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Background Malaria is influenced by a web of individual and ecological factors, i.e. factors
relating to people and relating to environment. For a long time analysing these
factors concurrently has raised statistical problems. Multilevel modelling provides
a new attractive solution, which is still uncommon in tropical medicine.

Methods Using an actual data set of 3864 individuals from 38 villages of the Highland
Madagascar, a two-level modelling process is presented. Individual malaria
parasitaemia is modelled step by step according to age (individual factor),
altitude, and DDT indoor house-spraying status (village factors).

Results The hierarchical organization of a data set in levels, fixed and random effects, and
cross-level interactions are considered. Accurate estimations of standard errors,
impact of unknown or unmeasured variables quantified and accounted for
through random effects, are the highlighted advantages of multilevel modelling.

Conclusion While not denying the importance of understanding an aetiological chain, the
authors recommend an increased use of multilevel modelling, mainly to identify
accurately ecological targets for public health policy.
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explored.4–9 The influence of the social environment on
individual health outcome was for example reported for low
birthweight,10 diastolic blood pressure, or all-cause mortality.11

Until recently, it was necessary to choose between the
individual-centred and the collective-centred (also called
ecological) approach for methodological reasons. In the
collective approach, therefore, spatial analytical methods and
geographical information systems explore diseases at a supra-
individual aggregated level.12 Numbers of cases, and prevalence
or incidence rates are related to geographical units, and
ecological exposure estimations for comparative or predictive
purposes are composed on the same scale. In parasitological
field research, these methods are increasingly used, notably for
malaria.13–16

Although useful, spatial analytical methods could reduce the
scope of an investigation since exposure and characteristics of
each of the individuals are not taken into account. Indeed, the
origin of variation between areas could be explained by a
complex combination of factors which are characterizing people
(the individual level) or areas (the group level). When an
individual factor is a characteristic of subjects who are more
likely to be ill, variability of its distribution across areas will
influence health outcomes in a given area: this is called a
composition effect. So, relations between individual and
‘supra-individual’ determinants are of particular interest,
especially for investigating the reasons of variation between

The environment represents the third dimension of the
epidemiological triad: person, time, and space. Depending on
the scale, the environment can be defined at different levels and
characterized by specific factors. A house may be characterized
by the type of the roof, the number of sleeping rooms, whether
or not animals are sleeping in the house. A village may be
described by the proximity of irrigated lands or the presence of
a village health educator. Districts may or may not be involved
in a bed net programme. Although well identified, quantifying
the relative influence of each of these environmental factors
(and others) in malaria transmission would raise serious
methodological difficulties.

In medical research, the environmental dimension has been
neglected in favour of an individual-centred approach.1–3 In
recent years, the question of whether and how environmental
factors could have significance for health has been increasingly
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areas: are the people living in the areas different or are the areas
different, i.e. is it a composition or a context effect?17

Connecting individual and collective exposures necessitates
analysis of several collective situations simultaneously, and in
each one, several individuals. Gathered in the same situation
(household, village …), individuals are more similar to each
other than individuals from different contexts. They are
organized into groups of dependent data (also called clusters);
individuals are said to be nested within household, village, or
geographical areas. Nesting is also known as ‘design effect’ or
‘data structuring’. Consider a hypothetical study to measure
enteric helminth infection in 200 people in each of two villages,
one with piped water and one with water coming from the local
stream. Without accounting for nesting statistics assume
n = 400, whereas for the comparison between piped water
versus non-piped water n = 2. Such a data set raises, in
statistical terms, the issue of correlated data analysis.18 This
dependence between observations is contrary to one of the
basic assumptions of the conventional regression technique, i.e.
independence of observations. Assuming a size of independent
observations that is inappropriate, the statistical analysis will be
wrong. A recent illustration from biological literature was
provided by Morisson.19

For a decade, a new statistical approach based on multilevel
modelling has been available, aided by the increase in computing
power. A variety of names have been used synonymously for
‘multilevel model’: ‘hierarchical model’, ‘random effect model’,
‘variance component model’, or ‘mixed model’.20 First
widespread in social sciences, many multilevel modelling studies
are now published in health sciences6,21–23 but it is noteworthy
that few deal with infectious or parasitological diseases.24,25 The
principle of multilevel modelling is to analyse simultaneously
the influence of individual factors and environmental factors.
The data set is structured as a succession of nested levels: people
are gathered by house, houses are gathered by village, villages
are gathered by district … Outcomes defined at the lowest level
(parasite burden of each people) are then modelled as a function
of variables characterizing the different levels (people, house,
village, district).

