

# Relatório do Laboratório 1 Modelagem da Base de Dados

Base de Dados Georeferenciados para Estudos Urbanos no Plano Piloto de Brasília

Daniela de Azeredo França

Trabalho da disciplina Introdução ao Geoprocessamento – SER-300, ministrada pelo Dr. Antônio Miguel Vieira Monteiro

INPE São José dos Campos

2008

### 1. INTRODUÇÃO

Neste relatório, são apresentados os procedimentos realizados no Laboratório 1 da disciplina Introdução ao Geoprocessamento – SER-300, bem como os resultados obtidos. Esta atividade consistiu da elaboração, modelagem e implementação, no software SPRING 4.3.1, de uma base de dados geográficos do Plano Piloto de Brasília-DF.

As atividades do Laboratório1 visam atender aos seguintes objetivos específicos:

- Identificar tipos de uso e cobertura do solo, na região do Plano Piloto;
- Cadastrar e identificar as classes de utilização das quadras das asas norte e sul do Plano Piloto;
- Identificar as áreas em cotas altimétricas;
- Verificar as condições das vias de acesso no Plano Piloto.

### 2. ATIVIDADES DO LABORATÓRIO 1

#### 2.1. Criação do Banco de Dados e do Projeto no Software SPRING 4.3.1

Primeiramente, foi definido um banco de dados denominado "Curso\_Intro\_Geo". A seguir, foram criadas Categorias para esta atividade e definido um projeto, com o nome "Brasilia". Este projeto foi definido pela projeção UTM, Datum SAD69 e Meridiano Central 45° 00' 00" W, sendo delimitado pelas coordenadas 47° 58' 00" W a 47° 46' 30" W e 15° 53' 00" S a 15° 41' 40" S do retângulo envolvente. A Figura 1 ilustra os procedimentos realizados na definição do projeto.

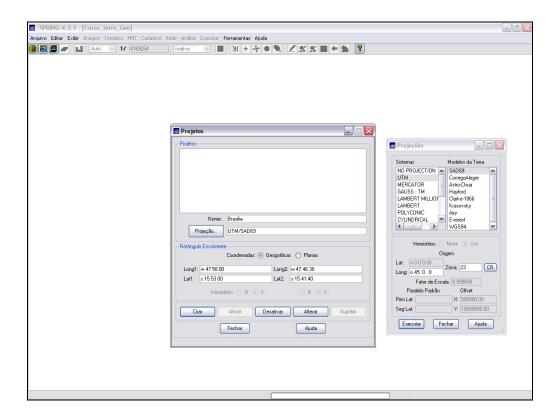
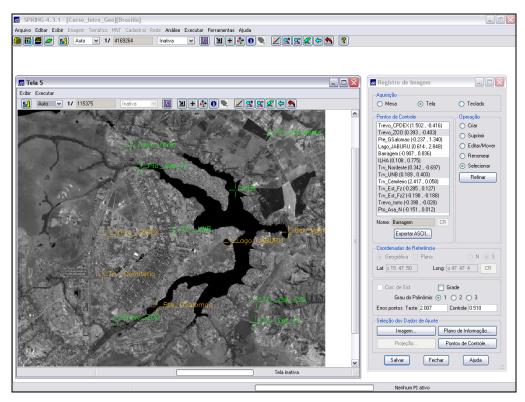



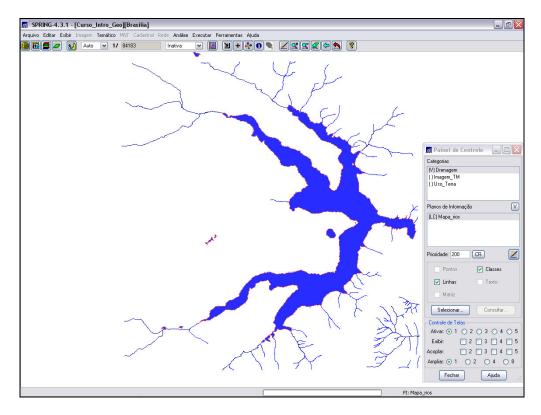

Figura 1: Procedimentos tomados para a definição do projeto Brasilia no SPRING 4.3.1.

