharden (1977)).

It has been reported that the mixture distribu-
tions or contaminated normal model (usually
these distribution densities have the same mean
but different S.D.) can lead to a stable Paretian or
Levy distribution (e.g. Hsu et al., 1974). In such
models, the underlying ‘categories’ do not neces-
sarily have a direct ecological interpretation (Tit-
terington et al., 1985). We need to be careful to
deal with such models for multi-scale data analy-
sis, and should not jump to a conclusion or
interpretation, which is considered ecologically to
be significant too soon.

5. Fractal fragmentation of habitat into patches

The fragmentation of the habitat into discrete
patches is a topic of concern in relation to biodi-
versity conservation and resource management ef-
forts (Harris, 1984; Pimm and Gilpin, 1989). It is
an important feature of landscapes. Landscape
habitat is fragmented by joints of natural pro-
cesses and human and natural disturbances. Frag-
mentation is thought to play a dominant role in
determining the size—frequency relationship for
astrophysics (Brown et al., 1983). There are a
variety of ways to represent the size—frequency
distribution of habitat fragments or patches. In
the following, I will use a simple power law
relation to define the fractal distribution for quan-
tifying the habitat fragmentation processes and
give a hypothesis about the fragility or vulnerabil-
ity of landscape habitat based on the result of the
Turcotte’s renormalization group approach to the
problem of fragmentation (Turcotte, 1986).

In fractal analysis, the definition of a fractal
could be given by the relationship between num-
ber and size. The number N(¢) of objects with a
characteristic linear dimension greater than ¢ is
given by

N(g)oce™ P

where D is fractal dimension. In many cases, the
frequency—size distribution of fragments or habi-
tat patches over a wide range of scales satisfies a
fractal distribution. Fragmentation is often a scale
invariant process (Turcotte, 1986). We can di-
rectly use the above formula to estimate the habi-
tat patch fractals. An alternative power-law
distribution can be written

N(m)=Cm~?

where N(m) is the number of habitat patches with
a biomass greater than m, C is a constant, and b
is a scaling exponent. Noting that moce™ 3, we
can find from a comparison with the number-size

fractal distribution that
D=3b

The power distribution is mathematically equiv-
alent to a fractal distribution. Similarly, the
power-law biomass distribution is given by

M(8)=<‘9> with D=3 — o
M+

o
where M (¢) is the cumulative biomass of habitat
patches with a radius (volume'®) less than & M-
is the total biomass, and o is related to the
biomass size. We can also write a power-law
distribution in terms of a number density function

fim)=Am—* with D=3(s—1)

where f(m) dm is the number of habitat patches in
the biomass range between m and m + dm, and 4
is a constant. Both of the distributions satisfy the
fractal condition. They can be used as an indica-
tor of the fragmentation of the landscape habitat
into patches and landscape change.

Using the renormalization group approach to
scale invariant problems with fractal distributions,
Turcotte (1986) proposed two renormalization
group models to the fragmentation problem. The
models yielded a fractal behavior for fragmenta-
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tion but gave different values for the fractal di-
mension. Turcotte indicated that the fractal di-
mension is a measure of the fracture resistance of
the material relative to the process causing frag-
mentation. His conclusion can be used as our
hypothesis about the fragility or vulnerability of
habitat fragmentation. That is, a more fragile or
vulnerable landscape habitat may be associated
with a smaller fractal dimension. The result of
Krummel et al. (1987) supports my hypothesis. 1
can re-interpret their result to imply that land-
scape habitat response to human disturbances is
more fragile or vulnerable than to natural pro-
cesses. It may be useful for managing and con-
serving the ecological habitat.

Several other studies in fractal measures of
habitat fragmentation to quantify human impact
and describe various habitat structures or patchy
landscape features can be found in Milne (1988),
Palmer (1988, 1992), Williamson and Lawton
(1991), Haslett (1994), and Loehle and Wein
(1994).