The aim of this paper is to demonstrate multilevel modelling
in malaria and to show how misleading an analysis can be if it
considers only one level. To this end, an actual malaria data set
is used to illustrate the main outlines of such an approach.

Population and Methods
Malaria, as many other parasitological diseases, really embodies
diseases influenced by a web of determinants defined at
different levels. Vector breeding, exposure to transmission,
immunity, morbidity, clinical expression, drug resistance,
prevention, are all subject to a wide variability. Most of them
are modulated by both individual and environmental
determinants: individual response to a collective exposition,
migration, compliance to health programmes.

Study area

In Central Highland Madagascar transmission of malaria is
seasonal with morbidity decreasing from warm (January–May)
to cold season (July–August).26 From East to West, altitude
declines, transmission period becomes longer, and malaria tends

to be stable.26,27 Within the area, more than 90% of the
malaria infections are Plasmodium falciparum.28 After the deadly
epidemics of 1986–1988, in 1993 the Malagasy government
started a 5-year indoor DDT house-spraying programme in
areas located at altitudes between 1000 and 1500 m. Actually,
2 years after the campaign began, DDT was not sprayed in the
all planned villages, and conversely DDT was sprayed in few
villages which were not targeted by the programme. The main
reasons for this situation were inaccessibility during the
spraying period, missing product, and altitude misclassification.

Data set

It consists of a sub-sample extracted from a wide cross-sectional
community-based study conducted in the Middle West of
Madagascar in July 1995 by the RAMSE programme, a research
programme involving the Malagasy Health Ministry, the French
Institut Pasteur, and the French Institut de Recherche pour le
Développement (formerly ORSTOM). Individual and collective
data were collected according to standardized field procedures
for questionnaires, clinical examinations, and biological
sampling. Informed consent was obtained from all adult
participants and from parents or legal guardians of minors.
Inhabitants of the 38 villages located in the area covered by the
DDT spraying programme were selected for analysis. After
exclusion of 238 individuals (infants or missing values), 3864
subjects comprised the final data set.

Outcome and factors

The individual health outcome we considered is the presence or
absence of Plasmodium in blood samples. Aggregated results
are expressed as parasite prevalence, i.e. the percentage of
Plasmodium positive subjects. The factors used to explain
outcomes are defined at two levels: individual (age) and village
(DDT-spaying status and altitude, range 900–1600 m). Variables
were coded as follows. Age and altitude were split into two
categories (thresholds of 10 years and 1300 m, respectively).
DDT-spraying was coded as unsprayed or sprayed once or more
since the beginning of the campaign.

Multilevel modelling

The outcome (carriage of Plasmodium) is a binary variable
(Plasmodium: yes/no). Logistic models were used to assess the
influence of independent variables on the odds of being
Plasmodium positive. Let �i be the predicted probability (and 

the odds) of being Plasmodium positive for the ith

individual, the logit function is defined as follows: 

and the equation of a conventional logistic model is: 

logit(�i) = β0 + β1X1 + … + βpXp

where β0 is the intercept, and β1 … βp are the regression
coefficients of independent variables X1 … Xp. The odds ratio
(OR) associated with the variable X1 is the exponential function
of its parameter β1 (ORX1 = exp(β1)).