### 2.2. Importação de Arquivos

### 2.2.1. Registro e Importação de Arquivos .grb

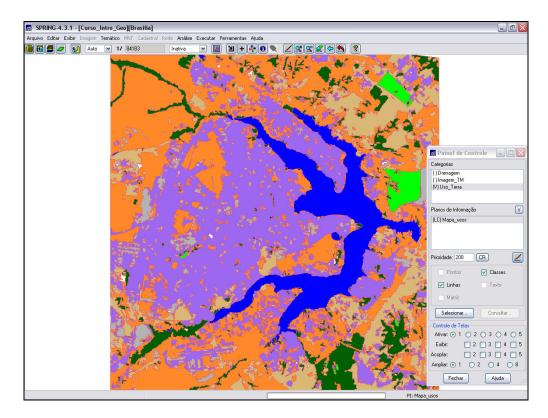
A partir da análise dos pontos de controle preexistentes, na banda 3 TM-LANDSAT, foi realizada uma combinação de pontos com Erro dos Pontos de Controle equivalente a 0.510 *pixels*, o qual é considerado satisfatório para uma resolução de 30 m, numa área urbana. Nesta combinação, foram eliminados 5 pontos: Trevo\_CPDEX, Trv\_Cemiterio, Pte\_GSalomao, Lago\_JABURU e Barragem (Figura 2). Um polinômio de 1º grau foi empregado. Após o registro, as bandas 3, 4 e 5 do sensor TM-LANDSAT foram importadas para o Projeto Brasilia. A Figura 3 apresenta uma composição colorida obtida com as imagens importadas.




**Figura 2:** Combinação de pontos com Erro dos Pontos de Controle equivalente a 0.510 *pixels*, o qual é considerado satisfatório para uma resolução de 30 m, numa área urbana.



**Figura 3:** Composição colorida 543 (RGB) feita com as bandas TM-LANDSAT que foram importadas para o SPRING.


#### 2.2.2. Importação de Dados Vetoriais – Mapas Temáticos

Primeiramente, foram importados dados temáticos de drenagem e identificadores dos rios, em arquivos no formato ASCII, para a geração do mapa temático de drenagem (Figura 4).



**Figura 4:** Dados temáticos de drenagem e identificadores dos rios importados para o SPRING.

A seguir, importaram-se dados temáticos de uso da terra e identificadores das classes de uso, em arquivos no formato ASCII, para a geração do mapa de uso do solo (Figura 5).



**Figura 5:** Dados temáticos de uso da terra e identificadores das classes de uso importados para o SPRING.

### 2.2.3. Importação de Dados Numéricos

Nesta etapa do trabalho, inicialmente, foram importados para o SPRING isolinhas de altimetria na escala 1:25.000 e pontos cotados, de arquivos DXF, conforme ilustrado na Figura 6.

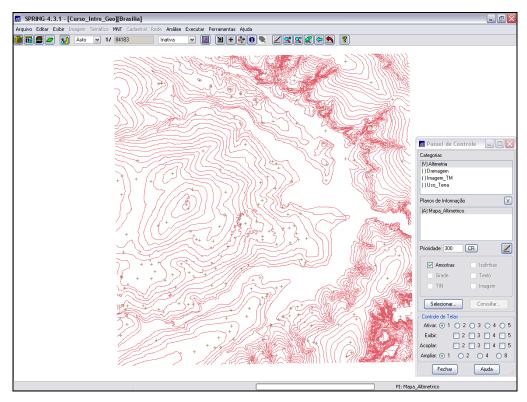



Figura 6: Isolinhas e pontos cotados de arquivos DXF importados para o SPRING.

Posteriormente, foi realizada a importação da grade de arquivo GEN, como mostrado na Figura 7.

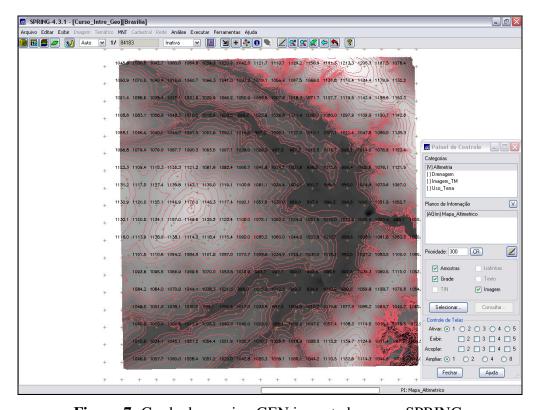



Figura 7: Grade de arquivo GEN importada para o SPRING.

#### 2.2.4. Importação de Dados Numéricos de Declividade

Nesta etapa, foi importada uma grade de declividade, de arquivo ASCII, a qual posteriormente foi fatiada gerando um mapa de declividade no modelo temático, conforme ilustram as Figuras 8 e 9. Observa-se que as classes estabelecidas pelo roteiro facilitam a visualização das características do relevo, na área do Plano Piloto de Brasília-DF.

