
Journal of Theoretical Biology 303 (2012) 1–14
Contents lists available at SciVerse ScienceDirect
Journal of Theoretical Biology
0022-51

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/yjtbi
Assessing the role of spatial heterogeneity and human movement in malaria
dynamics and control
Olivia Prosper a,n, Nick Ruktanonchai b, Maia Martcheva a

a Department of Mathematics, University of Florida, Gainesville, FL, United States
b Department of Biology, University of Florida, Gainesville, FL, United States
a r t i c l e i n f o

Article history:

Received 30 April 2011

Received in revised form

7 February 2012

Accepted 8 February 2012
Available online 22 February 2012

Keywords:

Reproduction number

Elasticity analysis

Metapopulation model
93/$ - see front matter Published by Elsevier

016/j.jtbi.2012.02.010

esponding author. Tel.: þ1 352 392 0281x30

ail address: oprosper@ufl.edu (O. Prosper).
a b s t r a c t

Mathematical models developed for studying malaria dynamics often focus on a single, homogeneous

population. However, human movement connects environments with potentially different malaria

transmission characteristics. To address the role of human movement and spatial heterogeneity in

malaria transmission and malaria control, we consider a simple malaria metapopulation model

incorporating two regions, or patches, connected by human movement, with different degrees of

malaria transmission in each patch. Using our two-patch model, we calculate and analyze the basic

reproduction number, R0, an epidemiologically important threshold quantity that indicates whether

malaria will persist or go extinct in a population. Although R0 depends on the rates of human

movement, we show that R0 is always bounded between the two quantities R01 and R02—the

reproduction numbers for the two patches if isolated. If without migration, the disease is endemic in

one patch but not in the other, then the addition of human migration can cause the disease to persist in

both patches. This result indicates that regions with low malaria transmission should have an interest

in helping to control or eliminate malaria in regions with higher malaria endemicity if human

movement connects them. Performing a sensitivity analysis of R0 and the endemic equilibrium to

various parameters in the two-patch model allowed us to determine, under different parameterizations

of the model, which patch will be the better target for control measures, and within that patch, what

type of control measure should be implemented. In the analysis of R0, we found that if the extrinsic

incubation period is shorter than the average mosquito lifespan, the control measures should be

targeted towards reducing the mosquito biting rate. On the other hand, if the extrinsic incubation

period is longer than the average mosquito lifespan, control measures targeting the mosquito death

rate will be more effective. Intuitively, one might think that resources for malaria control should be

allocated to the region with higher malaria transmission. However, our sensitivity analyses indicated

that this is not always the case. In fact, if migration into the lower transmission patch is much faster

than migration into the higher transmission patch, the lower transmission patch is potentially the

better target for malaria control efforts. While human movement between regions poses challenges to

malaria control and elimination, if estimates of relevant parameters in the model are known, including

migration rates, our results can help inform which region to target and what type of control measure to

implement for the greatest success.

Published by Elsevier Ltd.
1. Introduction

Malaria continues to pose a substantial public health problem
worldwide, particularly in less developed countries. Malaria con-
trol, even in countries with relatively low malaria endemicity,
proves to be a significant challenge (http://www.CDC.gov/Malaria/
about/facts.html; Sachs and Malaney, 2002). Recently, the inter-
national community has increased its focus on reducing malaria
Ltd.
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burden worldwide, and malaria elimination has re-entered the
lexicon of the malaria control community (Das and Horton, 2010;
http://www.malariaeliminationgroup.org/about; Guinovart et al.,
2006; New York Times, 2010; World and Media, 2011). In many
countries, however, resources available towards implementing
intervention strategies are extremely limited (Greenwood and
Mutabingwa, 2002). Intervention strategies must be chosen to
maximize the use of these limited funds to most efficiently reduce
malaria burden. For many diseases, including malaria, human
population movement contributes greatly to the spread and
persistence of disease (Greenwood and Mutabingwa, 2002), and
is therefore an important consideration when implementing
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intervention strategies (Woolhouse et al., 1997). Despite this, little
is known about human movement patterns and their epidemio-
logical consequences (Stoddard et al., 2009). In fact, the failure of
the Global Malaria Eradication Programme in the 1950s and 1960s
may be due, in part, to the failure to take into account human
movement (Greenwood and Mutabingwa, 2002).

Human movement often links areas with different degrees of
malaria transmission capacity (Martens and Hall, 2003). Local
transmission dynamics often differs between areas (Stoddard
et al., 2009) due to characteristics such as topography, mosquito
species densities, pesticide use, availability of mosquito habitats,
or differences in currently implemented intervention strategies
(Githeko et al., 2006; Kulkarni et al., 2010); for example, urban
areas typically have much lower malaria transmission than rural
areas (Hay et al., 2005; Machault et al., 2010; Robert et al., 2003).
Because human movement commonly links urban and rural
systems that often exhibit dramatically different degrees of
malaria transmission (Robert et al., 2003), urbanization may be
an important driver in malaria dynamics.

Local transmission dynamics may influence the efficacy of
intervention strategies. Because these transmission characteristics
may vary between areas connected by human movement, human
movement becomes important not only in terms of expected
degree of importation, but also in terms of deciding where to
target intervention strategies to most efficiently use resources.

In this study, we develop a mathematical model to address the
implications of malaria movement between areas of potentially
heterogeneous transmission characteristics, in order to determine
effective targeted intervention strategies.

Mathematical models are a useful tool often applied to both
identify control measures that are most important to implement,
as well as quantify the effectiveness of different control strategies
in controlling or eliminating malaria in endemic regions. For
simplicity, most models consider transmission in one region of
interest, with homogeneous transmission throughout the region.
One of the first malaria models of this kind was the Ross–
MacDonald model, which we describe in Section 2 (Bailey,
1982). In Section 2.1 we describe a modification of the Ross–
Macdonald model, which is to be used in the human movement
two patch model. While single-patch malaria models have proven
to be very useful in the study of malaria dynamics, we know from
many other systems that spatial structure can greatly influence
the dynamics of interacting species (Hess, 1996; Holt, 1985;
Pickett and Cadenasso, 1995), including pathogens and hosts
(Ostfeld et al., 2005). Thus, there is a need to explore how malaria
dynamics are affected by spatial heterogeneity and to use this
information to inform intervention strategies. To address this
need, in Section 2.2 we introduce a two-patch malaria metapo-
pulation model based on the modified Ross–Macdonald model
that allows for different local transmission characteristics and
variable human migration rates between patches.

Metapopulation models have been used extensively in other
systems to address common ecological issues, such as the effect of
connectivity between areas (Hess, 1996) and the effect of migra-
tion on predator–prey dynamics (Adler, 1993). Similar models
have also been used to investigate the implications these results
might have for disease dynamics. Consequently, metapopulation
models have been developed to explore the effect of migration on
disease persistence. Hethcote (1976) found that migration could
cause a disease to persist where it would otherwise die out if it
were isolated using a two-patch SIS (Susceptible–Infected–Sus-
ceptible) model. We show in Section 2.3 that this result is also
possible in our two-patch malaria model for a range of different
immigration and emigration rates.

Metapopulation models of vector-borne disease have been
previously studied to some extent as well. Cosner et al. (2009)
considered two types of movement, termed Lagrangian and
Eulerian, in their vector-borne disease metapopulation model. In
the Lagrangian approach, individuals are considered residents of a
particular patch and spend some fraction of the time visiting
other patches. In the Eulerian approach, individuals are not
tracked; while migration occurs between patches, this approach
does not assign a ‘‘residence’’ to individuals in the population. Our
two-patch model incorporates the Eulerian approach to modeling
movement. Since it is uncommon for mosquitoes to move more
than a kilometer throughout their lives (Costantini et al., 1996;
Harrington et al., 2005; Midega et al., 2007; Muir and Kay, 1998;
Russell et al., 2005) while humans often move many kilometers
between villages and countries (Stoddard et al., 2009), we
modeled human movement exclusively. In their malaria metapo-
pulation model, Cosner et al. (2009) studied a special case of a
two-patch malaria model with no transmission in one of the
patches. In our study, we are interested in understanding how
human movement affects malaria dynamics when two patches
with different, nonzero transmission characteristics are con-
nected by human migration. In Section 4.1, we parameterize our
model using estimates from regions with varying levels of malaria
endemicity, to encompass a variety of patch and human move-
ment characteristics in the field.

