Relatório – Laboratório 4

Raian Vargas Maretto

1. Introdução

Neste laboratório foram exploradas as atividades de geoestatistica para explorar a variabilidade espacial de propriedades naturais amostrados e distribuídos espacialmente. Os dados utilizados neste laboratório são de propriedade do Cebtro Nacional de Pesquisas de solos (CNPS – RJ). Eles foram obtidos no levantamento dos solos da Fazenda Canchim, em São Carlos – SP. Referem-se a amostragem de 85 observações georreferenciadas de solos de possuem uma camada de profundidade media de 1m, chamado de horizonte Bw. O exercício mostra a variação espacial do teor argila no solo da Fazenda Canchim. O teor de argila ao longo do perfil foi classificado segundo Calderano Filho et al., 1996 como é mostrado abaixo:

- MUITO ARGILOSO: solos que apresentam 59% ou mais de argila;
- **ARGILOSO:** solos que apresentam de 35% a 59% de argila;
- **MÉDIO:** solos que apresentam de 15% a 35% de argila;
- ARENOSO: solos que apresentam menos de 15% de argila

2. Procedimento

O banco de dados São Carlos foi carregado e o projeto Canchim foi ativado no software SPRING.O Painel de controle foi ativado e a visualização dos PI's foi obtida como mostra a Figura 1.

Figura 1. Visualização dos PI's.

Em seguida foi feita uma analise exploratória através da estatística descritiva, como mostrada na Figura 2. Para uma melhor visualização destas análises, ferramentas gráficas também foram geradas como: histograma (10 e 20 classes) e a probabilidade normal, como mostra a Figura 3 (a, b, c) respectivamente. Figura 2.

Figura 2. Análise exploratória: estatística descritiva.

Figura 2. Ferramentas gráficas: (a) histograma com 10 classes, (b) histograma com 20 classes, (c) probabilidade normal.

Em seguida foi analisada a variabilidade espacial através da geração do semivariograma, como mostra a Figura 3.

Figura 3. Geração do semivariograma.

O semivariograma acima quando comparado a um semevariograma ideal não apresenta uma forma adequada, assim os parâmetros lag, tolerância e incremento foram alterados para que sua forma fosse melhorada, como mostra a Figura 4.

Figura 4. Semivariograma com alteração dos parâmetros lag, tolerância e incremento.

Com estas alterações pode-se perceber que o semivariograma acima adequa-se a um semivariograma ideal. Em seguida foi modelado o semivariograma experimental, como mostra a Figura 5. E assim definidos os parâmetros dos modelos isotrópicos, como mostra a Figura 6.

Figura 5. Modelagem do semivariograma experimental.

🖉 SPRING-4.3.3 (02/04/2008) -[SER300_BD_SaoCarlos][Canchim]	
Arquivo Editar Exibir Imagem Temático MNT Cadastral Rede Análise Exec	cutar Ferramentas Ajuda
😂 📷 🚝 🖉 🚺 Auto 🖃 17 65906 Inativa	🔄 🔟 🛨 🕂 💿 🔍 🗾 😫 🕵 😫
 Ajuste de Semivariograma Ajuste de Semivariograma Ajuste Automático Visual Número de Estruturas 1 2 3 Modelos Modelo 1: Gaussiano Modelo 2: Estérico Modelo 3: Esférico Verificar Ajustes argila_0.vai 	Parâmetros Estruturais Parâmetros Estruturais Parâmetros Número de Estruturas: • 1 • 2 • 3 Efeito Pepita: 118.854 Primeira Estrutura Tipo: Gaussiano Contribuição: 230.892 Angulo Aris.: 0 Alcance Máx: 3989.20 Alcance Min.: 3989.20 Segunda Estrutura Tipo: Esférico Contribuição: Angulo Aris.: Alcance Máx: Alcance Min.: Terceira Estrutura Tipo: Esférico Contribuição: Angulo Aris.:
Parâmetros Estruturais Definir Executar Fechar Ajuda	Alcance Máx: Alcance Min.: Executar Fechar Ajuda

Figura 6. Definindo os parâmetros dos modelos isotrópicos.

Posteriormente foi feita a validação do modelo de ajuste, o qual precede as técnicas de krigeagem. Esta etapa é necessária pois permite avaliar a adequação do modelo proposto no processo. As etapas e os resultados são mostrados na Figura 7.

