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ABSTRACT: 

 

This study uses the InterIMAGE system and imagery from the QuickBird II optical sensor for the classification of the land cover of 

two test-sites in the metropolis of São Paulo, Brazil. InterIMAGE is an open source and free access framework for knowledge-based 

image classification. Within InterIMAGE human knowledge is represented as a semantic net and by user-defined rules based on the 

paradigms of object-oriented image analysis. The Segmentation Parameter Tuner system was used for the search of appropriate 

segmentation parameters. This system uses a genetic algorithm for the optimization of the parameters. For the description of the land 

cover classes in terms of features and thresholds, a strategy combining a hierarchical structure of classes and the decision tree 

algorithm C4.5 was elaborated. The classification model was then formatted according to InterIMAGE’s image analysis strategy. The 

proposed methodology has shown to be efficient for the automatic mapping of the land cover in complex urban areas such as those 

found in the metropolis of São Paulo. The final classification achieved an overall accuracy of 73% and a Kappa Accuracy Index of 

0.69. This study has explored the main functionalities of InterIMAGE, presenting its potentialities for object- and knowledge-based 

image classification.  

 

 

1. INTRODUCTION 

According to the United Nations Organization (UNO), presently 

more than half of the world population lives in urban areas and 

by 2050 this percentage will increase to 70% (UN-HABITAT, 

2009). It foresees an absolute and a relative increase of urban 

population especially in developing countries. The chaotic 

growth of cities in these countries causes different social 

problems, such as violence, traffic jams, visual and sound 

pollution, decrease of environmental quality, increase of 

diseases related to air pollution and depreciation of public 

spaces among others. The mitigation and solution of these 

problems involves effective urban planning policies based on 

up-to-date and reliable spatial information.  

In this context, remote sensing datasets can provide valuable 

information about the urban land cover. According to Jensen 

(2007), for urban land cover and land use classification at the 3rd 

and 4th scale levels of the United States Geological Survey, 

remote sensing multispectral imagery with a temporal resolution 

of at least 3 to 5 years and spatial resolution higher then 5 meters 

(< 5m) is required. In the last decade, several orbital sensors 

with these characteristics were launched. The higher availability 

of data demands now adequate (i.e. accurate, standardized and 

fast) methodologies for information extraction. The object and 

knowledge-based image classification approach is presently the 

most advantageous for the analysis of high spatial resolution 

imagery for urban planning.  

Despite the several potentialities of this approach, the costs of 

licenses for the use of commercial software that perform object-

based and knowledge-based image classification are still very 

high. Another disadvantage is that these systems are not open 

source, which means that one cannot have access to the code of 

the algorithms nor customize the system according to one’s 

own needs. The free access to these systems would allow 

planning agencies and research institutes, especially in 

developing countries, to make full use of this technology. 

  In that context, the objective of this work is to present an urban 

land cover classification model using the InterIMAGE system 

(InterIMAGE 2010) and imagery from the QuickBird sensor 

(DigitalGlobe 2008). InterIMAGE is a free access and open-

source knowledge-based classification system whose image 

analysis conception is highly flexible, offering great potential for 

automatic interpretation of remote sensing imagery 

(InterIMAGE 2010). The system is an on-going project whose 

main long term objectives are to spread its use among 

government planning agencies and to develop a powerful tool 

for image analysis.  

 

1.1 The InterIMAGE System 

The InterIMAGE system is a knowledge-based framework for 

automatic image interpretation which is currently implemented 

for LINUX and Windows operating systems. The image analysis 

concept of InterIMAGE is based on an earlier system called 

GeoAIDA developed at Leibniz University in Hannover 

(Bückner et al. 2001; Pahl 2003). The classification strategy 

implemented by InterIMAGE is based on a knowledge model 

structured as a semantic net defined by the user. The 

classification strategy has two steps: the Top-Down (TD) and 

the Bottom-Up (BU).  

In the TD step, the system descends the semantic net triggering 

the so-called holistic operators. Holistic operators are image 

processing operators, external to the system’s core, specialized 

in the detection of a certain class. Every node of the semantic 

net may or may not contain a holistic operator. These can be 

developed by any user who has programming skills. 

http://www.tnt.uni-hannover.de/project/geoaida/
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InterIMAGE (2010) also offers an online repository of 

operators, developed already by the project team. In theory, the 

holistic operators can process any type of image, enabling 

InterIMAGE to perform multi-sensor analysis.  