In Section 2.3, we present an analytic expression derived from
the two-patch model for the basic reproductive number, a thresh-
old quantity determining whether a disease will persist or go
extinct in a population. To assess the relative efficacy of different
control measures and to determine where to target these control
measures, we perform a sensitivity analysis of the basic repro-
ductive number to different parameters in the model in Section 3.
In Section 5, we perform a sensitivity analysis of the endemic
equilibrium and compare these results to those of the analysis of
the reproduction number. Chitnis et al. (2008) perform a similar
sensitivity analysis using their single-patch malaria model. They
found that under both high and low transmission settings, the
basic reproductive number was most sensitive to the mosquito
biting rate, and the equilibrium proportion of humans was most
sensitive to the human recovery rate (Chitnis et al., 2008).
However, our sensitivity analysis yielded a different result, likely
due to different assumptions in the model formulation: the
parameter the basic reproductive number is most sensitive to
depends on the relative duration of the extrinsic incubation
period and mosquito lifespan, and the human recovery rate was
not the most important factor in the analysis of the endemic
equilibrium. We also show that our intuition about where control
measures should be implemented for the greatest success may
not always be correct and that having an idea of the relative sizes
of the migration rates between the two patches can provide
insight into which patch should be the target of malaria control.
2. Ross–Macdonald model

In the Ross–Macdonald model, the rates at which the propor-
tion of humans infected (x) and the proportion of mosquitoes
infected (z) change over time are given by the following system of
equations:

dz

dt
¼ acxð1�zÞ�gz,

dx

dt
¼mabzð1�xÞ�rx, ð1Þ

where 1�z and 1�x are the proportion of mosquitoes and the
proportion of humans that are susceptible, respectively (Bailey,
1982). We can rewrite these equations in terms of the number of



O. Prosper et al. / Journal of Theoretical Biology 303 (2012) 1–14 3
humans infected, rather than the proportion infected:

dz

dt
¼ ac

I

N
ð1�zÞ�gz,

dI

dt
¼mabzðN�IÞ�rI, ð2Þ

where N is the total size of the human population, and I is the number
of humans in that population who are infected with malaria.

The parameter a is the human-biting rate (the rate at which
mosquitoes bite humans). c is the human-to-mosquito transmis-
sion efficiency, that is, the probability, given a susceptible
mosquito has bitten an infectious human that the mosquito
becomes infected. Similarly, b is the mosquito-to-human trans-
mission efficiency – the probability, given an infectious mosquito
has bitten a susceptible human that the human becomes infected.
The mosquito death rate is denoted by g. Finally, m denotes the
ratio of the number of mosquitoes to humans, and r denotes the
human recovery rate without treatment. Once a human recovers
from malaria infection, they do not gain immunity, but instead
are susceptible to re-infection.

Susceptible humans become infected at a rate mabz, and
susceptible mosquitoes become infected at a rate acx. Infected
humans are lost through recovery, and infected mosquitoes are lost
through death. Because humans live much longer than the duration
of a malaria infection and the lifespan of a mosquito, the human
death rate is much smaller than any of the other parameters in this
model, and hence is negligible. Similarly, we ignore human births.

2.1. Modifications to Ross–Macdonald model

Infected mosquitoes that do not survive the extrinsic incuba-
tion period of malaria never have the chance to transmit the
disease. Depending on mosquito daily survival probabilities and
duration of the extrinsic incubation period (which is dependent
upon factors such as temperature), as many as half of infected
mosquitoes may not survive to become infectious and able to
transmit malaria (Githeko et al., 2006; Graves et al., 1990). To
account for mosquito survival, the Ross–Macdonald model has
been modified by replacing ð1�zÞ in the original model with
e�gn�z (see Appendix 1 in Smith and McKenzie, 2004). In other
words, the pool of mosquitoes is reduced from one to the
proportion of individuals expected to survive the extrinsic
incubation period, which has length n, if their death rate is g. As
a final modification, we eliminate the mosquito equation by
assuming that the infected mosquito population equilibrates
much faster than the infected human population. This assumption
is commonly used in malaria models because the mosquito
dynamics (such as incubation period and death rate) operate on
a much quicker timescale than human dynamics (such as the
natural recovery rate) (Koella, 1991; Smith and McKenzie, 2004;
Laxminarayan, 2004; Chiyaka et al., 2010). Thus, by assuming that
the mosquito population dynamics is at equilibrium, the equa-
tions in (1) can be reduced to the single equation:

dI

dt
¼

ma2bcIe�gn

acIþgN
ðN�IÞ�rI: ð3Þ

To simplify the notation, we let a6mabe�gn and b6ac so that
Eq. (3) can be written as

dI

dt
¼

abI

bIþgN
ðN�IÞ�rI: ð4Þ

2.2. Two-patch malaria model

Eq. (4) is used in our two-patch model to describe the disease
dynamics within each patch. Each patch contains a human
population of size Ni composed of Si susceptible humans and Ii

infected humans, with migration from patch j to patch i occurring
at a rate kij, regardless of the health status of an individual.

In this model, transmission occurs only between individuals
within a patch; individuals in a given patch cannot directly infect
individuals in other patches. Movement from patch j to patch i

occurs at a per capita rate kij, and individuals are identified simply
as being in a given patch at a given time; individuals do not have a
home patch. This approach to modeling movement is related to
the Eulerian approach in fluid dynamics, and can be contrasted
with movement models related to the Lagrangian approach in
fluid dynamics, which has also been used to model human
movement in disease metapopulation models (Cosner et al.,
2009). While the Eulerian approach does not track individuals
and individuals cannot infect across patches without changing
their resident patch, the Lagrangian approach assigns an unchan-
ging resident patch to individuals (Cosner et al., 2009). Individuals
then spend a proportion of time in other patches, transmitting
disease to individuals in other patches.

The choice between Lagrangian and Eulerian movement mod-
els depends upon spatial scale and types of population movement
modeled. Movement on smaller spatial scales tends to occur more
frequently, between multiple patches in rapid succession (such as
the daily commute to work or school, or seasonal movements)
(Stoddard et al., 2009). These movements are termed circulation
in classical population movement typology (Prothero, 1977) and
involve no change of residence (Martens and Hall, 2003). In these
cases, the Lagrangian approach is generally more appropriate.
Rarer, more permanent movement (termed migration Martens
and Hall, 2003; Prothero, 1977), which is more appropriately
modeled using the Eulerian approach, tends to occur on much
larger spatial scales (for example, due to individuals changing
residence due to urbanization or displacement, Stoddard et al.,
2009).

Although most human movement consists of short-term visits,
our objective was to study the effect of longterm migration on
decisions concerning malaria control. Migration due to processes
that occur on large spatial scales, such as urbanization and
transborder migration, is an important component of malaria
systems. The degree of transborder movement between two
countries requires that any elimination campaign be highly
coordinated (Keating et al., 2010). By using an Eulerian approach
to movement, we may examine the effect of transborder migra-
tion on malaria dynamics, which has implications for interna-
tional malaria control efforts (Tatem and Smith, 2010).

Combining the conceptualization of the model in Fig. 1 and the
Eulerian framework for movement with the disease-dynamics given
by the modified Ross–Macdonald model, we arrive at the following
system of differential equations to describe the malaria dynamics of
a human population distributed between two patches:

dS1

dt
¼�

a1b1I1

b1I1þg1N1
S1þr1I1�k21S1þk12S2,

dS2

dt
¼�

a2b1I2

b2I2þg2N2
S2þr2I2�k12S2þk21S1,

dI1

dt
¼

a1b1I1

b1I1þg1N1
S1�r1I1�k21I1þk12I2,

dI2

dt
¼

a2b1I2

b2I2þg2N2
S2�r2I2�k12I2þk21I1:

In the system above, the population size of patch i is Ni ¼ Siþ Ii, and
the total population size is N¼N1þN2. Note that dN=dt¼ 0, hence
N is constant. A description of the model parameters can be found
in Table 1.



Table 1
Description of model parameters in patch i.