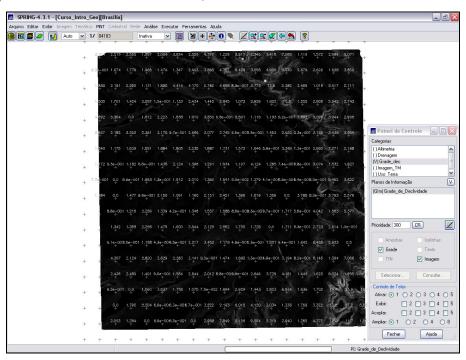



Figura 8: Importação da grade de declividade de arquivo ASCII para o SPRING.

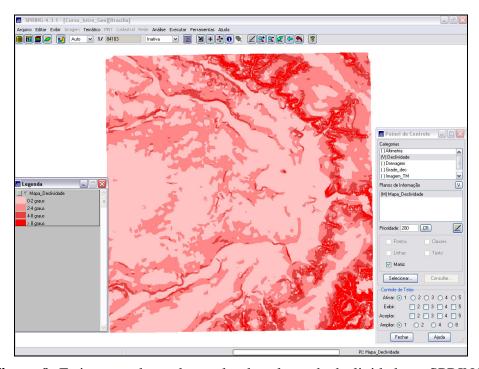



Figura 9: Fatiamento da grade regular de valores de declividade no SPRING.

#### 2.2.5. Mapa de Quadras e Atributos Descritivos

Foram importados três arquivos no formato ASCII: o primeiro contendo as linhas dos polígonos do mapa de quadras; o segundo, a sua identificação; e o terceiro, os atributos descritivos (Figuras 10, 11 e 12).

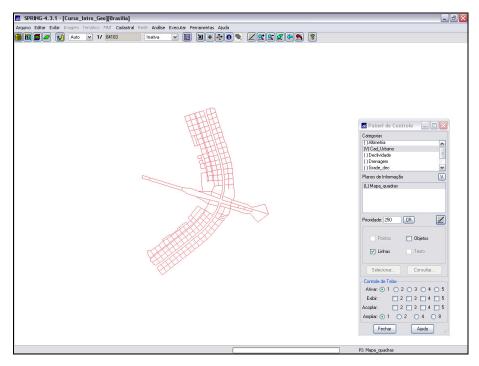



Figura 10: Importação das linhas do mapa de quadras, de arquivo ASCII, para o SPRING.

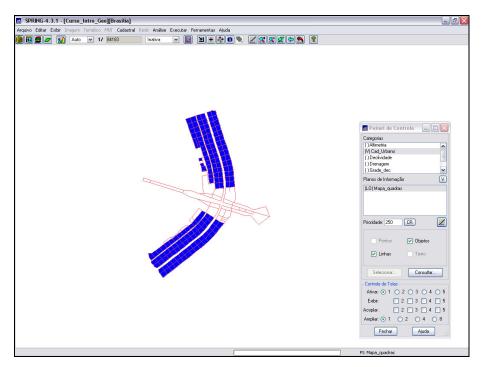



Figura 11: Importação da identificação das quadras, de arquivo ASCII, para o SPRING.

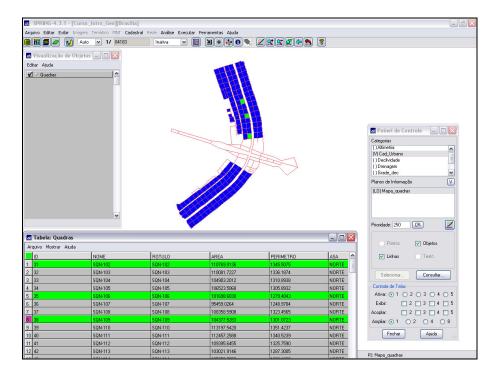



Figura 12: Importação da tabela de atributos descritivos das quadras para o SPRING.

Observa-se, na Figura 12, que a tabela de atributos mostra os atributos da categoria de Objetos selecionada (Quadras) na interface de Visualização de Objetos.

### 2.2.6. Mapa de Setores e Atributos Descritivos

Para criar o mapa de setores do Plano Piloto, também foram importados três arquivos no formato ASCII: o primeiro contendo as linhas do mapa de setores (polígonos); o segundo, a identificação dos setores; e o terceiro, os atributos descritivos dos setores, como ilustrado nas Figuras 13, 14 e 15. Assim como no mapa de quadras, os atributos descritivos dos objetos foram importados por meio do comando [Importar Tabela...] no menu [Arquivo].