In the current analysis, a multilevel statistical approach was
used to model the relation between malaria and three
independent factors. Two levels of organization were stated

logit(�i) � log� �i

1 � �i
�

�i

1��i
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(individual and village) in a multilevel logistic regression model.
Let �iv be the predicted probability of being Plasmodium positive
for the ith individual of the vth village. The logit function becomes:

The general equation of a multilevel logistic model is:29

logit(�iv) = β0v + β1X1iv + … + βpXpv

The key difference between conventional (single level) and
multilevel models is the structure of the random part of the
model which is also called residual variation or error. In the
conventional model, there is only one level and the structure of
the residual variation is reduced to one value: the individual-
level residual variance. In the multilevel model, the structure of
the random part (residual variation) is more complex and
partitioned among levels of the data hierarchy. Here, the random
part of the logistic model is partitioned among an individual level
variance (which is set to be Binomial) and village level variance.

From a computational point of view, multilevel modelling can
be seen as a two-stage process.20 First, a separate individual-
level regression is defined for each village. Then, each of the
village-specific coefficients are modelled as a function of village
variables. So, multilevel analysis allows the partition of the
village-specific coefficients: a fixed part that is common across
villages and a random part varying between villages.
Coefficients in the models were estimated using a Second Order
Penalised Quasi Likelihood (PQL).29,30 Fixed and random
coefficients were successively estimated, and iterative
estimations were performed until the procedure converged. For
non-Normal models, the likelihood statistic can only be
approximated, so statistical significance of fixed parameters was
tested using Wald 95% CI.30,31 Normal distribution of the
village-level residuals was graphically checked. The SAS
package was used for conventional logistic modelling and the
MlwiN software was used for multilevel modelling.32

Description of Levels
The overall parasite prevalence was 15%, modified by age 
(�10 years = 23%, �10 years = 11%), altitude (�1300 m =
22%, �1300 m = 6%), and DDT status (unsprayed = 31%,
sprayed = 8%).

Cross-tabulation of the three determinants indicates a more
subtle pattern (Table 1). Individuals are classified according to
their age, the altitude, and the DDT-spraying of their village.
Overall parasite prevalence represents the average prevalence of
the sub-group in question. It reflects an approach focusing on
the individual, and considers the subjects statistically
independent from each other. If we expect that environment
could modify the probability of being Plasmodium positive, then
this approach focusing on the individual implies that each of the
3764 people lives in an environment independent from the
environment of the other subjects. Conversely, village parasite
prevalence represents a collective approach (here focusing on
village). Here, the environment is homogeneous at the scale of
the villages. When comparing prevalences expressed by sub-
group and by village, the relationship between the different
factors appears to be complex. The two approaches seem to bring
complementary information: trends, and deviations to trends.

In Figure 1 the age-specific parasite prevalence is plotted for
each of the 38 villages. Villages are ranked by ascending altitude
(x-axis). DDT-spraying is indicated by the colour of the bars
(unsprayed = white and sprayed = striped). The parasite
prevalence is displayed on the y-axis. For a village, two age
groups (1–9 years, �10 years) are displayed on the z-axis from
back to front, respectively. This Figure illustrates the great
variability exhibited by these data. Main trends already
suspected for altitude, DDT-spraying, and age are noticeable
again. However, deviations from these trends are also pointed
out. In other words, the three factors only explain a part of the
variability between the bars. For a given altitude and DDT-
spraying, between-village differences remain. Lastly, relative
to the oldest group, parasite prevalence in the first age group

logit(�iv) � log� �iv

1 � �iv
�
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Table 1 Plasmodium prevalencea according to subjects’ age classes, village altitude, and DDT-spraying

Altitude

�1300 m �1300 m

Unsprayed Sprayed Unsprayed Sprayed All areas

No. of villages 8 8 4 18 38

Age � 10 years

No. of subjects 303 314 63 523 1203

Overall parasite prevalence 59.7 13.0 20.6 7.5 22.8

Range of village prevalence 43.7,82.4 0.0,17.4 0.0,40.7 0.0,54.6 0.0, 82.4

Age � 10 years

No. of subjects 726 659 137 1039 2561

Overall parasite prevalence 23.4 8.5 12.4 4.1 11.2

Range of village prevalence 10.7,32.0 0.0,14.5 1.7,25.0 0.0,19.2 0.0, 32.0

All ages

No. of subjects 1029 973 200 1562 3764

Overall parasite prevalence 34.1 10.0 8.8 5.1 14.9

Range of village prevalence 22.3,43.4 0.0,14.7 1.2,30.6 0.0,29.7 0.0, 43.4

a Prevalences are expressed as percentage of subjects Plasmodium positive.