Figura 7. Validação do modelo de ajuste (a), Histograma de erro (b), estatística de erro (c), Diagrama de valores observados versus estimados (d).

Após a analise do modelo parte-se para o procedimento da krigeagem ordinária, as etapas e resultados são apresentados na Figura 8.

65906 Inativa 💌) 🛄 🔟 + 🚱 🕻	2 4 5	8	🖪 Painel de Contr 💼
Pi Alivo Nome: Jargia	Verificar Modelo)			Categorias (V) Amostras_Campo () Classer_Solo () Imagem (V) Limites () Mopa_Goologia () Mapa_Soloc
Tipo: Osdinária 💌 Definição de Grade Res. X: 35.00000 Retángulo	Média: Res. Y: 50.000000 Envolvente			Planos de Informação () atmetria () athude () areia_grosta () areia_grosta (A) orgán
Patâmetras de Interpolação Número de Pontos Minimo. 4 Elipsóide de Buso R. Min.: 12206.55 R. Mé	no Elliptóide de Busce Máximo: 16 n (Baio e Drientopão) x:: [12206.55 Angulo: [0			Prioridade: 300 CR
Saida Categoria Pliano de Informação Executar Fr	nchar Ajuda			Controle de Telas Alivar. (° 1 C 2 C 3 C 4 Esbir. (° 2 C 3 C 4 Acoplar. (° 2 C 3 C 4 Anopiar. (° 1 C 2 C 4 Fechar

Figura 7. Inicializando o processo de krigeagem (a); definindo a categoria de saída (b); grade de krigeagem gerada (c).

O procedimento geoestatístico é finalizado, a etapa seguinte foi transformar a grade em imagem, as etapas e resultados são mostrados na Figura 8.

Exbir Imagem Temático MNT Cadastral Rede Anális	e Executar	Ferra	mentas	Ajuda								. Looded
Auto • 1/ 70153 Instiv	• •		Ы	+	0		2	2 2	-	8	Painet de C	antr 🗖
	444	+	+		+	+	+	+			Categorias	
Garacia da Imagam JINT	30,1	28.1	24.5	15,7	11.0	152	18,4	17.3			(V) Limites () Mapa_Geologia () Mapa_Solos	
	32.0	20.8	[14.8	10.1	12.8	14.1	6.2	16.1			[]Mapa_drenage	stm
Imagen: Nivel de Ciriza Sombreada VMn: 9406797 VMoe: 56454405	39.0	40.9	1 32.0	22,8	28.5	18.4 18.4	120	18.7			() Mapa_vias (V) Superficie Planos de Informa;	ção
Categoria de Salda	40.5	43.0	44.7	44.5	49.8	30.7	12.9	24			(G) KRIG_ISO_an	gila
Pi de Salda:	37,7	+ 37,4	100	44.9	+ •4_2	34.7	22.6	300			()KRIG_ISD_arg	ia_KV
Azimune (graus) 45. Elevação (graus) 45.	41.7	36,8	741	44.3	47.8	47,4	. 100	30.0				
Exagero de Relevo: 35.42		6		·			1				Prioridade: 300	CR
Emergent Eacher Anda	39.0	1.	+0.0	213	21.3	:7	23.3	43.3			F Amostras	🗖 Isolinha
Execute Fecha Apos	38.6	39.5	37.4	30.04	.35.2	· Les	45.8	44.1			🖙 Grade	Texto
		ſ	•		1	0.00	. *	T			IT IN	I Imagem
	39.0	36.5	• 35.4	30.0	/27.5	30.3	40.3	41.7			Selecionar	Consulta
	39.5	37.4):,,	.1	34.9 +	421	45.7	30,9			-Controle de Telas Ativar (* 1 C	20304
	41,2	to.	to	34.2	33.9	41.9	45.1	45.2			Acoplar:	2 - 3 - 4
	40,8	3the	131.6	29,8	33.6	37.2	38.5	42.8			Amplia: 1 (C2 C4