6. Fractal correlations in patchy systems

Ecologists have recognized the effects of spatial
heterogeneity on ecological systems (Pickett and
White, 1985; Franklin and Forman, 1987; Milne,
1990, 1992; Kolasa and Pickett, 1991; Li and
Forsythe, 1992; Palmer, 1992; Garcia-Moliner et
al., 1993; Li, 1993; Li and Archer, 1997). There
are several ways to analyze and describe spatial
heterogeneity of patchy systems. Spatial statistics
or geostatistics are necessary to document spatial
relationships, e.g. spatial correlation. For spatial
heterogeneity study, however, current geostatisti-
cal methods have severe limitations (Li and
Loehle, 1995). For many types of nonstationary,
singular, and discontinuous patchy data, geo-
statistical methods are not capable of accounting
these features of patchy landscape and do not
allow one to detect or describe multi-scale struc-
tures of patchy systems. They also do little to
reveal the dynamics of changes in patch patterns
over time. Thus, a new method is needed to
describe heterogeneous patch structures and
patterns.

In reality, most landscapes exhibit patterns in-
termediate between complete spatial independence
and complete spatial dependence. The fractal di-
mension D provides a measure of the degree of
correlation between patches over space or time.
The correlation between nearest neighbors in a
spatially heterogeneous system (the three-dimen-
sional profiles of patch in the ocean) is defined by
the fractal dimension describing the degree of
heterogeneity in a size-independent fashion. By
using the classical definition of the correlation
coefficient, the result was that the nearest neigh-
bor correlation with respect to local property was
expressible directly by the correlation coefficient,
ry

p=23"20 =221 _1; 0<H<I

where the Hurst coefficient H =2 — D for one-di-
mensional signals such as vegetation line transect
data.

If there is no spatial correlation, r; = 0, then the
local patch patterns are completely random and
the fractal D= 1.5, or the Hurst coefficient H =
0.5 (Voss, 1988). With perfect correlation, r, =
1.0, and the patches are uniform everywhere. If
we have fractal dimension D =1.2 of the patch
system, correlation coefficients between adjacent
patches are 0.516.

Similarly, we can define the correlation coeffi-
cient between patches centered two units apart:

2H 2H
;’223——5—%1 23——22” 1
2 2 2 2

This equation can be extended for aggregates of

n adjacent patches to give

1
ry =5l = 1P = 207 (4 1))

which is valid for » > 1. With increasing n, the
correlation initially falls off rapidly, but at large n
the diminution is slow. In fractal patch systems
with H < 0.7, the values of r, for n > 1 are so low
that we can consider that patchy systems are
regarded as noise.

From the fractal point of view, a scaling form
can be written with an arbitrary scale factor b:

P([X — Xol, [t — 1)) = b"P(b~"[X — X,), b|t — t,])
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and expresses a relation between the time domain
and the space domain (Feder, 1991). This equa-
tion may provide a promising way to view fractal
space—time structure. Feder further derived a sim-
ilar equation of correlations between past and
future increments as we did above for the nearest
neighbor correlation.

We can also use geostatistical tools for charac-
terizing fractal correlations of patchy systems.
The semivariance y(/#) and its relationship with
the Hurst exponent are defined as

2 (h) :%E{[x(t TR —x(OP och®, 0< H< 1

where E denotes statistical expectation, so that
2y(h) is the expected squared difference between
values separated by a time or space lag 4. An
estimate of p(h) is obtained using the sample
semivariance s>(k), defined by

n—

2 _ 1 g 2
s3(h) = 20— ) ,;1 [x(r+h) —x(1)]

Theoretical linkage between multifractal models
and spatial statistics with geological application
has been investigated by Cheng and Agterberg
(1996). We can also use spectral analysis to obtain
fractal dimensions of patchy systems. For exam-
ple, we can use S(f)ocf ~#, where f=2H+ 1
with O<H<1, 1<f <3 and D=2— H. How-
ever, we have to be careful on fractal estimation
via power spectra and variograms; there are re-
ports on biased estimates of the D value in the
literature (Wen and Sinding-Larsen, 1997).