For the detection of objects from a certain class, holistic 

operators usually perform three procedures in the following 

order: (1) segmentation (or import  GIS data), (2) attribute 

extraction and (3) classification. The geographic regions 

detected by a holistic operator inserted into a given node are 

transmitted as masks (hypothesis) to its child nodes on the 

lower level of the semantic net, where its own holistic operators 

will work. Presently, the user can elaborate a holistic operator 

considering: (1) one of the two segmentation algorithms 

available in the system, namely those ones developed by Baatz 

and Schäpe (2000) and Bins et al. (1996), (2) spectral, textural 

and geometric features and (3) classification rules using different 

boolean operators structured, if necessary, hierarchically. 

In the BU step, the system ascends the semantic network 

solving spatial conflicts between hypotheses based on user-

defined rules inserted in every node that is not a leaf node. 

Doing so, the system either partially or totally discards the 

hypotheses or turns them into instances (i.e. validates the 

hypotheses). These user-defined rules may or may not involve 

additional logical selections. If after the discard of hypotheses 

by these additional logical selections spatial conflicts still 

remain, they are solved either by the supervised definition of 

priority for the classes or by the competition of membership 

values given by user-defined fuzzy membership functions. BU 

rules are customized in a friendly interface that allows the 

development of complex class description and hypothesis 

judgment criteria. 

 

 

2. TEST-SITES AND METHODS 

The test sites for the application of the methodology are two 

sections of the São Paulo (Brazil) municipality. One is a high 

social-economic standard residential area with two types of land 

use, namely: residential horizontal of high standard and vertical 

residential of high standard. The most common targets in that 

area are vegetation cover of trees and grass, ceramic tile roofs, 

swimming pools and concrete buildings painted in white. The 

other test site is an industrial and residential area with bare soil 

area, ceramic tile roofs, different kind of asbestos roofs and 

pavement types. Both test-sites have a modest size of about 

810.000 square meters. This limitation of image size is actually a 

limitation on the number of hypotheses (i.e. segments) that 

InterIMAGE could process at the time of the images processing 

phase of this work.  

As explained below, the land cover classification in the two test-

sites was done combining semantic nets for human knowledge 

representation and machine learning algorithms for 

segmentation parameters search and classification rules 

definition. This combination has the intent to minimize the 

intervention of the user to the tasks of collecting samples for 

every land cover class and organizing the semantic nets. The 

proposed methodology is to be understood as an image analysis 

processing chain that in the near future will be fully integrated 

into the InterIMAGE system. 

 

2.1 Segmentation Parameters Search and Definition  

The algorithm developed by Baatz & Schäpe (2000) was used  

for the segmentation of the images. Two parameter sets were 

applied, one for the segmentation of vegetated areas (named PS 

1) and another for medium and small sized roofs (named PS 2) 

(Table 1). Since the relationship between the parameter sets and 

the segments generated by the algorithm is not intuitive, a 

process of calibration of the parameters is always necessary. 

Instead of a time-consuming trial-and-error process, the system 

Segmentation Parameter Tuner (SPT 2008; Costa et al. 2008) 

was used for this purpose. The SPT uses a genetic algorithm to 

search for the optimal parameter set based on the fitness 

between samples drawn by the user over the image and the 

segments generated by the algorithm. The set of parameters that 

generates the segments most fitted to the samples is 

recommended by SPT as the best set when the searching 

process ends. The fitness measure used was the Reference 

Bounded Segment Booster (RBSB). Costa et al. (2008) give a 

detailed explanation of how the calibration of parameters using 

the SPT system works as well as on the calculation of the RBSB 

fitness measure. The SPT system can be downloaded from the 

Internet and in the near future it will be integrated into the 

InterIMAGE system.  

 

 Parameter sets (PS) 

Parameters PS 1 PS 2 

Scale 21 41 

Shape 0.25 0.84 

Compactness 0.61 0.8 

Band weights 

(B1, B2, B3, B4) 
0.24, 0.07, 0.42, 0.26 1,1,1,1 

 

Table 1 – Parameter sets applied for the segmentation of the 

land cover objects.  

 

2.2 Land Cover Class Description 

Similarly to the calibration of the segmentation parameters, the 

description of the classes in terms of features and thresholds 

was obtained automatically. First, the segments generated on the 

SPT system were imported into the Definiens Developer system 

(Definiens 2007) and forty-five samples of each land cover class 

were collected and then exported along with ninety-six spectral, 

geometrical and textural features. The samples were then 

organized according to the hierarchical net shown on Figure 1.  

