

Automated Assessment of NIIRS and GRD of High Resolution Satellite Images through Edge Profile Analysis of Natural Targets

Taejung Kim, Jae-In Kim

Image Engineering Lab Dept. of Geoinformatic Engineering Inha University

Backgrounds

Various ways of describing image quality

- From engineering side, there are many technical parameters
 - Ground sampling distance,
 - Modulation Transfer Function(MTF) (ratio @ sampling freq.),
 - Signal to Noise Ratio (SNR),
 - Relative Edge Response (RER), etc.
- Tech. parameters may not represent "image quality" for user
 - Image users may be more interest in other parameters
 - mapping accuracy, interpretability, etc.
- Image quality regarding interpretability
 - NIIRS (National Image Interpretability Rating Scales)
 - GRD (Ground Resolvable Distance)

Backgrounds

Image quality assessed mostly by Artificial Targets

- Usually for calibration / validation purpose
- Specially manufactured artificial targets are used
- Special arrangements (target size, orientation) are required
- Images around targets are analyzed for RER and SNR
- Edge profiles are transformed to MTF through curve fitting

Automated image quality assessment from natural targets

- artificial targets → natural targets
- manual edge selection \rightarrow automated selection
- RER, MTF, SNR \rightarrow GRD, NIIRS
- reliability of image quality parameters
- ➔ Operational image quality assessment of all remote sensing images without extra costs

* NIIRS (National Image Interpretability Rating Scales)

- Originally used for intelligence/military images
- In 1996, published by IRARS (Imagery Resolution Assessments and Reporting Standards)
- For each rating, identifiable targets are defined
- Separate rating scales exist for military targets and civil/natural targets and for panchromatic, multispectral, radar images
- NIIRS values are assessed visually by certified image analysts
- NIIRS values are provided within the satellite metadata

영상공학연구실 Image Engineering Laboratory

Level	GRD (m)	Visible NIIRS
0	-	Interpretability of the imagery is precluded by obscuration, degradation, or very poor resolution
1	over 9.0	Detect a medium-sized port facility and/or distinguish between taxi- ways and runways at a large airfield.
2	4.5 - 9.0	Detect large hangars at airfields. Detect large static radars (e.g., AN/FPS-85, COBRA DANE, PECHORA, HENHOUSE).
3	2.5 - 4.5	Identify the wing configuration (e.g., straight, swept, delta) of all large aircraft (e.g., 707, CONCORD, BEAR, BLACKJACK).
4	1.2 - 2.5	Identify all large fighters by type (e.g., FENCER, FOXBAT, F-15, F-14). Detect the presence of large individual radar antennas (e.g., TALL KING).
5	0.75 - 1.2	Distinguish between a MIDAS and a CANDID by the presence of refueling equipment (e.g., pedestal and wing pod). Identify radar as vehicle-mounted or trailer-mounted.
6	0.40 - 0.75	Distinguish between models of small/medium helicopters (e.g., HELIX A from HELIX B from HELIX C, HIND D from HIND E, HAZE A from HAZE B from HAZE C).
7	0.20 - 0.40	Identify fitments and fairings on a fighter-sized aircraft (e.g., FULCRUM, FOXHOUND).
8	0.10 - 0.20	Identify the rivet lines on bomber aircraft. Detect horn-shaped and W-shaped antennas mounted atop BACKTRAP and BACKNET radars.
9	less than 0.10	Differentiate cross-slot from single slot heads on aircraft skin panel fasteners. Identify small light-toned ceramic insulators that connect wires of an antenna canopy.

NIIRS assessment by GIQE

- General Image quality Equation
- Proposed by regression analysis between NIIRS, GSD, MTF and SNR values of images
- Enables assessment of NIIRS from tech. parameters determined by edge analysis

NIIRS = a - b* log(GSDGM) + c* log(RERGM) - (d*H) -(e*G/SNR)

- RER_{GM}: Geometric means of Relative Edge Response in x and y direction
- H: Geometric means of Overshoot height
- G: Noise gain due to Edge sharpening, Kernel Value of MTF Correction
- GSD: Ground Sampling Distance
- SNR: Signal to Noise Ratio

GRD (Ground Resolvable Distance)

- The minimum distance between two objects to be identified as separate objects
- Inverse of Line pairs per mm (lp/mm)
- GRD is assessed by image analysts