7. Fluctuation-tolerance fractals in dynamic patch
size and shape

Levin and Paine (1974, 1975) and Paine and
Levin (1981) have developed a mathematical
model for the spatial and temporal patterns of
patch dynamics. However, we try to use fractal
theory in dynamic patch size and shape, especially
in marine environments. From the fractal view-
point, change of patch size and shape in space has
a multiplicity of spatial-temporal scales and mul-
tifractal dissipation. My approach is assuming
having self-similarity of patch change and ability

of maintaining patch integrity while allowing for a
broad spectrum of variations both in space and
time. According to some results from fluctuation-
tolerance fractals in complex physiological struc-
ture and processes (West, 1990), we similarly
obtain the probability distribution of a scale of
patch size presented in time ¢ which could be
related to the asymptotic statistics of a Levy
process, and patch size—frequency distributions.
Because the Levy index can be related to the
fractal dimension of the underlying process, many
studies have shown where there exist some rela-
tionships between generalized diffusion equations
and fractal random walks (Mandelbrot, 1983). In
a fractal stochastic process, not only does the
process itself display a kind of self-similarity, but
also the distribution function characterizes the
statistics of the process. If X(¢) is a fractal ran-
dom patch dynamic function, then for constant
f>1 and o> 1, we have X(¢)=p *X(ft). For
example, a given realization X(¢) is identical with
one that was stretched in time by f¢ and scaled in
amplitude by f ~*, where « is related to the fractal
dimension. Subject to certain ecological assump-
tions we can obtain the exponents ¢ for the decay
of the power spectrum (S( /) oc f ~ %), © for patch-
size distributions (D(s)ocs!~7), and fractal di-
mension D, of patch (s oc L"), by relating them to
the spatial anisotropic exponent {, the usual dy-
namical scaling exponent z, and the anomalous
spatial correlation exponent y (Li, personal
observation).

In addition, some studies show that diffusion-
limited aggregation (DLA) is the physical origin
of fractals (Pietronero, 1989). Perhaps these theo-
ries could provide us with a possible explanation
about formation mechanisms, and ecological and
evolutionary consequences of patch patterns and
patch dynamics (Li et al., 1992). I will talk about
this issue further in the next section.

8. Fractal mechanisms and ecological
consequences

A realization of the importance of fractals in
describing a large variety of patterns occurring in
nature across different spatial-temporal scales
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has been one of the major developments of the
last decade. The key problem is to understand
why nature gives rise to fractal structures or
power-law distributions (PLDs). Do we simply
have to accept their existence as ‘God-given’ with-
out further explanation or is it possible to con-
struct a new dynamical theory of the ecology of
fractals and PLDs? Recent studies in physics and
other fields could provide us a new insight to
analyze and explain the pattern in terms of the
ecological processes believed to underlie them (Li,
1992, 1993, 1995a; Li and Forsythe, 1992; Li et
al., 1992).

We concern the behavior of spatially extended
dynamical ecological systems, that is, systems
with both temporal and spatial degrees of free-
dom. However, there is a lot to learn on the
spatio-temporal evolution of these complex sys-
tems; Actually, it is hard to believe that long-
range spatial and temporal correlations can exist
independently. A local pattern cannot be ‘robust’
and remain coherent over the long term in the
presence of any amount of ‘noise’, unless stabi-
lized by the interactions with its environment.
And a large, coherent spatial structure cannot
disappear (or be created) instantly.

Bak and coworkers (Bak et al., 1987; Bak and
Chen, 1991; Bak, 1996) have suggested that the
large temporal fluctuations, and the spatial self-
similarity are two sides of the same coin: ‘Self-Or-
ganized Criticality (SOC)’. The idea is that the
systems operate persistently out of equilibrium at
or near a threshold of instability. The systems
evolve automatically to this critical state without
any fine-tuning of external fields. Hence the criti-
cality is self-organized. The idea has been confi-
rmed theoretically and numerically for a sandpile
model of avalanches that the critical point is
stable in the renormalized macroscopic limit.