The hierarchical net served as a strategy to obtain the description 

of the land cover classes through a series of sub-classifications 

on a top-down process. Initially, all the samples were grouped as 

belonging either to class ‘Shadow’ or ‘Not-Shadow’, then the 

samples of ‘Not-Shadow’ were divided into groups 

‘Vegetation’ and ‘Not-Vegetation’ and so on. Each one of these 

sub-classifications was then derived using the C4.5 decision tree 

algorithm (Quinlan, 1993). This algorithm provides, in a 

hierarchical structure, the features and thresholds that best 

separates the samples from different classes based on the 

heuristic of entropy reduction. A decision tree can also be 

considered as a rule set or simply as a tool for threshold 

calibration. 

Simultaneously to this task, the Fast Correlation-Based Filter 

(FCBF) (Yu and Liu, 2003), a feature selection algorithm, was 

used to extract features that best separate the samples belonging 

to the leaf nodes of the hierarchical net (i.e. the classes of 

interest). The frequency distributions of the samples concerning 

the two features that were best ranked by the FCBF algorithm 

were considered for the shape definition of the membership 

functions associated to these features. The FCBF algorithm was 

also used for the selection of the features for the decision tree 



 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7 

 

induction. In Novack and Kux (2009) we observed that the 

reduction of the dimensionality causes an increase of the 

accuracy of the decision tree and also reduces its size. 

In this way both the set of logical selections (given by the 

decision trees) and the membership functions that describe the 

land cover classes of interest were obtained. For instance, the 

description of class ‘Grass’ is comprised by the rules given by 

the decision trees for the classification of ‘Not-Shadow’ and 

‘Vegetation’ as well as the two membership functions 

associated to the two features that were best ranked by the 

FCBF algorithm for the separation of ‘Grass’ and ‘Trees’. 

Therefore, the class ‘Trees’ has at its description the same rules 

and features as ‘Grass’, but different membership functions 

although associated to the same features. The same process was 

applied to obtain the description of classes ‘Bare Soil’, ‘Ceramic 

Tile Roofs’, ‘Blue-Coloured Roofs’, ‘Swimming Pools’, ‘Dark 

Asbestos Tile Roof or New Asphalt’, ‘Gray Asbestos Tile Roofs 

or Asphalt’ and ‘Clear Asbestos Tile Roofs or Concrete’. At the 

description of all these classes, the operator ‘Minimum’ was 

applied for the aggregation of the membership values returned 

by the functions associated with the two features best ranked by 

the FCBF algorithm.  

All the features used in the class descriptions of the land cover 

classes were then implemented in InterIMAGE in order to apply 

the model.  

 

2.3 Formatting of the Land Cover Classification Model  

As the InterIMAGE system uses a two-step analysis strategy 

(i.e. the TD and the BU steps) a new semantic net was 

elaborated (Figure 5) where the expressions of the class 

descriptions were organized and structured for the generation of 

hypothesis in the TD step and the resolution of spatial conflicts 

between these hypothesis in the BU step. Our objective was to 

explore the potential of the two-step analysis strategy in a more 

semantically coherent and computationally less expensive net.  

In the TD step the operator Dummy Top-Down was inserted into 

the nodes ‘Service and Residential Roofs’, ‘Red Objects’ and 

‘Vegetation’. This operator only passes to the child nodes the 

masks it received from the parent node, which in this case is the 

whole image. The node ‘Swimming Pools’ only segments the 

images using the parameter set PS 2 (Table 1) and the node 

‘Shadow’ selects the pixels of a brightness image (sum of the 

four spectral bands divided by four) with digital numbers below 

200. On the third level of the semantic net the nodes ’Grass’ and 

‘Trees’ perform the segmentation of the image applying the 

parameter set PS 1 (Table 1) as well as the logic selection given 

by the C4.5 algorithm for the separation of classes ‘Vegetation’ 