Parameters Description

mi Ratio of the number of mosquitoes to the number of humans

ai Human biting rate

miai Number of mosquito bites on a human per unit of time

bi Transmission efficiency from mosquito to human

ci Transmission efficiency from human to mosquito

gi Natural death rate of mosquitoes

ni Length of mosquito incubation period

ai miaibie
�gin

bi aici

ri Natural human recovery rate

kij Migration rate from patch j to patch i

Patch 1

Patch 2

k21
k21k12 k12

S1

S2 I2

I1

Fig. 1. Disease dynamics in a human population. Solid bold arrows indicate the

acquisition of a new infection; dashed arrows indicate recovery; solid thin arrows

indicate migration between patches.
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Since N01 ¼�k21N1þk12N2 implies that Nn

2 ¼ ðk21=k12ÞN
n

1,
where Nn

1 and Nn

2 denote the equilibrium values of N1 and N2,
respectively, and Nn

1þNn

2 ¼N, we have that Nn

1 ¼ ðk12=ðk12þk21ÞÞN

and Nn

2 ¼ ðk21=ðk12þk21ÞÞN at equilibrium. Thus, since S1 ¼N1 and
S2 ¼N2 when there is no disease, the disease-free equilibrium
(DFE) of the above system is ðSn

1,In1,Sn

2,In2ÞDFE ¼ ððk12=ðk12þk21ÞÞ

N,0,ðk21=ðk12þk21ÞÞN,0Þ.
If dI1=dt¼ 0 and malaria is absent in patch 1 (I1 ¼ 0), then

In2 ¼ 0 when k1240. Likewise, if dI2=dt¼ 0 and malaria is absent in
patch 2 (I2 ¼ 0), then In1 must be zero when k2140. Thus, at
equilibrium, malaria cannot be present in one patch and absent in
the other, provided that the migration rates are nonzero.

2.3. The basic reproductive number R0

The basic reproductive number, R0, is traditionally defined to be
the number of secondary cases resulting from one infectious indivi-
dual in an otherwise fully susceptible population. In a model without
acquired immunity, R0 provides a threshold criteria for persistence of
the disease in a population. If R0o1, the disease will become extinct.
If R041, the disease will persist in the population. The basic
reproductive number for the modified Ross–Macdonald model (3) is
ab=gr where a¼mabe�gn and b¼ ac. Thus without migration, patch i

in the two-patch model will have its own isolated-patch reproduction
number R0i ¼ aibi=giri, where ai ¼miaibie

�gini and bi ¼ aici for
i¼1,2. Using the next-generation approach (Diekmann et al., 1990;
van den Driessche and Watmough, 2002), we find that the basic
reproductive number (the dominant eigenvalue of the next genera-
tion matrix) for our two-patch model with migration is given by the
expression:

R0 ¼
1

2s
s1t2þs2t1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1t2þs2t1Þ

2
�4s1s2s

q� �
, ð5Þ

R0 ¼
1

2s
s1t2þs2t1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1t2�s2t1Þ

2
þ4s1s2k12k21

q� �
, ð6Þ

where

s¼ k12r1þk21r2þr1r2,

si ¼
aibi

gi

¼ rinR0i,

ti ¼ riþkji

for i¼1,2. Although this expression for R0 does not possess the
biological interpretation of the traditional definition, it still pro-
vides the same useful persistence–extinction threshold criterion.

Observe that when there is no migration between patches,
k12 ¼ k21 ¼ 0, then R0 ¼maxfa1b1=r1g1,a2b2=r2g2g ¼maxfR01,R02g,
the larger of the two isolated-patch reproductive numbers. More-
over, the value of the global reproductive number R0 for this
two-patch model is always between the two isolated-patch
reproductive numbers R01 and R02 when migration between the
two patches is present. In one parameterization of their two-
patch malaria model with Lagrangian movement, Cosner et al.
(2009) found that it was possible to have a scenario in which each
isolated patch reproduction number (R01 and R02) is less than 1,
yet the global reproduction number R0 is larger than one. This
finding illustrates that some models predict that it may be
possible to have a system where without migration, the disease
goes extinct in both patches, but once a certain level of migration
is introduced, the disease becomes endemic. However, as is stated
in the following Theorem, our two-patch model, which assumes
Eulerian rather than Lagrangian movement, predicts that R0 will
always be bounded by the isolated patch reproduction numbers.
A similar result has been derived for direct transmission epidemic
models with Lagrangian-type movement (Arino and van den
Driessche, 1993, 2003; Salmani and van den Driessche, 2006).

Theorem 2.3.1. If R014R02, then for all pairs of migration rates

ðk12,k21ÞA ½0,1Þ � ½0,1Þ,

max
R01

1þ
k21

r1

,R02

8>><
>>:

9>>=
>>;rR0rR01:

Proof. R014R02 implies that s1=r14s2=r2. Thus, by assumption
we have that s1r24s2r1. We first evaluate R0 at certain points on
the boundary of the domain ½0,1Þ � ½0,1Þ. From Eq. (6), we have

R0ðk12,0Þ ¼
1

2r1t2
ðs1t2þs2r1þ9s1t2�s2r19Þ: ð7Þ

Since by assumption s1r24s2r1, and because t2 ¼ r2þk12Zr2, we
know that s1t2�s2r140, and so 9s1t2�s2r19¼ s1t2�s2r1. Thus,
Eq. (7) simplifies to R0ðk12,0Þ ¼ R01 for all k12A ½0,1Þ.

Similarly,

R0ð0,k21Þ ¼
1

2r2t1
ðs1r2þs2t1þ9s1r2�s2t19Þ ¼

1

r2t1
�maxfs1r2,s2t1g

¼max
s1

t1
,
s2

r2

� �
¼max

R01

1þ
k21

r1

,R02

8>><
>>:

9>>=
>>;: ð8Þ

Thus, R02rR0ð0,k21ÞrR01, for all k21 in the interval ½0,1Þ.
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Consider the function

f ðxÞ ¼ sx2�ðs1t2þs2t1Þxþs1s2: ð9Þ

f is precisely the characteristic polynomial of the next-generation

matrix used to derive R0 in Eq. (5). R0 is the larger of the two roots

of the concave-up parabola f(x). Consequently, f ðR0Þ ¼ 0 and

f 0ðR0Þ40. From this we know that for any real number xn

satisfying the inequality f ðxnÞo0, then xn must be less than R0.

On the other hand, if xn is such that f ðxnÞ40 and f 0ðxnÞ40, then xn

is greater than R0.

Suppose k12 and k21 are positive. Then,

f ðR01Þ ¼ f
s1

r1

� �
¼ s s1

r1

� �2

�ðs1t2þs2t1Þ
s1

r1
þs1s2

¼
s1

r1
ðk12r1þk21r2þr1r2Þ

s1

r1
�ðs1t2þs2t1Þþs2r1

� �

¼
s1

r1
s1k12þs1

k21r2

r1
þs1r2�ðs1t2þs2t1Þþs2r1

� �

¼
s1

r1
s1t2þs1

k21r2

r1
�ðs1t2þs2t1Þþs2r1

� �

¼
s1

r1

s1r2

r1
k21�s2k21

� �

¼
s1k21

r2
1

ðs1r2�s2r1Þ:

By assumption, s1r2�s2r140, hence f ðR01Þ40. Similarly, we

can show that

f ðR02Þ ¼ f
s2

r2

� �
¼

s2k12

r2
2

ðs2r1�s1r2Þ, ð10Þ

f
R01

1þ k21
r1

 !
¼�

s1

t1

� �2

k12k21: ð11Þ

Clearly

f
R01

1þ
k21

r1

0
BB@

1
CCAo0

and since s1r2�s2r140, we also have that f ðR02Þo0.

Now, f 0ðxÞ ¼ 2sx�ðs1t2þs2t1Þ. So,

f 0ðR01Þ ¼ f 0
s1

r1

� �
¼ 2s s1

r1
�ðs1t2þs2t1Þ, ð12Þ

f 0ðR01Þ ¼ 2ðr1r2þr1k12þr2k21Þ
s1

r1
�s1r2�s1k12�s2r1�s2k21, ð13Þ

f 0ðR01Þ ¼ ðs1r2�s2r1Þþs1k12þð2s1r2�s2r1Þ
k21

r1
: ð14Þ

Again, since s1r2�s2r140, f 0ðR01Þ40.