Li (1992, 1995a) and Li et al. (1992) suggested
a possible explanation about formation mecha-
nism, ecological and evolutionary consequences of
fractal patch patterns and dynamics by using SOC
concept. On the basis of this concept which ap-
pears in a wide class of dissipative dynamic sys-
tems with spatial degrees of freedom (Bak and
Chen, 1991), we could approach criticality of
patch dynamics since certain extended dissipative

dynamical systems naturally evolve into a critical
state, with no characteristic time and space scales
(Li and Forsythe, 1992).

We used a cellular automata-based simulation
model of a multi-patch landscape subjected to
different disturbances (i.e. intensity or extent and
scale or grain of disturbance) to study criticality
of spatially heterogeneous vegetation landscape
response to disturbances (Li and Forsythe, 1992;
some results also reported in Li and Archer
(1997)). Our results (Figs. 2 and 3) indicate that
disturbance-influenced vegetation systems will ex-
hibit SOC states and that ecosystems may operate
persistently out of equilibrium at or near a
threshold of instability and coevolve to the edge
of chaos. These results are in accord with the SOC
hypothesis and other studies (e.g. Kauffman and
Johnsen, 1991; Ito and Gunji, 1994). Following
the work by Rinaldo et al. (1993), I analyzed the
structure of natural landscapes and their dynam-
ics of evolution via fractal and wavelet analyses
(Li, 1995a). I argued that the principle of mini-
mum energy expenditure and SOC concept are of
crucial importance for understanding basic mech-
anisms that govern landscape dynamics and
evolution.

However, after carefully examining those re-
sults, I have recognized that even these models do
reproduce the fractal characteristics of landscapes
or river networks, but finally lead to stationary
patterns or distributions which is clearly inconsis-
tent with the SOC concept that predicts a perma-
nent fluctuation around a long-term equilibrium.
Minimizing the total energy dissipation these
models used is thermodynamically for near equi-
librium, not for far-from-equilibrium systems.
From this perspective, the model limitation is
clear. The SOC concept basically depends on the
long-term equilibrium between driving forces and
dissipative. For a simple simulation like a sand-
pile model, this assumption is appropriate. When
we use it for large-scale landscape dynamics such
as biome transitions, the conditions cannot be
expected to be constant. The behavior within the
transition phase may be far outside the range
suggested by the corresponding equilibrium states,
so that the properties of these states cannot be
used for estimating the behavior during the transi-
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tion phase. I also feel that the SOC concept is too
simple and too vague for complex systems, and
lack analytical support. There is no general agree-
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ment about ingredients necessary to create the
self-organized critical state. Some SOC models are
even not critical in the presence of local dissipa-
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automata vegetation patch dynamic model: (a) 3-D plot of
fractal dimensions of vegetation landscape response to distur-
bances with different intensities (= extent) and scales (=
grain); and (b) its corresponding contour plot.
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tion. Therefore, before we talk about how nature
works by using SOC framework, we may need to
ask how SOC works first.

Mathematically, we can demonstrate that inter-
action of simple elements on the microscopic level
may result in the emergence of complex scaling
features of the system on the macroscopic level,
and that internal and external noise/force, multi-
plicative stochastic processes, and purely mixing
distributions can induce ecological scaling (Li, in
preparation). Those results are based on very
straightforward physical and biological principles
and very limited assumptions, and reflect the co-
evolutionary or adaptive processes of ecological
entities interacting with their stochastic biotic and
abiotic environment. Some of these results have
very strong analytical support (e.g. Kesten, 1973;
Sornette and Cont, 1997; Takayasu et al. 1997,
Sornette, 1998), and could be served as much
more general mechanism of producing fractal or
power-laws.

The ecological significance of fractals is that
they describe very compactly, the relation between
the spatial variability of the patches, and the
space—time scale. But we may also need to be
careful about universality of fractals. If everything
is expected to be universal, the term loses its
depth: when someone insists that Nature is simple
and that essentially everything is power-law (frac-
tal) and universal, what they are actually telling
you is that Nature is shallow.