(1–9 years) appears not to be uniform across villages, suggesting
that influence of age (if any) may not be constant across villages.

Modelling Process
All the modelling parameters shown in Tables 2 to 4 are
statistically different from 0.

Basic variance multilevel modelling
The equation of the null model—no variable introduced—is
(Model A in Table 2):

logit(�iv) = β0v = β0 + u0v (A)

where β0 is the ‘average intercept’, identical for the 38 villages.
Thus, the model allows for residual variations about this
intercept. Here, residual variations quantify differences between
what is measured on average in the area and what is measured
locally in each village. These differences, called village-level
residuals and noted u0v, are attributable to differences across
village situations. They are assumed to be normally distributed,
with mean zero. Their variance, σ2

0v, represents the village-
level variance. σ2

0v estimation is 1.922 in Model A (noted �A).
This variance, statistically different from zero, reflects a
between-village heterogeneity, regarding Plasmodium
prevalence.

In a second stage, age is introduced (Model B), and the
equation becomes:

logit(�iv) = β0 + β1ageiv + u0v (B)

with β0 = �1.817, β1 = �1.136, and variance(u0v) = �B =
2.077. As expressed by its odds ratio (OR = exp(�1.136) =
0.32), age greater than 10 years is associated with decreased
odds of being Plasmodium positive.

In Models C and D, altitude and DDT-spraying are
successively added. Model equations are the following:

logit(�iv) = β0 + β1ageiv + β2altitudev + u0v (C)

logit(�iv) = β0 + β1ageiv + β2altitudev + β3ddt_statusv + u0v (D)

Again, from the respective altitude and DDT-spraying parameter
values in Model D, odds ratios can be calculated (0.32 and 0.20,
respectively). Adjusted for age and for each other, altitude
�1300 m and DDT-sprayed status are also identified as
independently associated with lower odds of being
Plasmodium positive.

Considering the three Models A, C, and D, the village-level
variance decreases as village-level factors are introduced (as
indicated in Table 2: �A = 1.922, �C = 1.298, and �D = 0.626,
respectively). So, when accounting for altitude and DDT-
spraying, the part of the variability which is relevant at the
village level becomes lower. In other words, the village-level
variance quantifies the part of the variability which is relevant
at this level but not explained by village-level determinants
already introduced in the model.29

Finally, the percentage of village-level variance explained
by altitude (Model C) and by both altitude and DDT status
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Figure 1 Parasite prevalence by age group (1–9, �10) amongst the 38 villages according to altitude and DDT sprayed/unsprayed status. The
colour of the bars indicates whether the village was sprayed (stripped) or unsprayed (white). For each village, two age classes are displayed on the
z-axis (1–9 years = back box, �10 years = front box)

Table 2. Basic multilevel logistic models with successive introduction
of explanatory variables

Models
Coefficients (standard error)

Parameter A B C D

Fixed part:

Intercept �2.486 �1.817 �0.810 �0.018

Individual factor

Age (�10 years) — �1.136 �1.140 �1.143
(0.109) (0.111) (0.110)

Village factors

Altitude (�1300 m) — �1.788 �1.130
(0.421) (0.329)

DDT-spraying (yes) — — — �1.601
(0.338)

Random part

σ20v (village-level variance) 1.922 2.077 1.298 0.626
(0.516) (0.563) (0.370) (0.198)



(Model D) can be calculated as follow:

percentage of village-level variance explained by altitude
= [(�A � �C)/�A] � 100 = [(1.922 � 1.298)/1.922] � 100
= 32%

percentage of village-level variance explained by both altitude
and DDT-spraying

= [(�A � �D)/�A] � 100 = [(1.922 � 0.626)/1.922] 
� 100 = 67%

So, in the Model D, 33% of the village-level variance remain
unexplained, indicating that some unmeasured or unknown
village characteristics could be missing.29