Thus, for k12 and k21 positive, f ðR02Þo0 and

f
R01

1þ
k21

r1

0
BB@

1
CCAo0

implies that

R04max R02,
R01

1þ
k21

r1

0
BB@

1
CCA:

Also, f ðR01Þ40 and f 0ðR01Þ40 implies that R0oR01. We have

already shown that R0ðk12,0Þ ¼ R01 and R0ð0,k21Þ ¼maxfR01=
ð1þðk21=r1ÞÞ,R02g. Therefore, for all non-negative k12 and k21,

maxfR01=ð1þðk21=r1ÞÞ,R02grR0rR01. &

Theorem 2.3.2. Suppose R014R02. Consider R0ðk12,k21Þ to be a

function of both migration rates k12 and k21, where k12,k21A ½0,1Þ.
For a fixed k in the interval ½0,1Þ, R0ðk12,kÞ is an increasing function

of k12 and R0ðk,k21Þ is a decreasing function of k21.

Proof. We have shown in the proof of Theorem 2.3.1 that
R0ð0,kÞ ¼maxfR01=ð1þðk=r1ÞÞ,R02g and R0ðk12,kÞ4maxfR01=

ð1þðk=r1ÞÞ,R02g for k1240. Thus R0ðk12,kÞZR0ð0,kÞ for all
k12Z0. So, we need only to show that R0ðk12,kÞ is monotonic in
k12 to show that it is an increasing function in k12. Similarly, from
Theorem 2.3.1 we also know that R0ðk,0Þ ¼ R01ZR0ðk,k21Þ for all
non-negative k21. So again, we need only show that R0ðk,k21Þ is
monotonic in k21 to show that it is a decreasing function in k21.

First, we show that R0ðk12,kÞ is monotonic in k12.

Since R0ðk12,kÞ is continuous in k12, it is monotonic with respect

to k12 if for every CAð0,1Þ such that R0ðk12,kÞ ¼ C has a non-

negative solution k12A ½0,1Þ, then this solution is unique.

Suppose R0ðk12,kÞ ¼ C. Then, by the definition of R0 (Eq. (5)), we

have that

1

2s
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�4s1s2s

q� �
¼ C, ð15Þ

where q¼ s1t2þs2t1 ¼ s1ðr2þk12Þþs2ðr1þkÞ and s¼ r1r2þr1k12

þr2k.

Eq. (15) implies that

sC2
�qCþs1s2 ¼ 0: ð16Þ

Observe that both s and q are linear in k12. Thus, Eq. (16) is

linear in k12, implying that if there exists a k12A ½0,1Þ that is a

solution to Eq. (16), then this solution is unique. Hence, R0ðk12,kÞ
is monotonic for each kA ½0,1Þ. By the same argument, R0ðk,k21Þ

is monotonic for each kA ½0,1Þ.

Since R0ðk12,kÞ is monotonic for non-negative k12 and

R0ð0,kÞrR0ðk12,kÞ, for each fixed k21 ¼ kA ½0,1Þ, R0 is an increas-

ing function of k12. Likewise, since R0ðk,0ÞZR0ðk,k21Þ for non-

negative k21, for each fixed k12 ¼ kA ½0,1Þ, R0 is a decreasing

function of k21. &

The proof of Theorem 2.3.1, assuming that R014R02, also
shows that the minimum value of R0ðk12,k21Þ on the domain
½0,1Þ � ½0,kÞ is maxfR01=ð1þðk=r1ÞÞ,R02g and the maximum value
is R01. Thus, if R02o1 and R01=ð1þðk=r1ÞÞ41 for some k40 (and
hence R0141), then R0ðk12,k21Þ41 for all migration pairs ðk12,k21Þ

in ½0,1Þ � ½0,kÞ. This indicates that it is possible to have a
situation in which without migration, the disease dies out in
one patch but not the other, yet with migration the disease
persists in both patches for all k12Z0 and for 0rk21rk.

If R02 and R01=ð1þðk=r1ÞÞ are less than one but R0141, then for
some migration rate pairs ðk12,k21Þ, R0 will be larger than one, and
for other pairs, R0 will be less than one. Furthermore, there exists
a value knok such that R041 for all ðk12,k21Þ in ½0,1Þ � ½0,knÞ.

Finally, if R02 and R01 are both less than one, then R0 will always
be less than one, regardless of the migration rates between patches.
3. Sensitivity analysis

An elasticity analysis of the basic reproduction number and
endemic equilibrium provides a means of determining which
parameters are the best targets for malaria control for elimination
strategies and reduction of prevalence, respectively. The parameters
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that serve as the best targets can then be used to inform which
control strategies should be used, through selection of malaria
interventions that target those parameters.

Population biologists make use of sensitivity and elasticity
analyses to evaluate the effect of perturbations in a population
fecundity, growth, and survival on the overall growth of the popula-
tion, and to determine which life stage a population’s growth is most
sensitive to Heppel et al. (2000) and van Tienderen (2000). The
sensitivity of a quantity l to a parameter p is calculated as s¼ @l=@p,
and is used to determine the amount of change that occurs in l in
response to changes in elements p; sensitivity can then be used to
compare how absolute changes in various parameters affect l
(deKroon et al., 1986). However, we cannot easily compare sensitiv-
ities with respect to parameters of different scales. For example, the
effect of a 0:5 increase in transmission efficiency (measured from
0 to 1) in this model is not easily comparable to the effect of a 0:5
increase in mosquito incubation period; a 0:5 increase in transmis-
sion represents a much larger change to the system. Therefore, an
alternate measure that allows for comparison of parameters with
different scales is preferable; in this study, elasticity is used. Elasticity
is the proportional change in l resulting from a proportional change
in a. Because elasticity is determined using the proportion rather
than absolute change in a parameter p, the effect of parameters on l,
or in this case, R0, can be compared, even if the parameters are very
different in scale. Thus, we compute the elasticity of R0 to a
parameter p, rather than the sensitivity, to compare parameters of
different orders of magnitude and different units:

ep ¼
@R0

@p

p

R0
: ð17Þ

The value ep describes how much, and in what way (positively
or negatively), the reproduction number will be affected by a
small change in a parameter value p. More precisely, we can
interpret the elasticity as follows: if the elasticity of a quantity l
with respect to a parameter p is ep, then a 1% change in p will
result in an ep% change in l. We compute the analytic expressions
of the elasticities for each parameter in both the single patch
model without migration and the two-patch model so that we
may draw some general conclusions about the relative impor-
tance of each parameter in these two scenarios.

3.1. Elasticities for a single patch without migration

From Eq. (17) and the single-patch expression for R0,
ma2bce�gn=rg, we find that

em ¼ eb ¼ ec ¼ 1,

er ¼�1,

ea ¼ 2,

eg ¼�ðgnþ1Þ,

en ¼�gn:

Thus, we have (for p¼m,b,c) that 9en9o1¼ 9er9¼ epo9eg9oea if
no1=g, where n is the incubation period and 1=g is the expected
mosquito lifespan. If 1=gono2=g, in other words if the incuba-
tion period is longer than the expected mosquito lifespan but
shorter than twice this lifespan, then 1¼ 9er9¼ epo9en9oeao
9eg9. Finally, if n42=g, then 1¼ 9er9¼ epoeao9en9o9eg9.

Generally, theoretical studies have found that the basic repro-
duction number in malaria models is most elastic to the
human biting rate, which plays a major role as it influences both
transmission to mosquitoes and transmission to humans; this is
reflected in the fact that the elasticity of R0 to a is double that
of m, b, or c (Chitnis et al., 2008). Using the interpretation of
elasticity in terms of percentages, since ea ¼ 2, a 1% increase in a

will result in a 2% increase in R0. On the other hand, em ¼ 1 implies
that the same 1% increase in m will result in only a 1% increase in
R0. In our model, however, R0 is most sensitive to g when n41=g;
i.e. when the incubation period is longer than the average
mosquito lifespan. Unlike the elasticities related to the para-
meters m,a,b,c, and r, the elasticities of R0 with respect to the
mosquito death rate g and incubation period n are linear func-
tions of both g and n. Thus, increasing mosquito death rate or
lengthening the extrinsic incubation period enhances the effect of
such control measures on R0.