and ‘Not-Vegetation’. The same procedures are done on nodes 

‘Bare Soil’ and ‘Ceramic Tile Roofs’, except that the 

segmentation parameter set is the PS 2 shown in Table 1 and the 

logic selection is  given by the C4.5 algorithm for the separation 

of ‘Red Objects’ and ‘Not-Red Objects’. For the child nodes of 

‘Service and Residential Roofs’ the PS 2 segmentation 

parameters in Table 1.0 were applied. As for the logic selections, 

we applied for class ‘White Roofs or Aluminium’ those ones 

given by the C4.5 for the separation of ‘White Roofs or 

Aluminium’ and ‘Not-White Roofs or Aluminium’ on the 

hierarchical net shown on Figure 2. At the nodes ‘Clear 

Asbestos Tile Roofs or Concrete’, ‘Gray Asbestos Tile Roofs or 

Asphalt’ and ‘Dark Asbestos Tile Roofs or New Asphalt’, the 

logic selections used for the separation of ‘Dark Objects and 

Roofs’ and ‘Blue-Coloured Objects’ were applied. The node 

‘Blue-Coloured Roofs’ performs the segmentation of the image 

using the PS 2 shown in Table 1 as well as the logical selections 

that are the opposite to those ones applied for the classification 

of classes ‘White Roofs or Aluminium’, ‘Service and 

Residential Roofs’ and ‘Swimming Pools’ in the hierarchical net 

shown in Figure 2.  

In the BU step the decision rule on node ‘Service and 

Residential Roofs’ solves the spatial conflicts among the 

hypotheses of its child nodes as follows. The hypotheses of the 

 
 

Figure 1 – Hierarchical net used as a strategy to obtain the description of the land cover classes. 
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class ‘White Roofs or Aluminum’ wins all spatial conflicts and 

the hypotheses of  class ‘Blue-Coloured Roofs’ loses all spatial 

conflicts. The solution of spatial conflicts between the 

hypotheses of classes ‘Clear Asbestos Tile Roofs or Concrete’, 

‘Gray Asbestos Tile Roofs or Asphalt’ and ‘Dark Asbestos Tile 

Roofs or New Asphalt’ is completed by the competition of the 

membership values given by the membership functions 

associated to the two features best ranked by the FCBF 

algorithm. The BU decision rules on nodes ‘Red Objects’ and 

‘Vegetation’ also solves the spatial conflicts between the 

hypotheses of its child nodes using the membership functions 

associated to the features selected by the FCBF algorithm. 

Finally, the remaining spatial conflicts between hypotheses of 

classes ‘Service and Residential Roofs’, ‘Swimming Pools’, 

‘Shadow’, ‘Red Objects’ and ‘Vegetation’ are solved according 

to an order of priority. Class ‘Shadow’ wins all spatial conflicts 

followed by classes ‘Vegetation’, ‘Red Objects’, ‘Service and 

Residential Roofs’ and ‘Swimming Pools’. Alternatively to the 

definition of an order of priority for the solution of these spatial 

conflicts, the use of membership functions was also examined. 

However, the results were visually evaluated as inferior to the 

results obtained when defining an order of priority of classes. 

 
 

Figure 2 – Semantic net elaborated in the system InterIMAGE for the classification of the land cover. 

 

 
Figure 3 – Colour compositions (a and b) and the respective land cover classifications (c and d). 
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Naturally, this depends on the shape and thresholds of the 

membership functions. It is important to stress that this 

alternative can only be explored on the InterIMAGE system.   

 

3. RESULTS AND DISCUSSIONS 

For the evaluation of the accuracy of the land cover 

classifications, the following procedure was carried out. First, 

samples of every land cover class were drawn over the image by 

visual interpretation. Most of the objects whose land cover class 

could be clearly identified were sampled. Then, the vector layer 

containing the drawn samples was converted to a raster layer 

and the resulting reference map was compared pixel by pixel 

with the classifications obtained. Such evaluation is more 

realistic than collecting whole segments as samples due to the 

fact that an area wrongly or correctly classified will be weighted 

by its area in the accuracy index computation. 

Figure 3 shows the land cover classifications at sections of the 

two test-sites and Table 2 present the confusion matrix of both 

classifications. A Global Accuracy of 73% and a Kappa Index 

(Congalton and Green 1999) of 0.69 were obtained. These 

values are satisfactory and corroborate the made visual 

evaluation. With few exceptions, all land cover classes achieved 

very good User’s and Producer’s Accuracies. The vegetated 

areas (the area covered either by ‘Trees’ or ‘Grass’) were 

excellently mapped if we consider that most of the omission 

errors of class Trees were classified as ‘Grass’. On the other 

hand, 7% of the sampled ‘Bare Soil areas were wrongly 

classified as ‘Grass’, which has decreased the user’s accuracy of 

this class down to 69%, along with the commission errors over 

‘Trees mentioned. In fact, there are many areas in the image 

where the grass is sparse, becoming a transition area to bare soil.  