9. A case study: fractal patch (cluster-phase)
dynamics in southern Texas savanna landscape

Trends toward increased woody plant abun-
dance in temperate and tropical grasslands and
savanna in recent history have been reported
world-wide. We have little knowledge of the rates,
dynamics, patterns or successional processes in-
volved. To determine the long-term patterns and
dynamics of vegetation cluster-to-cluster (or
patch-to-patch) interactions in southern Texas sa-
vanna landscape we defined different fractals and
fractal relationships to describe (a) cluster growth
relationships; (b) changes in the size and shape of
clusters; (c) degree of coalescence or fragmenta-

tion; and (d) spatial pattern shifts of different
types of vegetation clusters during succession in
southern Texas subtropical savanna (Li, 1993;
also Li and Archer, unpublished manuscript).
Some of fractals and their relationships included
area—perimeter fractals, cluster-size distribution
fractals, self-affine fractals, correlation fractals,
and information fractals that I already introduced
before.

The Rio Grande Plains of southern Texas and
northern Mexico offer some distinct examples of
processes involved in the physiognomic conver-
sion of grassland and savannas to woodlands. The
potential natural vegetation of this region has
been classified by plant geographers as Prosopis/
Acacia savanna (e.g. a grassland with scattered
woody plants). However, the present-day vegeta-
tion is a subtropical thorn woodland that occupies
about 12 million ha in Texas alone. Rates, pat-
terns and processes involved in succession from
grassland to woodland have been the focus of
investigations at the La Copita Research Area
(Texas A&M University Research Station) in
southern Texas since 1984. The process begins
when the leguminous shrub, Prosopis glandulosa
(mesquite) establishes in herbaceous zones. The
seeds of Prosopis are widely dispersed by livestock
and establish readily on sites where fire and com-
petition from grasses have been reduced by graz-
ing. As the Prosopis plant grows, it modifies soils
and microclimate and facilitates the ingress and
establishment of other shrubs. These clusters of
woody vegetation which form around the
Prosopis nucleus enlarge over time as new plants
appear and existing plants grow. As the canopies
of the woody clusters develop, light attenuation
increases such that herbaceous production in well-
developed clusters is only 20% of that in herba-
ceous zones. As new clusters are initiated and
existing clusters expand, coalescence will eventu-
ally occur and a grassland will have become a
woodland. For the detailed description, see
Archer et al. (1988), Li (1995b), and Li and
Archer (1997).

Estimating fractal dimensions were used in fol-
lowing techniques: (1) Fractal kinetics of aggrega-
tion processes: this approach is based on
cluster—cluster aggregation in fractal growth (Vic-
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Table 1
Local growing fractals of woody clusters at study sites from
black and white aerial photographs in southern Texas

Period Fractal dimension Roughness
1941-1960 (DRY) 1.0819 0.4603
1960-1983 (WET) 1.1406 0.6328
Table 2

Anisotropic characteristics of correlated growth of woody
clusters

Fractal dimension
(roughness) in
Y-direction

Year  Fractal dimension
(roughness) in
X-direction

1941 1.1478 (5.7231)
DRY
1960 1.1588 (5.6976)
WET
1983 1.1526 (5.7051)

1.2250 (5.2634)
1.1189 (5.3163)

1.1189 (5.9614)

Table 3
Changing complexity of the size and shape of all vegetation
clusters

Year Climate condition Fractal dimension
1941 1.8732
DRY
1960 1.8337
WET
1983 1.9377
Table 4