3.2. Elasticities for the two-patch metapopulation model

The analytic expressions for the elasticities in the two-patch
model with migration, while more complicated in form than
those of the single-patch model, provide some insight into the
relative importance of the model parameters.

For pi ¼mi,ai,bi,ci,gi,ni, we have that

@R0

@p1

¼
@s1

@p1

�
1

2s
t2 1þ

s1t2�s2t1ffiffiffi
t
p

� �
þ

2s2k12k21ffiffiffi
t
p

� �
, ð18Þ

@R0

@p2

¼
@s2

@p2

�
1

2s
t1 1�

s1t2�s2t1ffiffiffi
t
p

� �
þ

2s1k12k21ffiffiffi
t
p

� �
, ð19Þ

where t¼ ðs1t2�s2t1Þ
2
þ4s1s2k12k21, @si=@pi ¼ si=pi for pi ¼mi,bi,ci,

@si=@ai ¼ 2si=ai, @si=@gi ¼�siððginiþ1Þ=giÞ, and @si=@ni ¼�gisi.
Thus, the elasticities for pi ¼mi,bi,ci are given by the expres-

sions:

ep1
¼

s1

2sR0
� t2 1þ

s1t2�s2t1ffiffiffi
t
p

� �
þ

2s2k12k21ffiffiffi
t
p

� �
, ð20Þ

ep2
¼

s2

2sR0
� t1 1�

s1t2�s2t1ffiffiffi
t
p

� �
þ

2s1k12k21ffiffiffi
t
p

� �
, ð21Þ

and

eai
¼ 2epi

, ð22Þ

egi
¼�epi

ðginiþ1Þ, ð23Þ

eni
¼�giniepi

: ð24Þ

For k12,k21a0, because
ffiffiffi
t
p

Z9s1t2�s2t19, ð1þððs1t2�s2t1Þ=
ffiffiffi
t
p
ÞÞ

and ð1�ððs1t2�s2t1Þ=
ffiffiffi
t
p
ÞÞ, which appear in the expressions for ep1

and ep2
, respectively, lie in the interval ð0;2Þ. Thus, epi

is positive
for pi ¼mi,ai,bi,ci and negative for pi ¼ gi,ni. Since giniþ141,
epi

oeai
o9egi

9 if ni41=gi, and epi
o9egi

9oeai
if nio1=gi.

The elasticity for the remaining model parameters ri,kij, and n

are given by

er1
¼

r1

2sR0
s2 1�

s1t2�s2t1ffiffiffi
t
p

� �� �
�

r1t2

s ,

er2
¼

r2

2sR0
s1 1þ

s1t2�s2t1ffiffiffi
t
p

� �� �
�

r2t1

s ,

ek21
¼

k21

2sR0
s2 1�

s1t2�s2t1ffiffiffi
t
p

� �
þ

2s1s2k12

t

� �
�

r2k21

s
,

ek12
¼

k12

2sR0
s2 1þ

s1t2�s2t1ffiffiffi
t
p

� �
þ

2s1s2k21

t

� �
�

r1k12

s
,

en1
¼�

s1g1n1

2sR0
t2 1þ

s1t2�s2t1ffiffiffi
t
p

� �
þ2s2k12k21

� �
,

en2
¼�

s2g2n2

2sR0
t1 1�

s1t2�s2t1ffiffiffi
t
p

� �
þ2s1k12k21

� �
:

If riokji, then eri
oekji

.
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Finally, we found that the elasticities of R0 with respect to a
pair of parameters ðp1,p2Þ sum to the corresponding isolated-
patch elasticity ep, for the parameters p¼m,a,b,c. This result is
given in the following theorem.

Theorem 3.2.1. For pi ¼mi,bi,ci, ep1
þep2

¼ 1.

Proof.

2sR0ðep1
þep2
Þ ¼ s1t2þs2t1þ

ðs1t2�s2t1Þ
2
þ4s1s2k12k21ffiffiffi
t
p , ð25Þ

2sR0ðep1
þep2
Þ ¼ s1t2þs2t1þ

tffiffiffi
t
p , ð26Þ

2sR0ðep1
þep2
Þ ¼ s1t2þs2t1þ

ffiffiffi
t
p

, ð27Þ

2sR0ðep1
þep2
Þ ¼ 2sR0: ð28Þ

Thus, dividing both sides of the above equation by 2sR0 yields

ep1
þep2

¼ 1. &

Since for pi ¼mi,bi,ci, eai
¼ 2epi

, egi
¼ ðginiþ1Þepi

, and eni
¼ ðginiÞepi

,
Theorem 3.2.1 implies that ea1

þea2
¼ 2, minfg1n1,g2n2gþ1r

eg1
þeg2

rmaxfg1n1,g2n2gþ1, and minfg1n1,g2n2gren1
þen2

r
maxfg1n1,g2n2g.

While the relationship between the elasticities for parameters
mi,ai,bi,ci and gi in patch i are clear, the relationship between the
remaining parameters (ri and kji) and the relationship between
parameters of different patches, are not obvious from the analytic
expressions presented in this section. In the following sections we
will estimate parameter values and use these estimates to derive
elasticities for all model parameter values under various scenar-
ios, which we will define using combinations of different para-
meter sets corresponding to high transmission, low transmission,
fast migration, and slow migration.
Table 3
R0 for the four scenarios.

Season High transmission Low transmission

Wet 187.15 7.03

Dry 3.80 0.70
4. Numerical results

4.1. Parameter estimates

Realistic parameter values were needed to gain an under-
standing of how spatial heterogeneity in malaria transmission
affects the prevalence of malaria, malaria transmission, and
malaria control in our two-patch model. We compiled baseline
parameter values for four different situations, estimated from
published studies. First, we compiled values for high transmission
areas, and low transmission areas. High transmission parameters
were gathered from studies in sub-Saharan Africa. Low transmis-
sion parameters were taken from studies in the Americas,
Table 2
Wet and dry condition estimates of model parameters for low and high transmissio

conditions is known from Fontenille et al. (1997). We assume for wet conditions the v

Parameters Low

Wet Dry Reference

mi 176.19 17.619

ai 0.105 0.105 Loyola et al. (1993)

miai 18.5 1.85 Fontenille et al. (1997)

bi 0.1 0:1 Beier et al. (1991)

ci 0.214 0.214

gi 0.167 0.167 Graves et al. (1990), Rodriguez et al. (199

ni 10 days 10 days

ri 1=150 days 1=150 days Collins and Jeffery (2003), Bekessy et al.
especially South America, where the number of cases is
generally low.

Among regions that are considered high transmission, there is
still a lot of variability in their levels of malaria transmission.
Thus, to encompass some of this variability, we compiled para-
meters associated with the dry season in a high transmission
region and parameters associated with the wet season in a high
transmission region. Similarly, not all low transmission regions
can be described by the same set of transmission parameters. So,
we again compiled dry season and wet season parameters for a
low transmission region. Using these estimates from different
seasons in both high and low transmission areas, we obtained
four parameter sets representative of a high-transmission/wet-
conditions patch, high-transmission/dry-conditions patch, low-
transmission/wet-conditions patch, and low-transmission/dry-
conditions patch (Table 2).

The ratio of mosquitoes to humans m was not directly
calculated for the wet and dry conditions. Instead, the value ma

was measured in various field studies by estimating the average
number of bites on a human per night. The proportion of bites on
humans out of all bites from the vector species was divided by the
average time between blood meals to calculate a, the human
biting rate. By knowing ma and a, we calculated m.

The difference in ma between wet and dry conditions was not
directly found for the high transmission scenario; however, field
studies have shown that the biting rate on humans in the wet
season is tenfold that of the dry season (Smith et al., 1993); we
assumed ma for the dry season was 1=10 that of the wet season,
and determined m from the resultant ma value.

For each of our four baseline parameter sets, we calculated the
basic reproductive number for an isolated patch with those
parameter values (see Table 3).