(a)	
[[Canchim]	
Análise Executar Ferramentas Ajuda	-
Inativa 🕞 🔣 🔟 🕂 🤩 🔕 🔍 🗾 🗹 🕵 🗶 🖉 👘 😵	🔤 Painel de Contr 🔳 🗖 🔀
NUMBER OF AN AND AND THE THE THE THE	Cotegorias
30.1 29.1 23.5 15.7 15.0 15.2 19.4 17.3	() Classes_Solo
The second se	(V) Limites
32.0 28.8 /16.8 10 1 1 1 1 1 61 (0.2 16.7	[]Mapa_Geologia
	() Mapa_solos
3405 40 J 32:0 22:8 26 B 114 14 14	Planos de Informação
40.5 43.0 44.2 44.0 48.8. 30.2 125 224	() IMA_KRIG_ANIS_argia
	[]IMA_KRIG_ISO_argla []REC_IMA_KRIG_ANIS_argla
37.7 37.4 28.3 440 462 347 22.8 3 9	() REC_IMA_KRIG_ISO_argla
in the second second	(M) KRIG_ISD_argila_imagem
· · · · · · · · · · · · · · · · · · ·	
54.0 5.2 40.0 57.7 51.0 51.7 53.3 43.3	
	🖬 M 🗖 Testo
326 326 37.4 39H .352 .45 45.8 441	
was been and the me are are	Selectory Consultar
the star with the star the first	Controle de Tielas
39.5. 37.4) 87.7 357 34.9 42.1 45.7 38.9	Ativar: € 1 C 2 C 3 C 4 C 5
1.1	Exibi: 🗆 2 🗔 3 🗔 4 🗔 5
41.2 7.0 7/0 34.2 33.0 41.0 45.1 45.2	Acopla:
40.8 300 JIA 38.8 33.6 37.2 38.8 42.8	Amplie:(€1 C 2 C 4 C 18
	Fechar Ajuda
PE	KRIG_ISO_arpla_magem
(b)	

(b) Figura 8. Ativando a geração do MNT (a); MNT gerado (b).

Como mostrado acima a imagem gerada ultrapassa o limite da fronteira da Fazenda Cachim, por isso fez-se necessária o recorte da mesma, como mostra a Figura 9.

Figura 9. Recorte da imagem gerada.

Após o recorte da imagem utilizando o LEGAL, foi realizado o fatiamento da mesma segundo a classificação especificada no inicio deste relatório.O resultado é mostrado na Figura 10.

		I) [SER300_BD_SasCark	e Canch	in)						_ C 🗙
	e Exibie Imagén Te	inátro MMT Cadattral Rad	Anälse	Executar	Ferrament	as Ajuda		a dia	the world contraction	
1	2 🔊 Auto	• 1/ 63493	Inaliwa	*	<u>.</u>	1 🛨 👬	0 9	Z	2 2 2 4 2 2 2	Painel de Contr 🖃 🗆 🔀
			*	+	-	* *		T	The second secon	Categorias
	E Legenda	E 6 🛛	30.1	23.1	23.5 1	\$7 1 <u>1</u> .0	14.2	18,4	133	[/] Linites
🛱 Algebra 📃 🗖 🔽	J T REC_FAT	T_KRIG_JSO_wgla	32,6	23.5	IRA L	ę.1 . 12.8	19.0	112	141	() Mapa_denagem () Mapa_viaz
Diretório C:\Documents and Set CR	Arencso Argilaso		39.0	+9.0 L	22.0 2		n.t	14.0	167	NT Superficie Planos de Informação
Programas	Media Multo Argh	010	40.5	+in	44.2 4	() - 195.	22.4	ų.	24	(6) KRIG_ISO_argla () KRIG_ISO_argla_KV
atualiza_Targila			37.7	37,4	42 4		24.7 *	22.6		
Fat_Recorte_anis			41.7	24.0	1 1		. et .	10	36.0	and the set field
Fat_Recorte_iso			39.6	FI	-	y. 199	1	εĻ	413	Prostade 300 _01 _2
Nome: Eat Becorte ino			38.6	7.	37.4 3	-	40	÷	44,1	Grade ☐ Testo ☐ TIN ☐ Imagem
			38'0	22	MA . 3	20 00	22.3	41.3	41.7	Controle de Talas
Editar			39.5	37.4	200	4 M29	42.1	45.7	369	Atvar @ 1 C 2 C 3 C 4 C 5 Exbar C 2 C 3 C 4 C 5
Executar Suprimir Fechar Aiuda			41.2	1	1.	42 3 <u>3</u> 9	1.9	45,1	45.2	Accelar: □ 2 □ 3 □ 4 □ 5 Anglar: □ 1 □ 2 □ 4 □ 5
			40.8	an	31.6 2	9.8 335 +	77,2	34.6	428	Fechar Ajuda

Figura 10. Fatiamento e classificação da imagem.