As for the confusion among ‘Trees and ‘Grass’, it is related to 

the fact that, depending on its position in relation to the sun, 

some parts of the tree canopies appear in a brighter tone of 

green which is similar to the one of grass covered areas.   

The classification of ‘Bright Roofs’ has commission and 

omission errors almost exclusively with classes ‘Bare Soil’ and 

‘Clear Asbestos Roofs or Concrete’. 30% of the samples 

collected as ‘Bright Roofs’ were wrongly classified as ‘Clear 

Asbestos Roofs or Concrete’. However, such confusion is 

acceptable when asbestos roofs or concrete surfaces are new 

and clean, as they reflect sunlight similarly to bright roofs. Bare 
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GARA 14 761 26 3064 266 572 0 27 122 6 452 5310 

CARC 0 2 1237 94 9554 15 0 71 198 388 12412 23971 

DARNA 154 165 0 881 0 6033 96 3 129 133 87 7681 

S 11 0 0 9 0 9 7328 0 0 2 0 7359 

SP 0 0 158 0 0 0 0 1308 0 221 0 1687 

CTR 9 0 0 0 0 3 0 0 9034 0 2899 11945 

BCR 0 0 0 0 114 0 0 99 0 9654 0 9867 

BS 0 0 0 0 0 0 0 0 1935 0 6167 8102 

Total 4222 18092 4201 4127 9934 6747 7424 1511 11426 10442 24496 102622 

User’s Accuracy 0.94 0.85 0.80 0.58 0.40 0.79 1.00 0.78 0.76 0.98 0.76  

Producer’s Accuracy 0.70 0.95 0.66 0.74 0.96 0.89 0.99 0.87 0.79 0.92 0.25  

 

Table 2 – Confusion matrix and per class User’s and Producer’s Accuracies. 
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soils can also be very reflective, which has caused confusion 

with ‘Bright Roofs’ mainly with ‘Clear Asbestos Roofs or 

Concrete’. In fact, the class ‘Bare Soil’ is the one with relatively 

most omission errors (a Producer’s Accuracy of only 25% was 

achieved).  

Classes ‘Grey Asbestos Roofs or Asphalt’, ‘Clear Asbestos 

Roofs or Concrete’ and ‘Dark Asbestos Roofs or New Asphalt’ 

presented mainly commission and omission errors among each 

other and with class ‘Bright Roofs’. This can be explained by 

the fact that a clear and objective criterion of distinction between 

these classes cannot be defined, especially because of different 

conditions of preservation and inclination angles of paved areas 

and roofs. This has lowered the accuracy indexes of these 

classes. At class ‘Shadow’ there were only few commission 

errors with ‘Trees’ and ‘Asbestos Roofs’ and a small percentage 

(1.2%) of the samples collected from this class were wrongly 

classified as ‘Dark Asbestos Roofs or New Asphalt’, which is 

the second less reflective class considered in this work. 

Other classification confusion worth mention is that between 

‘Ceramic Tile Roofs and Bare Soils’. These two classes have 

very similar chemical compositions and Kux and Araújo (2008) 

and Novack (2009) have already reported the similar spectral 

characteristics of these two classes when using multispectral 

images with high spatial resolution. As shown in Table 2, almost 

22% of the samples collected for ‘Ceramic Tile Roofs’ were 

wrongly classified as ‘Bare Soils’ and all commission errors of 

this class were attributed to class ‘Ceramic Tile Roofs’.  

 

 

4. CONCLUSIONS AND REMARKS 

This study demonstrates that the InterIMAGE system is a 

powerful tool for knowledge-based analysis of high resolution 

remote sensing imagery. InterIMAGE performed complex land 

cover classifications at two different and complex urban test-

sites using spectral and geometric features calculated both on 

the TD step and on the BU rules. The functionalities 

implemented in InterIMAGE in order to make this application 

possible have certainly improved the system. The land cover 

classification achieved very good accuracy indexes and was 

qualitatively evaluated as very good.  

One still limitation of InterIMAGE is the modest number of 

segments it can process, which directly determines the limit of 

the image’s size. The project’s development crew is already 

working to overcome this restriction.  

The partial results presented in this study demonstrate that the 

InterIMAGE system could be used by urban planning agencies 

for mapping the land cover of cities in a fast and standardized 

way with no cost. In future work, topological features recently 

implemented at InterIMAGE will be explored and the model will 

be tested in more extensive areas for the evaluation of its 

accuracy stability.  
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