These four parameter sets were used to describe the within-
patch malaria transmission parameters in our two-patch model.
Using the four parameter sets and the analytic expressions
derived for R01 and R02, we calculated and used these isolated-
patch reproductive number estimates as a baseline to compare
the global R0 value to in different parameterizations of the two-
patch model. We present results for three scenarios: in the first
two scenarios patch one is high transmission and patch two is
low transmission. In the first scenario, both patches have dry
n settings. Note: m was not directly determined from field studies. mna for dry

alue to be 10 times greater according to Smith et al. (1993).

High

Wet Dry Reference

395.45 60.81 Molineaux and Gramiccia (1980)

0.41 0.265 Lindsay et al. (1991), Molineaux and

Gramiccia (1980)

161.1477 16.114 Lindsay et al. (1991)

0.097 0.097 Molineaux and Gramiccia (1980)

0.214 0.214 Collins et al. (1977), Bonnet et al. (2000)

2) 0.181 0.26 Lindsay et al. (1991)

10 days 10 days Molineaux and Gramiccia (1980)

(1976) 1=150 days 1=150 days
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conditions. In the second scenario, both patches experience wet
conditions. Finally, both patches are identical low transmission,
dry condition patches in the third scenario.

4.2. Effect of migration on R0

We first calculated the global R0 according to Eq. (5), with each
patch using parameters from one of the parameter sets in Table 2.
We varied k12 and k21 to examine the patterns of global R0 with
varying migration rates. Assuming for simplicity that R014R02,
from Section 2.3, we know that minðR0Þ ¼maxfR01=ð1þðk=r1ÞÞ,
R02g for ðk12,k21ÞA ½0,1Þ � ½0,kÞ, and maxðR0Þ ¼ R01. Using this fact
about the maximum and minimum values of R0 along with our
estimates of the isolated-patch reproductive numbers under the
four patch characteristics identified in Table 3 (High-Wet, High-
Dry, Low-Wet, Low-Dry), we can determine what the range of R0

will be with migration under each scenario.
Numerical simulation of the global R0 (Fig. 2) as a function of

the migration rates suggests that if the migration terms k12, k21

are zero, the global R0 is equal to R01 (assuming R014R02). For
k2140, as k12 increases, the global R0 gets closer to the value of
R01. This is likely because as k12 increases, a higher proportion of
individuals expose themselves to the transmission characteristics
of patch 1, causing that patch to contribute more to the global R0.
Similarly, as k21 increases, the global R0 becomes closer to the
minimum R0 value, R02. These numerical findings are in agree-
ment with the proof of Theorem 2.3.1. So, if patch 2 has R02o1,
but R0141 and k12bk21, more people will be exposed to the
transmission characteristics of patch 1 than of patch 2, making it
more likely that the disease will persist in both patches. The
Fig. 2. R0 plotted as a function of the migration rates k21 and k12. The top and

bottom planes represent R01 and R02, respectively. In this graph, patch 1 is a high

transmission patch, patch two is a low transmission patch, and conditions are dry

in both patches (R01 ¼ 3:80, R02 ¼ 0:70).
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Fig. 3. Number of infected individuals in two wet condition patches. Patch 1 is high tr

isolated, (b) patches are connected via human movement with migration rates k12 ¼ 0
opposite is also true; if many more individuals are moving into
patch 2 than patch 1 (k21bk12), the disease is likely to go extinct,
since more people are exposed to the transmission characteristics
of the low transmission patch than to those of the high
transmission patch.

As shown in Section 2.3, if the two patches have R0i41, then
the disease always persists. For example, suppose both patches
are in the rainy season but patch one is a high-transmission patch
and patch two is a low transmission patch so that R01 ¼ 187:15
and R02 ¼ 7:03. Then, we know that 7:03rR0r187:15. Thus, it is
clear in this scenario that no matter what the rate of migration is
between the two patches, the disease will persist. Our numerical
simulations of scenarios where both isolated patch reproduction
numbers are greater than one (Fig. 3) suggest that migration
causes the system to reach equilibrium sooner than if the two
patches were isolated. Note that in each model simulation, we set
the initial patch population sizes equal to the equilibrium patch
population sizes so that each patch’s population remains constant
over time; that is NiðtÞ ¼Nn

i for all time t40.
If the two patches have R0io1, then the disease always goes to

extinction. This scenario is illustrated in Fig. 4 with two low-
transmission, dry-condition patches with the same isolated patch
reproduction numbers, R01 ¼ R02 ¼ 0:70. Without migration, the
dynamics within each patch are identical. Under the influence of
human movement the disease still goes extinct in both patches,
however, the number of cases decreases more sharply in patch 1,
since migration into this patch is five times faster than migration
into patch 2.

If both patches are dry with patch 1 being the high-transmis-
sion patch and patch 2 the low-transmission patch, then
R01 ¼ 3:80 and R02 ¼ 0:7021. The continuity of R0 with respect to
the migration parameters indicates that there exists a rate k such
that minðR0Þ41 for all ðk12,k21ÞA ½0,1Þ� ½0,kÞ. In fact, if
kor1ðR01�1Þ, then R041 for all ðk12,k21ÞA ½0,1Þ� ½0,kÞ. Since
r1 ¼ 1=150, R041 if ðk12,k21ÞA ½0,1Þ � ½0,0:0187Þ. This example
illustrates that although the disease would become extinct in
patch 2 if the two patches were isolated, the presence of
sufficiently slow migration from patch 1 to patch 2 in our two-
patch model allows the disease to persist in both patches. This
result is also demonstrated in Fig. 5, which plots the number of
infected humans over time for this High-Dry/Low-Dry scenario.
Fig. 5(a) shows that if the two patches are isolated, the disease dies
out in patch 2 but persists in patch 1. However, if the two patches
are connected by human movement (as in subfigure (b)), although
the prevalence of malaria in patch 1 at steady state decreases,
there is now persistence of the disease in both patches and the
total prevalence is higher than when the patches are isolated.
Conversely, Fig. 6 illustrates how simply changing the migration
rates so that k21bk12 can bring the reproduction number below
one, resulting in eventual extinction of the disease in both patches.
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:001, k21 ¼ 0:005, resulting in R0¼113.66.
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Fig. 4. Number of infected individuals in two low transmission, dry condition patches (R01 ¼ R02 ¼ 0:70). (a) Patches are isolated, (b) patches are connected via human

movement with migration rates k12 ¼ 0:001, k21 ¼ 0:005, resulting in R0¼0.70.
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Fig. 5. Number of infected individuals in two dry condition patches. Patch 1 is high transmission (R01 ¼ 3:80), patch 2 is low transmission (R02¼0.70). (a) Patches are

isolated, (b) patches are connected via human movement with migration rates k12 ¼ 0:001, k21 ¼ 0:005, resulting in R0¼2.35.
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Fig. 6. Number of infected individuals in two dry condition patches. Patch

conditions are identical to those in Fig. 5 with the exception of the migration

rates. Patch 1 is high transmission (R01 ¼ 3:80), patch 2 is low transmission

(R02¼0.70). Patches are connected via human movement with migration rates

k12 ¼ 0:0001, k21 ¼ 0:02, resulting in R0¼0.99.
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4.3. Effect of migration on elasticity

The elasticity of the global R0 to most of a particular patch’s
parameters is entirely dependent upon two factors: the difference
in the parameter values between the two patches, and migration.
Similar to the effect of migration on R0, the faster the movement
from patch j to patch i is (in other words, the larger kij is), the
more influence the parameters in patch i have on the system. For
example, if a parameter, such as biting rate, has the same value in
both patches, then the relative size of the migration rates and the
relative values of R01 and R02 determine whether the basic
reproductive number is more elastic to the parameter associated
with patch 1 or the parameter associated with patch 2. On the
other hand, if biting rate a14a2, (k12 ¼ k21), and (R01 ¼ R01), then
the elasticity of R0 to a1 is larger than the elasticity of R0 to a2.

If a14a2, then if k21 is chosen appropriately and satisfies the
inequality k214k12 and R01 and R02 are not very different in value,
then the elasticities related to these two parameters may become
equal, or the elasticity of R0 to a1 may become smaller than the
elasticity of R0 to a2. In other words, whether control measures
should target patch 1 or patch 2 depends on the rate of human
movement between the patches. In Section 3.2, we proved that
ep1
þep2

is constant and equal to the elasticities in the isolated-
patch case for pi ¼mi,bi,ci, and ai. This result, which we demon-
strate via numerical simulation in Fig. 7, suggests that it may be
possible to divide resources, such as insecticide treated bed nets,
between two connected patches in such a way that the control
measures are as efficient as if the two patches were a single
homogeneous patch. Still, numerical simulations are needed to
identify which patch should be the primary target for malaria
control.