Toda a atividade descrita até o momento foi considerado uma caso de isotropia, assim para o teste de uma caso anisotrópico os dados também foram testados. Assim foi gerado outro semivariograma e testado a anisotropia, como mostra a Figura 11.

Figura 11. Geração do semivariograma (a); eixos de anisotropia (b)

Como mostrado nas Figuras acima há uma caso de anisotropia evidente, sendo o espalhamento mais elevado na direção de ~17 graus e menos intenso na direção de ~107 graus. Depois da analise de anisotropia procede-se com a geração dos semivariogramas direcionais, como mostrado na Figura 12.

Figura 12. Geração dos semivariogramas direcionais.

A Figura acima ilustra três semivariogramas. O Semivariograma em verde representa à direção de maior continuidade (~170), o azul à direção de menor continuidade (~1070) e o vermelho o omnidirecional, o qual foi gerado apenas a titulo de representação e representação medias entre os semivariogramas de maiores e menores alcances. A seguir é indicada a modelagem dos semivariogramas direcionais, primeiramente na direção de maior continuidade 17 graus, como mostra a Figura 13, e posteriormente na direção de menor continuidade 107 graus, como mostra a Figura 14.

Figura 13. Modelagem do semivariograma na direção de maior continuidade 17 graus.

Figura 14. Modelagem do semivariograma na direção de menor continuidade 107 graus

Para a união dos dois modelos definidos anteriormente foi realizada a modelagem da anisotropia, que consiste num único modelo consistente, o qual descreva a variabilidade espacial do fenômeno em qualquer direção. O passo seguinte foi a gravação do modelo proposto e a validação do mesmo, como mostram as Figura 15 e 16.

🕼 Ajuste de Semivariograma 👘 💽 🗋	1	+ 💀 0 🔍 🗹 🕱 🕱 🕱 🕱	Painel de Contr 🖕
Auste G Automático C Visual		Parāmetros Estruturais	Categorias [V] Amostras_Campo 11 Classes: Solo
Número de Estrututas (* 1 C 2 C 3	·	Pasimetros Número de Estinuturas: C 1 C 2 G 3	() Falamento_Argila () Imagem (V) Limites () Mana Gantonia
Modelos		Ciello Petria. [20	Planos de Informação
Modelo 2 Estérico		Contribuição: [63] Angulo Anis: 17 Alcance Máx: [1677] Alcance Mín: [000001	[] alimetria [] alitude [] areia_fina [] areia_grossa (A) areia_
agla_0.var agla_17.var andia_107.var		Segunda Estrutura Tipo: Estérico 💌	() calcio Prioridade: 300 CR
wgw_ton nw .	ŀ	Contribuição: 140 Angulo Anis: 17 Alcance Máx: 2962 Alcance Mín: 1677	Amostras F Isole F Grade F Text TIN Image
Parlametroe Estruturais	~	Tesceixa Estuduza Tipo: Estérico 💌 Contribuição: 71 Angulo Anis: 17 Alcance Más: 100000 Alcance Mín: 2963	Selecionar. Cons Controle de Telas Ativa: © 1 C 2 C 3 C Exibir. C 2 C 3 C
Executar Fechar Ajuda		Executar Fechar Ajuda	Acopler:

Figura 15. Gravação do modelo proposto.

(a)

(b)

(d)

Figura 16. Validação do modelo proposto e diagrama espacial do erro; histograma do erro (b); estatística do erro; diagrama dos valores observados.