Complex variance multilevel modelling

In models B to D, it is assumed that the odds ratio for age does
not vary across villages. We may relax this assumption by
adding the age coefficient as a random variable at the village
level (Model E, Table 3). A test to zero on this random
parameter allows to test for null hypothesis that the odds ratio
for age does not vary across villages.

logit(�iv) = β0 + β1vageiv + β2altitudev + β3ddt_statusv
+ u0v (E) with β1v = β1 + u1v

Here, a random coefficient for age (0.619) means that the
coefficient β for age significantly varies across villages. The dif-
ference between the ‘average’ fixed relationships and the
relationships in each village is noted u1v. The mean of the u1v is
zero and the variance is equal to 0.619 in Model E.

Fixed and random parameters in multilevel
modelling

Intercept (β0) and coefficients associated with age (β1), altitude
(β2), and DDT status (β3) are the fixed part of the model. This
part is used to estimate the strength of associations between
individual plasmodial status and exposures. This strength is
identical—fixed—over all the population. Conversely, the
village-level variance defines the village-level random part of
the model—the between-village variability not explained by
fixed effects. This village-level random part invalidates the
assumption of independence between individuals, and confirms
the actual organization of the data set in more than a single
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Table 3 Complex variance multilevel logistic model and conventional logistic model

E-multilevel model F-conventional model

Estimates Estimates
Parameter (SEa) ORb 95% CI (SE) OR 95%CI

Fixed part:

Intercept �0.647 0.036

Individual factor

Age(�10 years) �0.798 0.45 0.26, 0.65 �1.071 0.34 0.28, 0.42
(0.189) (0.102)

Village factors

Altitude (�1300 m) �0.883 0.41 0.23, 0.75 �0.883 0.41 0.32, 0.53
(0.309) (0.124)

DDT-spraying (yes) �1.151 0.32 0.17, 0.58 �1.543 0.21 0.17, 0.26
(0.308) (0.110)

Random part:
(village level variance)

σ2
0v (Intercept) 1.487 - - -

(0.463)

σ 01 (covariance) �0.840
(0.323)

σ2
1v (Age at random) 0.619 - - -

(0.269)

a Standard error.
b Odds ratio.

Table 4. Multilevel logistic model including cross-level interactions

G-Multilevel model

Parameter Estimates SEa

Fixed:

Intercept 0.301

Individual factor

Age(�10years) �1.643 0.238

Village factors

Altitude (�1300 m) �1.580 0.485

DDT status �2.178 0.494

Interactions

Age*Altitude 0.660 0.350

Age*DDT status 1.001 0.332

Random part
(village-level variance)

σ2
0v (Intercept) 1.325 0.420

σ01(covariance) �0.575 0.247

σ2
1v (Age at random) 0.312 0.174

a Standard error.



level. The fixed effects represent the ‘study area average’ effects
whereas the random part variance provides an estimate of what
could be explained by each level.17

Comparison between multilevel and conventional
modelling

Conventional logistic regression is performed on a single level of
organization (individuals). Neither the village level, nor the
correlated structure of the data is considered. Consequently,
variability of coefficients across villages is not allowed by the
modelling process, i.e. the random part defined at the village level
does not exist. Table 3 shows the results obtained by the
conventional logistic modelling (Model F). Coefficient values (and
odds ratio) are relatively close to those estimated by multilevel
modelling. The main difference lies in smaller standard errors in
the conventional logistic regression. Considering all observations
to be independent, conventional modelling assumes more
information in the data than there actually is.18 Consequently,
standard errors based on an independence assumption are
underestimated and 95% CI are too narrow when observations
are, in fact, correlated. The risk is then to reject too often the null
hypothesis, and so to conclude statistical significance too
often.29,33 A new variable (the population size of the villages)
was introduced in models E and F, and analysis were conducted
with both modelling processes. With the conventional model, the
odds ratio is 1.21; the 95% CI (1.10, 1.35) does not include the
value of one, and the variable appears statistically ‘significant’.
With the multilevel model, the odds ratio is 1.27 (95% CI: 0.96,
1.65), and the variable becomes ‘non-significant’. In other words,
modelling data without taking into account correlation between
subjects seems to give more precision to estimations, but
conclusions are based on a false underlying hypothesis.