Intuitively, we might choose to always target the higher
transmission patch, however, our numerical simulations indicate
that this is not always the best strategy for reducing malaria
transmission. Fig. 7 illustrates, using the dry season parameter-
izations, how the elasticity of R0 with respect to the model
parameters changes for different rates of migration between a
high transmission patch and a low transmission patch. In this
example, k12 ¼ 0:001 and the elasticities are plotted as a function
of k21. For this High-Dry/Low-Dry scenario, if k21 is close to zero
(i.e. no migration into patch 2), then any resources used to control
malaria in the second patch will essentially be wasted. In particular,
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Table 4
Target patch for malaria control in the R01 4R02 41 case.

Ratio k12 slow k12 fast

k21

k12
b1 Patch 2 Patch 2

k21

k12
¼ 1 Patch 1 Patch 1 slightly better target

k21

k12
51 Patch 1 Patch 1

Table 5
Target patch for malaria control in the R01 414R02 case

Ratio k12 slow k12 fast

k21

k12
b1 Patch 2 Patch 2

k21

k12
¼ 1 Patch 1 Patch 1

k21

k12
51 Patch 1 Patch 1
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when k21 is small, R0 is most elastic to mosquito death rate in patch
1 (g1). As k21 is increased, R0 becomes less sensitive to g1 and
eventually reaches a point where R0 is equally elastic to g1 and to g2.
Hence, at this intermediate k21 (approximately k21 ¼ 0:04),
resources targeting mosquito death rate should be evenly divided
between the two patches. If k21 increases further, R0 is most
sensitive to mosquito death rate in patch 2 (g2). The elasticities
with respect to parameters in patch 1 approach zero as k21 increases,
suggesting that if migration into patch 2 is very fast, resources used
for control in patch 1 will be wasted.

Because R0 will be less than one for large enough k21 in the
high-dry/low-dry scenario, the result that we should target the
lower transmission patch when k21 exceeds a certain rate may not
be surprising in a system where R0141 and R02o1. However, a
similar result holds even when both isolated-patch reproductive
numbers are greater than one. Suppose, for example, that patch
1 has low-wet transmission characteristics and patch 2 has high-
dry transmission characteristics so that R014R0241. The elasti-
cities of R0 to the model parameters are plotted in Fig. 8. As with
the previous example where R01414R02, if migration into patch
2 is slow, control measures should target mosquito death rate in
patch 1. However, if the migration rate k21 exceeds a certain value
(approximately k21 ¼ 0:007), control efforts should target the
patch with the lower reproductive number (patch 2).

Migration rates are often difficult to estimate. However, having
an idea of the relative sizes of the migration parameters k12 and
k21 might be sufficient to provide insight into where control
measures should be implemented. In general, we found that in
scenarios where R014R0241, or when R01414R02, control
measures should target patch 2 if k2144k12, and patch 1 should
be targeted otherwise. Moreover, the larger k12 is, the smaller the
ratio of k21 to k12 needs to be in order for patch 2 to be the more
appropriate target for malaria control. For example, if patch 1 has
low transmission, wet conditions and patch 2 has high transmis-
sion, dry conditions, so that R014R0241, then for k12 ¼ 0:0001,
k21 must be more than 50 times greater than k12 in order for patch
2 to be the more important target for malaria control. If
k12 ¼ 0:001, k21 need only be roughly 6.5 times greater than k12,
and if k12 ¼ 0:01, k21 must only be twice as big as k12 to warrant
targeting patch 2. Consequently, being able to classify movement
into the high transmission patch as either ‘‘fast’’ or ‘‘slow’’
provides additional insight into how resources for malaria control
can be best allocated. In fact, if both migration rates are large and
equal, then placing control measures in patch 1 will only be
slightly more effective at reducing transmission than targeting
patch 2 in the R014R0241 case, whereas if both migration rates
are small and equal, targeting patch 1 should yield substantially
better results than targeting patch 2. While decisions regarding
where to allocate resources in the R01414R02 case follow the
same general rules as in the R014R0241 case, the most sig-
nificant qualitative difference between the two transmission
scenarios occurs when both migration rates are large and equal:
unlike with the R014R0241 case, patch 1 is a much better target
for control than patch 2. We summarize these ‘‘rules of thumb’’
for where to target control measures in Tables 4 and 5.
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5. Elasticity analysis of endemic equilibrium

The elasticity analysis of the basic reproduction number
provided insight into appropriate malaria interventions for redu-
cing transmission intensity. We now turn to the study of the
endemic equilibrium to determine whether the goal of reducing
malaria prevalence requires a qualitatively different approach to
malaria control.

Consider our equilibrium equation:

dIi

dt
¼

aibiIi

biIiþgiNi
ðNi�IiÞ�ðriþkjiÞIiþkijIj ¼ 0:

Multiplying throughout by biIiþgiNi yields

f iðI1,I2Þ :¼ aibiIiðNi�IiÞ�ðriþkjiÞIiðbiIiþgiNiÞ

þkijIjðbiIiþgiNiÞ ¼ 0: ð29Þ

We find the elasticity of the endemic equilibrium by differ-
entiating system (29) implicitly, first with respect to the para-
meters ai, bi, ri, gi. From these elasticities, we can derive the
elasticities for mi and ai since ai ¼miaibie

�gini and bi ¼ aici.
Implicit differentiation of f 1ðI

n

1,In2Þ ¼ 0 and f 2ðI
n

1,In2Þ ¼ 0 with
respect to a parameter p1 leads to the following system of two
equations:

A1
@In1
@p1

þB1
@In2
@p1

þCp1
¼ 0, ð30Þ

B2
@In1
@p1
þA2

@In2
@p1
¼ 0,

where

Ai ¼ aibiðN
n

i �2Ini Þ�ðriþkjiÞð2biI
n

i þgiN
n

i ÞþkijbiI
n

j ,

Bi ¼ kijðbiI
n

i þgiN
n

i Þ,

and

Ca1
¼ b1In1ðN

n

1�In1Þ,

Cb1
¼ a1In1ðN

n

1�In1Þþk12In1In2�In
2

1 ðr1þk21Þ,

Cr1
¼�In1ðb1In1þg1Nn

1Þ,

Cg1
¼�n1a1b1In1ðN

n

1�In1Þ�ðr1þk21ÞI
n

1Nn

1þk12In2Nn

1:

Proposition 5.0.1. A1A2�B1B2a0. Furthermore, A1A2�B1B240.

Proof. From system (30), we have that

ðA1A2�B1B2Þ
@In1
@p1

þCp1
A2 ¼ 0: ð31Þ

Observe that f iðI1,I2Þ ¼ AiIiþhi, where hi :¼ aibiI
2
i þðriþkjiÞbiI

2
i þ

kijIjgiNi is strictly positive. Thus, f ðIn1,In2Þ ¼ 0 and hn

i ,Ini 40 imply

that Aio0.

Hence, Eq. (31) implies that A1A2�B1B2 and @In1=@p1 are nonzero

as long as Cp1
a0. Clearly Ca1

40 and Cr1
o0. We must verify that

Cb1
and Cg1

are also nonzero.