Após a analise do modelo parte-se para o procedimento da krigeagem ordinária, as etapas e resultados são apresentados na Figura 17.

rlos][Canchim]	
ede Análise Executar Ferramentas Ajuda	Painel de Contr
Indivo 🕑 🔟 🗄 🖓 🔍 🗮 🖉 🛠 🛣 🖉	Categorias
7 7 7 7 7 7 7 7 7 7	M Linkes () Mapa_Geologia () Mapa_Solos
31,1 31,8 b2+ 0500 14+ 21+ 60+ 200	[]Mapa_denagem []Mapa_vias [V] Superficie
33.4 36.7 28.5 29.7 27.6 23.2 13.20 29.2	Plianos de Informação 🗸 🗸
34.8 49.2 33.0 43.3 44.0 27.3 17.7 7.9	()KRIG_ISO_arglia ()KRIG_ISO_arglia_KV (G)KRIG_ANIS_arglia
38.3 30.4 4.9 44.1 48.8 33.7 23.8 34.0	()KRIG_ANIS_argila_KV
362 361 342 474 475 451 305 202	Riicridade: 300 CR
30.0 304 34.1 44. 30.4 12.4 40.18 30.0	Grade ☐ Texto ☐ TIN ☐ Imagem
34.3 28.4 3.4 3.4 7 7.2 38.6 38.4 37.4	Selecionar Consultar
34.7 34.1 +4.0 33 34 34.7 34.1 34.0 34.1	Ativac C 1 C 2 C 3 C 4 C Exibit: T 2 T 3 T 4 T
año des des são são são são	Acople: 2 3 7 4 7 Amplie: 9 1 0 2 0 4 0 85
37,7 30 37,9 34,4 34,6 37,8 30,1 37,9	Fechar Ajuda

Figura 17. Grade gerada pela krigeagem.

O procedimento geoestatístico é finalizado, a etapa seguinte foi transformar a grade em imagem, as etapas e resultados são mostrados na Figura 18.

SPRING 4.3.3 (02/04/2008) -{SER300_B0_SeeCerles][Cenchim]	
Arguno Editar Exibir Imagem Temilitico 1917 Cedastral Rede Anilise Executar Feramentas Ajuda	Painel de Contr 🔳 🗆 🖻
32.4 30.1 25.0 14.3 14.9 22.0 24.6 32.1 31.1 31.3 22.4 14.1 22.4 24.6 23.0	Vi Linites (Mapa, Ceologia (Mapa, Solos (Mapa, vias (Mapa, vias (Vi Spericie
31.4 34.7 28.8 20.7 27.6 23.2 12.4 24.2 34.8 40.2 33.8 45.3 44.8 27.1 7.0 34.3 30.4 44.9 44.1 44.8 23.7 23.8 34.0	Planos de Informação [1]MA,KRIG_ISO_angla [1KRIG_ISO_angla,imagem [1]REC_IMA,KRIG_ISO_angla [1]MA,KRIG_ANIS [M]MAGEM_ANIS
342 341 342 474 47.6 49.1 977 39.2 374 362 341 49.9 46.3 28.3 43.2 38.3	Providade: 0 OR 2
34,0 34,4 40,8 34,0 34,4 40,8 34,0 34,3 25,8 30,9 32,7 28,8 36,6 38,4 37,8 34,7 34,1 40,0 33,4 37,8	Selectoriar Controle de Telas Ativac (° 1 (° 2 (° 3 (° 4 (°
38.0 yd 36.1 36.4 36.8 38.7 38.9 38.0 37.7 38 32.9 36.4 36.6 37.8 38.1 37.0	Lubbr 2 3 4 Acoplar. 2 3 4 Ampliar. 2 3 4 Image: Complex. 2 3 4 Ampliar. 2 3 4 Image: Complex. 2 7 4 Image: Complex. 2 4 0
P1. 2	NAGEM_ANIS

Figura 18. MNT gerado.

Como mostrado acima e como feito no caso isotrópico, a imagem gerada ultrapassa o limite da fronteira da Fazenda Cachim, por isso fez-se necessária o recorte da mesma, como mostra a Figura 19.

Figura 19. Recorte da imagem gerada.

Após o recorte da imagem utilizando o LEGAL, foi realizado o fatiamento da mesma segundo a classificação especificada no inicio deste relatório.O resultado é mostrado na Figura 20.

Figura 20. Fatiamento e classificação da imagem.

Para comparação dos dados, os mapas a seguir são mostrados na Figura 21. Na Figura 22 é mostrado o mapa geológico resultante.

(b) Figura 21. Caso anisotrópico (a); Isotópico (b).

Figura 22. Mapa geológico.

Foi computado o teor médio de argila para cada classe de solo, a partir das superfícies isotrópicas e anisotrópicas. Os resultados estão presentes na Figura 23.

Figura 23. Computado o teor de argila para o caso isotrópico (a); e anisotrópico (b).