Cross-level interactions

Two independent factors interact if the effect of one of the
factors differs depending on the other. One can imagine that an
individual-based factor effect can vary with a village-based
characteristic. Two so-called ‘cross-level interactions’ were
significant in our example: age*altitude and age*DDT-spraying.
The final parameters are shown in Model G (Table 4). These
results can be interpreted as follows: the influence of age
appears stronger �1300 m of altitude (OR = exp(�1.643) =
0.19) than above (OR = exp(�1.643 + 0.660) = 0.37); the
influence of DDT is greater for subjects � 10 years old than for
the older subjects (OR = exp(�2.178) = 0.11) and
OR = exp(�2.178 + 1.001) = 0.31, respectively). Interactions
are commonly tested with conventional models, but cross-levels
interactions can only be correctly analysed with multilevel
modelling.17

Discussion
This paper attempts to provide support for the use of a sound
statistical approach based on multilevel modelling. Although
these models are more complex in theory and practice, and
their application requires a good definition of the real
hierarchical structure of the data, they permit combination of
exposure to group and individual factors. This is crucial in
infectious diseases. Indeed, individual risks depend not only on
the status of the subjects but also on the status of the com-
munity in which they live, as illustrated by the protective effect

of a vaccine also depending on the cover rate in the population.
Sometimes, only group determinants demonstrate association
with infection.3,34,35

Collective (here village) factors

A general difficulty for supra-individual determinants lies in the
definition of the space the attention is focused on. This could be
neighbourhood, communities, areas, but generally refers to
a person’s immediate residential environment. Most important
is to choose a scale yielding geographical areas which
characteristics may be relevant to the specific health outcome
studied.9 In this study, supra-individual characteristics were
defined at the level of the village of residence. So, relative to
subject’s activity and mobility, this scale could hide a part of the
real subject’s environment. For example, subjects living at high
altitude could be regularly infected during seasonal migration to
lower altitude regions, smoothing the measured differences
associated with altitude.

Interpreting results concerning area factors is complex because
many dimensions and determinants may be interrelated.3,9 Here,
differences between villages could be due to bio-ecological or
human factors. Indeed, temperature and rainfall, known as
limiting factors for the malaria cycle and vector development in
the Highlands, were not introduced in the models.26 However,
those factors are strongly correlated with altitude, which
synthesizes climatic and vegetal conditions. As altitude decreases,
environment becomes more favourable to malaria development.
So, part of the altitude influence certainly reflects the influence of
climatic factors on malaria. Similarly, human factors could be
variations in population density, building or housing type, and
behaviour, some of which known to be risk factors.26,36 DDT-
sprayed status is associated with a decrease in the individual odds
of malaria. Furthermore, the protective influence of this collective
factor had been shown to be modulated by an individual factor
(the age). So, multilevel modelling allows assessment of health
programmes, both at the collective and the individual level. The
influence of individual factors on the effectiveness of collective
programmes (limiting or promoting) can be precisely investigated.

Individual factors

The moderate protective influence of age on parasitaemia is in
agreement with a low level of acquired immunity, already known
in this population of Central Highland Madagascar.26,27,37 Of
course, other individual factors such as socio-economic or
nutritional status, treatment, and associated or past diseases could
be incorporated for better explanation of complex relations, but
this would be beyond the scope of this paper.

Random effect, modification of effect
Village-level variance can be interpreted as heterogeneity across
villages for the probability of being Plasmodium positive. This
variability is not attributable to variables already introduced in
the model. The random effect can then be considered as a
composite surrogate of unknown or unmeasured supra-
individual factors (village characteristics) influencing the
variable of interest (parasitaemia).29

Focal interactions between man and environment are
responsible for local variability. One main advantage of
multilevel modelling is to pick up interactions; most noticeable
in this context is the effect of age which differ according to
altitude. So, modification of effect across groups could be
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modelled by both random effect (effect varying randomly) and
cross-level interactions (modifications linked to fixed
characteristics). These complex relations have to be explored,
tested, and retained with regard to their significance. As a matter
of fact, exploring the fact that individual characteristics do not
play the same role from one group to another opens important
possibilities of improving our understanding of individual and
group behaviours, spontaneously and in response to risks.