Note that f iðI
n

1,In2Þ ¼ 0 implies

ðriþkjiÞI
n

i �kijI
n

j ¼
aibiI

n

i

biI
n

i þgiN
n

i

ðNn

i �Ini Þ40: ð32Þ

Using Eq. (32), we find that

Cb1
¼ a1In1ðN

n

1�In1Þ 1�
b1In1

b1In1þg1Nn

1

� �
40,

Cg1
¼�n1a1b1In1ðN

n

1�In1Þ�ððr1þk21ÞI
n

1�k12In2ÞN
n

1o0:

So, Cp1
A2a0 implies A1A2�B1B2 and @In1=@p1 are nonzero.
Now, A1A2�B1B2 nonzero and continuous in all parameters

implies that it must have a definite sign: either strictly positive

or strictly negative. Consider k12 ¼ k21 ¼ 0. Then A1A2�B1B2 ¼

A1A240 implies that A1A2�B1B2 is strictly positive for all positive

disease-related parameters and for all nonnegative migration

rates k12, k21. &

Solving system (30) for the sensitivities @In1=@p1 and @In2=@p1

with p1 ¼ a1,b1,r1,g1, we have

@In1
@p1

¼�
Cp1

A2

A1A2�B1B2
, ð33Þ

@In2
@p1
¼

Cp1
B2

A1A2�B1B2
, ð34Þ

We obtained analogous equations for the sensitivities with
respect to patch 2 parameters. The elasticity of Ini with respect to a
parameter pj is Ei

pj
¼ ðpj=Ini Þð@Ini =@pjÞ for i,jAf1;2g. Moreover, the

elasticity of the total malaria prevalence (In ¼ In1þ In2) with respect
to parameter pi is given by Epi

¼ ðIn1=ðI
n

1þ In2ÞÞE1
pi
þðIn2=ðI

n

1þ In2ÞÞE2
pi

.
From our analytic expressions, we can determine the sign of each
elasticity. As we would expect, elasticities with respect to para-
meters m,a,b,c are positive and elasticities with respect to para-
meters r, g, and n are negative.

To visualize the elasticities, we first solve for the endemic
equilibrium ðIn1,In2Þ numerically for a range of migration rates.
Next, we substitute these values into our analytic expressions for
the elasticities and, as we did for the elasticities of R0, we plot the
endemic equilibrium elasticities (in absolute value) as a function
of k21, with k12 ¼ 0:001 fixed (see Fig. 9).

Fig. 9(a) illustrates the elasticities of the endemic equilibrium
in the High-Dry/Low-Dry setting, plotted for the range of migra-
tion rates for which the endemic equilibrium exists. For
k21Z0:028, R0o1, and hence the disease-free equilibrium is the
only equilibrium.

Fig. 9 reveals that studying the endemic equilibrium yields
results that are qualitatively similar to those obtained in our
study of R0. In particular, the within patch rankings of elasticities
for a given transmission setting are essentially the same in the
analysis of R0 and the analysis of the endemic equilibrium (EE). In
the High-Dry/Low-Dry setting (R01414R02), the ordering of both
the R0 elasticities (Fig. 7(a)) and the EE elasticities (Fig. 9(a)) is
9Eg1

949En1
94Ea1

4Ep1
for patch 1 parameters and 9Eg2

94Ea2
4

9En2
94Ep2

for patch 2 parameters. We do not include 9Er2
9 in this

ordering because the position this elasticity takes in the ranking
changes as the migration rate k21 changes. In the Low-Wet/High-
Dry setting (R014R0241), the elasticities of the EE (Fig. 9) also
retain the same ordering as the elasticities of R0 (Fig. 8):
9Eg1

94Ea1
49En1

94Ep1
49Er1

9 and 9Eg2
949En2

94Ea2
49Er2

94Ep2
.

The elasticities of the endemic equilibrium also retain some of
the qualitative behavior as the elasticities of R0 with respect to
which patch is the better target for control. In the Low-Wet/High-
Dry setting, for very small values of k21, analysis of the EE reveals
patch 1 is the better target for control; beyond a certain migration
rate, patch 2 becomes the better target. Similarly, patch 1 is the
best target for control in the High-Dry/Low-Dry setting. However,
since the endemic equilibrium only exists for a constrained set of
migration rates k21, there is no migration rate for which patch
2 becomes the better target for control under this parameteriza-
tion. Perhaps if R02 were larger, but still less than one, we might
see that patch 2 does become a better target for control before the
global reproduction number falls below one.

The differences between the analysis of the endemic equili-
brium and the reproduction number are quantitative in nature.
The most striking difference is the value of k21 for which we
should switch from targeting patch 1 to targeting patch 2. This
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switch in strategy occurs for much smaller values of the migration
rate k21 in our study of the EE than in our study of R0. This
indicates that determining an appropriate intervention strategy
will depend, in part, on whether the goal is to reduce transmis-
sion potential or whether the goal is to reduce the overall
prevalence of malaria. The qualitative similarities of within-patch
elasticities, on the other hand, suggest that the best type of
intervention (bed nets, treatment, insecticides, etc.) will be the
same with either goal in mind.
6. Conclusion

Simple malaria models, such as the Ross–Macdonald model,
that assume populations are isolated and homogeneous have
made a large contribution to the area of malaria research over
the last several decades. However, the diversity inherent to this
disease requires models that incorporate heterogeneity so that
they may provide greater insight into how we should approach
malaria control. Our study of a two-patch malaria model suggests
that using intuition to guide decision making in malaria control
may not be sufficient. For example, targeting regions with the
highest transmission rates may not be the most effective use of
resources if they are strongly connected to lower transmission
regions via emigration. Furthermore, using single-patch models to
estimate parameters relevant to malaria dynamics and malaria
control, such as the basic reproduction number, may provide an
inaccurate assessment of transmission potential in a region. This
discrepancy became clear in our exploration of the scenario
where R01414R02. The two-patch malaria model indicates that
human movement can result in the persistence of malaria in
regions where malaria would die out if isolated, whereas a single-
patch malaria model would inaccurately predict extinction of
malaria in such situations.

Our results are similar to those found by Cosner et al. (2009),
as our results also show that human movement can cause malaria
to be endemic in an area with a reproduction number below 1.
However, unlike Cosner’s two-patch malaria model with Lagran-
gian movement, it is not possible for malaria to persist in our
model if both regions have an isolated reproduction number
below one. Whereas Cosner’s exploration of a two-patch system
assumes zero transmission in one patch, our results allow for an
additional level of resolution. Because we assume each patch is
capable of supporting malaria transmission, we are able
to compare the elasticity of the global R0 to reductions in
transmission in both the high and low transmission patches. This
allowed us to investigate how implementing control measures in
different, but connected, regions impacts the overall level of
transmission.

The results from our elasticity analysis of the two-patch model
R0 are also fundamentally different from elasticity analyses
performed on single-patch malaria models. This is especially true
for the parameters 1=g and n, which represent the mosquito
lifespan and the extrinsic incubation period; many other models
that have assessed elasticities did not include the extrinsic
incubation period, and consequently reported biting rate a to be
the most important parameter to target (Chitnis et al., 2008). In
all four of our parameter sets, the average lifespan of a mosquito
was shorter than the extrinsic incubation period. From our
elasticity analysis, this implied that R0 was more sensitive to
mosquito death rate than to biting rate in all scenarios. We expect
this relationship between mosquito lifespan and extrinsic incuba-
tion period to be true in the field under situations where less than
half of the mosquito population that gets infected actually
becomes infectious (Midega et al., 2007). This is not uncommon,
as average daily survivorship of female mosquitoes ranges from
0.95 (Midega et al., 2007) to 0.68 (Rodriguez et al., 1992), yielding
a probability of becoming infectious from 60% to under 2%,
respectively, given a 10 day extrinsic period (White, 1982).

These results suggest that using multi-patch malaria models
can help inform intervention strategy usage in areas of hetero-
geneous malaria transmission connected by human movement.
For example, in Hispaniola, while conventional wisdom may
suggest that resources should be focused on Haiti, which has
higher malaria transmission, our results suggest this is not
necessarily the case; efficient application of intervention strate-
gies will depend also on human movement patterns between the
two countries.

Comparing the endemic equilibrium elasticity results to the R0

elasticity results suggests that it may be necessary to develop
different control strategies depending on whether the goal is to
reduce the transmission potential, or whether the goal is to
reduce disease prevalence in a malaria endemic setting. Once a
goal is established, knowledge about human migration rates will
be essential to identifying an effective control strategy that makes
efficient use of available resources.

Although this exploration of malaria dynamics and malaria
control in the context of a two-patch model is still an over-
simplification of reality, it highlights the need for more complex
mathematical models incorporating both spatial heterogeneity
and human movement to guide public health officials in the
process of making decisions that will make the best use of the
limited resources they have. Our study also stresses the impor-
tance of collecting malaria prevalence data and human movement
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data in malaria endemic regions so that these more sophisticated
models can provide reasonable, region-specific answers about
how to best allocate resources.
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