GRD assessment

GRD can be assessed from PSF (Point Spread Function)

$$GRD = \frac{H}{f}R$$

- H : Flying height
- f: Focal length
- R : Half peak width of PSF

***** Proposed procedures

- Select initial edge points
 - from artificial vs. natural targets
 - manually vs. automatically

- Determine edge orientation and generate edge profiles
- Calculate normalized edge profile and edge center
- Check the criteria for accepting edge profiles
- Calculate RER, H, SNR and NIIRS
- Generate point spread function and calculate GRD
- Repeat the process for other edge points (usually > 50)
- Determine NIIRS and GRD for the whole scene

Orientation-invariant edge analysis

- GIQE uses RER in only x- and y-directions
- For natural targets, we have to use edges of arbitrary orientation
- We need to extract edge profiles perpendicular to edge orientation
- Test image: bar patterns with orientation changed incrementally by 15° by different cameras

Camera Tested: SONY Siber-Shot DSC-S950 SONY α550(DSLR) Cannon Exsus 900 Ti Samsung Kenox S500

Orientation-invariant edge analysis

GRD estimation from in-door scenes

- 10mm Test image: 50mm 50mm 50mm W=W=UI=U Model EOS 450D Camera spec.: CCD size 22.2mm × 14.8mm Focal Length 55mm Image Size 4272 × 2848 **CCD** Cell size 0.005197mm
 - Imaging distance (Flying height):
 - 981mm, 1232mm, 1454mm, 2090mm, 3132mm

Edge analysis for quality assessment

GRD estimation from in-door scenes

- From bar pattern, extract edge profiles, PSF and GRD
- GRD values assessed by 7 researcher were averaged as reference GRD values

GRD estimation from edge analysis

 GRD values from edge analysis were almost identical to reference (RMSE: 0.01mm)

			GRD		
Imaging Distance	Reference GRD	2 * GSD	Average of Individual GRDs	GRD of Average Edge Profile	
3132mm	0.7081mm	0.5863mm	0.7094mm	0.7057mm	
2090mm	0.4753mm	0.3912mm	0.4747mm	0.4665mm	
1454mm	0.3288mm	0.2722mm	0.3305mm	0.3230mm	
1232mm	0.3001mm	0.2306mm	0.3058mm	0.3063mm	
981mm	0.2324mm	0.1836mm	0.2127mm	0.2112mm	

GRD estimation from an out-door scene

- Test data (Bruce Mathews and Theodore Zwicker, 1999)
 - Tri bar pattern with varying sizes
 - Reference GRD is estimated by checking minimum identifiable bar pattern

Bar		Size(inches)		Bar		Size(inches)	
Group	Horiz.	Vert.	GRD (in)	Group	Horiz.	Vert.	GRD (in)
1	151.25	30.25	60.50	20	16.84	3.37	6.74
7	75.60	15.13	30.25	26	8.42	1.68	3.37
8	67.40	13.47	26.95	27	7.50	1.50	3.00
9	60.00	12.00	24.01	28	6.68	1.34	2.67
10	53.50	10.69	21.39	29	5.96	1.19	2.38
11	47.60	9.53	19.06	30	5.31	1.06	2.12

*** GRD estimation from an out-door scene**

100 Edge locations were selected

Extracted Edge Profile and Point Spread Function

		GSD*2	GRD	
	Reference		Average of Individual GRDs	GRD of Average Edge Profile
inches	2.8350	2.7400	2.7784	2.6552
Pixel	2.0693	2.0000	2.0280	1.9381

***** GRD estimation from simulated images

from each ref. images, 3 simulated images were generated

- reference GRDs were estimated by visual inspection
- theoretic GRDs were also calculated mathematically

***** GRD estimation from simulated images

• For each image, edge profiles at 200 locations were extracted

Difference between theoretically driven GRDs vs estimated GRDs

Conv PSF's GRD	0001	0002	0003	0004	0005	Total RMSE(Pixel)
기준영상	0.0756	0.0177	0.0227	-0.2043	0.0309	0.0992
1.0Pixel	0.0493	0.2727	-0.0007	-0.2051	0.0027	0.1542
2.0Pixel	0.0327	0.0261	-0.1624	-0.1480	0.0589	0.1034
3.0Pixel	-0.0223	-0.2207	-0.1842	-0.2021	-0.1369	0.1690