Degree of coalescence and fragmentation in southern Texas
savanna landscape

Vegetation type Fractal dimension Roughness
Herbaceous 1.4061 0.6505
Pioneer cluster 1.3120 0.6096
Mature cluster 1.2908 0.5930
Coalesced clusters 1.2592 0.5889
Woodland 1.1189 0.5128

sek, 1989). According to Smoluchowski equation
and their dynamic scaling, average patch size
change can be described as

ds(z)

dr -
where ¢ is the dynamic scaling exponent related to
fractal dimension. Based on black and white aerial
photographs (1941-1983), we can calculate local
growth fractals of woody patches in Table 1; (2)
Correlation functions, self-affine fractal and spec-
tral analysis (see Section 6): we can have fractal
and roughness measure of anisotropic characteris-
tics of correlated growth of woody patches in
Table 2; (3) Area—perimeter relationships (see
Section 3.1): we use area—perimeter fractal mea-
sure for characterizing the complexity of the size
and shape of vegetation patches in Table 3; (4)
Cluster-size distribution functions (see Sections 5
and 7): we use such distribution fractal measure for
quantifying the degree of coalescence and fragmen-
tation in the landscape (Table 4); (5) Information
dimensions (see Section 3.2): we use information
fractal measure to describe spatial pattern shifts of
the landscape during succession. Tables 1-5 show
that our method looks very favorable and is
straightforward for understanding and identifying
cluster-phase (patch) processes and successional
mechanisms in vegetation systems.

[S(F

10. Summary and discussion

Euclidean geometry is so familiar to us that we
often forget that it is essentially hypothetical,
particularly in its application to ecology and biol-
ogy. For example, Euclidean analysis implies that
the notions of length #, surface #> and volume 73
have only a hypothetical meaning. The concept of
fractal geometry provides us a new insight on
analyzing and quantifying the spatial variability

Table 5
Spatial pattern shifts of southern Texas savanna landscape
during succession

Year Fractal dimension Roughness
1941 1.7905 5.7130
DRY

1960 1.8282 5.5968
WET

1983 1.9130 6.2221
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of patch patterns and patch dynamics. Patch sys-
tems operate over a broad range of spatial and
temporal scales. Although such systems are often
studied as discrete units of a landscape, in fact
they are never completely isolated from each
other. Rather, all ecological systems are more or
less strongly linked to their neighbors through the
transport of water, energy, organic matter, and
mineral elements. In other words, one ecosystem’s
outputs are its neighbors’ inputs. In order to
understand and characterize ecological patterns
and processes as well as their dynamics, we have
to address scale and scaling issues. Scale interac-
tions and cross-scale dynamics among patches or
ecological systems become important. In general,
we need to consider the following scales: (1) Tem-
poral scale: (a) the lifetime/duration; (b) the pe-
riod/cycle; and (c) the correlation length/integral
scale; (2) Spatial scale: (a) spatial extent; (b) space
period; and (c) the correlation length/integral
scale; and (3) ‘Organism’ scale: (a) body size/
mass; (b) species-specific growth rate; (c) species
extinction rate; (d) the life span; (e) the home
range; (f) niche, and so on. In practice, we have to
identify: (1) Process scale: Only those processes
which have comparable scales can significantly
affect biogeochemical interactions and ecosystem
dynamics and act as constraints on ecological
systems. Scaling up from small to large cannot be
a process of simple linear addition: nonlinear
processes organize the shift from one range of
scales to another. (2) Observation scale: (a) the
spatial (temporal) extent/coverage of a data set;
(b) the resolution/spacing between samples; and
(c) measurement scale or the integration volume/
time of a sample. Ideally, processes should be
observed at the scale they occur. However, this is
not always feasible. Processes larger than the cov-
erage appear as trends in the data, whereas pro-
cesses smaller than the resolution appear as noise.
(3) Modeling/working/management scale: The
modeling or working scales generally agreed upon
within the scientific community are partially to
processes and partially to the application of eco-
logical models. Emerging ecological processes, ob-
servation methods and modeling together are a
great challenge for ecological theory development
and application. Our observations of the real

ecosystems have finite resolution, and our com-
puters have limited capabilities. Therefore in
models we must divide the behavior of the system,
which occurs on all scales, into the component
that is explicitly resolved in the model and an
unresolved, smaller-scale component. One key to
the scale problem is to understand how the behav-
ior of the system at different scales is accounted
for in models. Because landscapes are moving
targets, with multiple potential futures that are
uncertain and unpredictable, ecosystems or land-
scape management has also to be flexible, adap-
tive, and experimental at scales compatible with
the scales of critical ecosystem functions. Fractal
analysis as a tool for addressing problems of scale
and hierarchy allow ecologists to view landscape
patch patterns and dynamics at multiple spatial
and temporal scales and thereby achieve pre-
dictability in the face of complexity, and suggests
that patch landscape properties will be a function
of the scales of measurement and that traditional
concepts of stationarity and averaging in stochas-
tic approach may not capture the total nature of
heterogeneity. In addition, statistical fractals offer
a viable way to analyze discontinuous, inhomoge-
neous processes in natural systems.