Alternatives to multilevel approach in regression 
for correlated data

Another statistical approach had been developed to handle
correlated data, without explicitly accounting for heterogeneity
across groups. All the terms ‘population-averaged models’,
‘marginal models’, or ‘covariance pattern models’ refer to this
approach.18,20,38 The Generalized Estimating Equation is one
method to fit this kind of models.33 In contrast to multilevel
models, these models do not provide direct estimates of the
variance structure, but treat these as nuisance parameters.38,39

Between-group variation, influence of individual-level or
group-level factors on this variation, and sources of intra-group
correlation are not examined.20 Another interest lies in the fact
that multilevel modelling does not need equilibrated data, parti-
cularly when analysing repeated measures from individuals.40

Various multilevel models

Only individual and village levels have been considered while
household level could have represented an interesting
intermediate level. For the sake of clarity, we preferred to fit only
two-level models, although multilevel modelling permits the
definition of several nested levels.32 Moreover, cross-classified
models could even be used. For example, a structure where
children could be classified by village (the environment where
they live) and by school (the environment where they study),
giving a cross-classified structure, instead of a nested one. Last, as
with conventional models, the relation between outcome and
determinants could be analysed using different underlying
distributions: Gaussian, logistic, Poisson, negative binomial, etc.

Various software packages

The two main packages specialized in multilevel modelling are
MlwiN and HLM. Conversely to HLM, MlwiN has general
facilities which can be accessed through drop-down menus,
including a user interface designed for fully interactive use and
integrated functions for data manipulation. To set up a model, an
‘equation window’ is used in which the user specifies the model
in the format it is usually written. Major software packages (SAS,

STATA, S-PLUS, SYSTAT) also provide procedures for fitting
multilevel models.41,42 Finally, MIXOR, MIXREG, and MLA are
programmes available for free. Furthers detailed reviews of
multilevel software packages can be found in ref. 43.

Process and insight summaries

Global variability (random part of the model) has been
partitioned in an individual-level and a village-level variability.
After controlling for an individual factor, village-level variability
still remained which rules out a purely composition effect of
this factor (model B). This village-level variability was then
partially explained and reduced when taking into account
village factors (model D). Furthermore, results show that the
between-village variability could be partially explained by
differences in the age influence across villages (model E).
Finally, it has been stated that variables which were defined at
different scale interacted with each others (model G).

Characteristics from different levels of the social organization
were analysed simultaneously. Consequently, questions about
the appropriate level of analysis are redundant. Valid estimates
were produced by taking into account dependence between
observations. Multilevel modelling highlighted the contextual
richness and complexity which were suggested by the Figure. In
particular the relative susceptibility of a social group (the youths)
appeared to be modified by the context in which this group was
living. A part of this context was explicit (altitude, DDT) and
another part remains unmeasured or/and unknown, which
could potentially open news hypotheses. To conclude, the key
point is that multilevel modelling allows a demonstration of the
independent effect of area/group characteristics from individual
factors, and vice versa. While not denying the importance of
understanding the aetiological chain, identification of
environment targets for public health policy is a necessary
pragmatic process, especially when fighting endemic diseases.
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KEY MESSAGES

• Studies are used to explore the influence of either individual or collective factors on health outcomes but more analyses

simultaneously focusing on the different levels of the social organization would substantially support the

epidemiological approach to diseases.

• The failure to explicitly model the structure of such complex data is to ignore information about variability that,

potentially, is as important as knowledge of the average effects.

• Multilevel modelling offers the opportunity to determine the relative impact of each level of organization on the

variability and to identify the factors at each level that are associated with that level’s impact.
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