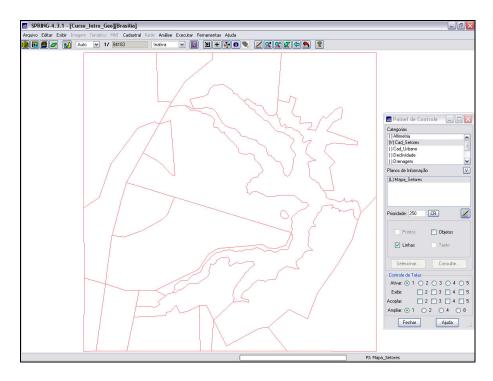



Figura 13: Importação das linhas do mapa de setores, de arquivo ASCII, para o SPRING.

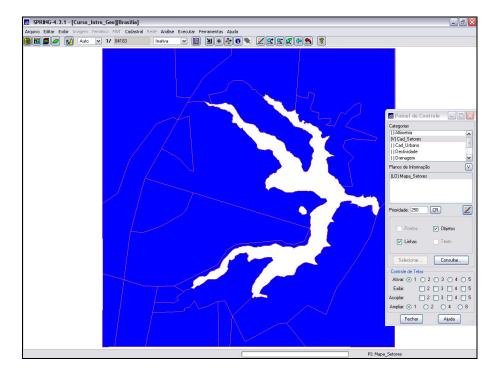



Figura 14: Importação da identificação dos setores, de arquivo ASCII, para o SPRING.

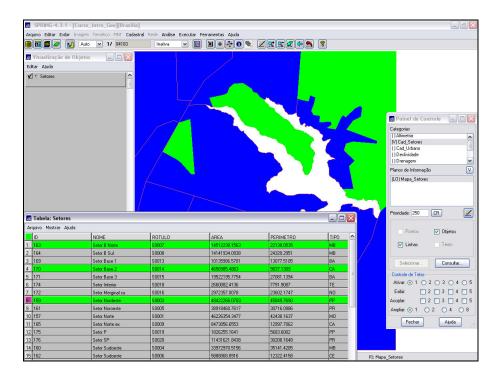



Figura 15: Importação da tabela de atributos descritivos dos setores para o SPRING.

Observa-se, na Figura 15, que a tabela de atributos mostra os atributos da categoria de Objetos selecionada (Setores) na interface de Visualização de Objetos.

### 2.2.7. Mapa de Rede Viária

Por fim, foram importados os arquivos de linhas e de identificadores do mapa de vias, no formato ASCII, como mostrado nas Figuras 16 e 17.

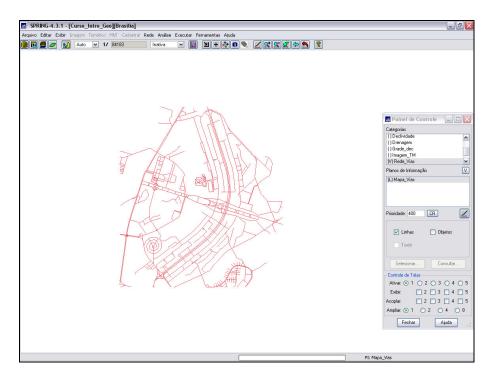
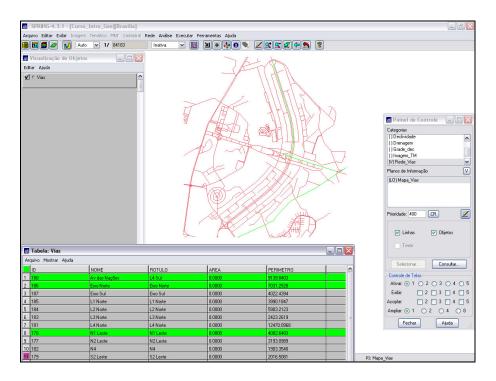




Figura 16: Importação das linhas do mapa de vias, de arquivo ASCII, para o SPRING.



**Figura 17:** Importação das linhas do mapa de vias e de sua identificação, de arquivos ASCII, para o SPRING.

## 3. CONCLUSÕES

A atividade de laboratório contribuiu para aprimorar o conhecimento de conceitos de modelagem de dados geográficos, além de proporcionar o contato com o software SPRING e sua arquitetura.