Future directions in ecology will be strongly
influenced by methodological advance, especially
technologies imported from other disciplines
(Wiens, 1992). Fractals will play a very important
role in building a spatially explicit ecology be-
cause fractals not only have obviously advantage
in describing the following three related contexts:
geometric, temporal (dynamical), and statistical,
but also fractals provide a bridge to concentrate
chaos theory, fractal analysis, wavelet analysis
(Gao and Li, 1993; Li and Loehle, 1995), scaling
analysis and spectral analysis into a spatio-tempo-
ral integrated methodology. In order to enlarge
ecological dynamics to fractal dynamics (or more
generally speaking, to scale dynamics) in an eco-
logical system, it is clear that the future applica-
tions of fractals and their underlying nonlinear
space—time dynamics in a fractal space, together
with high speed computation, will continue to
bring ecological, physical and mathematical sci-
ences together for work on real problems that
were formerly thought to be outside some of the
artificially set ranges in each field.
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Fractals, like other mathematical models in
ecology, have their limitation (e.g. Shenker
(1994)), especially as it is a developing theory and
method. For example, the fractional Brownian
motions model the often observed power-law rela-
tions between the variance of a soil property and
the length of transect sampled. However, this
model fails to account for abrupt changes of the
mean (i.e. soil boundaries), for second-order sta-
tionarity and for the non-self similarity of varia-
tions at different scales that are observed in real
data (Burrough, 1983b). Multifractals could be
used to account for such change or ecological
phase transitions. For another example, there are
severe theoretical difficulties in estimating the in-
dex, which stem from two different causes: (1) the
dimension is local property defined in terms of
behavior of the set in a box B(x, ¢) as ¢ —» 0, and
we cannot let ¢ go to zero in real data, the
behavior over the observable range could be quite
different from its limiting behavior; (2) It is im-
possible in practice to distinguish between the set
E and its closure E. This means that a countable
set O such that Q is thicker than the set E that we
want to observe might well dominate that calcula-
tion even though Q is only countable. Theoreti-
cally, when the selected scale approaches zero and
is larger than the threshold scale, the estimated
fractal dimension D’ is the real fractal dimension
D, otherwise, D’ < D. Several recent studies ad-
dressed the problems of the fractal estimation
(Cutler and Dawson, 1989; Lapsa, 1992; Reeve,
1992; Wen and Sinding-Larsen, 1997). A careful
quantitative analysis of spatial patterns and patch
dynamics using the concept of fractal geometry
would be a valuable contribution that is, so far,
lacking.

Self-similarity may be extreme restrictions in a
particular situation (e.g. Simberloff et al., 1987).
However, it is still possible and useful to apply the
general idea to a natural system and define its
fractal dimension. Although the concept of fractal
dimension defined by Hausdorff may be applica-
ble even to the sets that may not be self-similar,
we have to recognize that fractal distributions
may only be valid over a limited range. We have
to address scale-break, scale covariance, and dy-
namic scaling carefully in our studies.

Fractal geometry was introduced into natural
sciences less than three decades ago. In a short
time, the fractal concept has turned from an
esoteric mathematical idea into a useful tool in
many branches of pure and applied science, in-
cluding ecology (over 80 published papers with
ecological applications are good evidence). The
field has become mature and very sophisticated. It
is my hope that this paper will stimulate work in
this area and shed new light on the quantification
of patch temporal and spatial variability and het-
erogeneity across spatial and temporal scales.
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