NIIRS estimation from simulated images

- generated images with △NIIRS by changing GSDs
- check the minimum identifiable font size for each image
- blur the reference by Gaussian filter to make the same minimum font size as the images with different GSDs

	$\Delta NIIRS = 0$
Lingt	S S S S S S S S S S S S S S S S S S S
25pt	\$\$\$\$\$\$\$\$\$\$\$\$
34pt	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
1301	****
3.214	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
1344	\$\$\$\$\$\$\$\$\$
LOUI	
904	
#pt	
7:01	
601	
Spt	
Apt	

GSD₀, Reference

 $\Delta \text{NIIRS} = -3.32 \text{Log}($

	Reference	1.4145 x GSD0	2.0000 x GSD0	2.8302 x GSD ₀
ΔNIIRS	0.0	-0.5	-1.0	-1.5
Minimum font size (pt)	4	5	7	11
Image size	1000 x 1500	707 x 1060	500 x 750	353 x 530

- NIIRS estimation from simulated images
- Estimated ANIIRS were very close to the true values

	Reference	Min. pt = 5	Min pt = 7	Min pt = 11
RER	0.6376	0.3993	0.2347	0.1560
SNR	47.5078	162.0340	92.2690	21.9131
Н	1.0664	0.9692	0.7727	0.6898
GRD	1.5861	2.3732	3.8407	5.5866
NIIRS	3.9320	3.4427	2.9258	2.4688
True ∆NIIRS		-0.5000	-1.0000	-1.5000
Estimated ANIIRS		-0.4893	-1.0062	-1.4632
Error		0.0107	0.0062	0.0368

Validation of the use of natural targets

Artificial targets vs. natural targets

Test images: Komspat-2 images with tarps

Area	Taejeon	Kimje	Jinju	Hamyang
GSDx	0.979	1.000	0.980	1.092
GSDy	0.994	1.000	0.996	1.048

Validation of the use of natural targets

Artificial targets vs. natural targets

- Using natural targets, similar quality parameters were assessed
- Differences in NIIRS are within the error range of GIQE ($1\sigma=0.30$)
- Degradation in SNRs from natural targets
- We need more test with other dataset

Daejeon	Tarp	Natural
Points	10	2069
RER	0.2967	0.3028
SNR	59.10	49.48
Н	0.8353	0.8834
GRD(m)	2.37	2.68
NIIRS	3.53	3.48

Kimje	Tarp	Natural
Points	10	976
RER	0.2238	0.2768
SNR	38.18	36.84
Η	0.7987	0.8324
GRD(m)	2.89	2.87
NIIRS	3.15	3.40

Jinju	Tarp	Natural
Points	10	730
RER	0.3065	0.2898
SNR	59.52	42.94
Η	0.8058	0.8529
GRD(m)	2.56	2.86
NIIRS	3.62	3.46

Hamyang	Tarp	Natural		
Points	10	707		
RER	0.2413	0.2736		
SNR	48.68	44.04		
Η	0.7704	0.8357		
GRD(m)	3.34	3.26		
NIIRS	3.21	3.29		

***** Automated edge selection

- apply line detection algorithm
- check line length (10 pixels)
- Extract edge profiles
- edge profile selection criteria are same as manual selection

- Tests with Kompsat-2 images
 - Quality degradation for automated edge selection (in particular in GRD)
 - better edge selection criteria required
 - Differences in NIIRS are within the error range of GIQE ($1\sigma=0.30$)

Daejeon	Tarp	Natural Manual	Natural Auto	Kimje	Tarp	Natural	Natural Auto
Doints	10	2060	EEQOC	Points	10	976	55806
POINTS	10	2069	55600	RER	0.2238	0.2768	0.2707
RER	0.2967	0.3028	0.2837	SNIR	38.18	36.84	3/ / 9
SNR	59.10	49.48	39.38		0 70 97	0 0 0 2 2 4	0 0100
Н	0.8353	0.8834	0.8474		0.7967	0.0524	0.0190
CPD(m)	2.22	2.005 1	2 02	GRD(m)	2.89	2.87	3.11
	2.57	2.00	5.05	NIIRS	3.15	3.40	3.39
I NIIRS I	3.53	3.48	3.44				0.00
	0.00						
Jinju	Tarp	Natural	Natural	Hamyang	Tarp	Natural	Natural Auto
Jinju Points	Tarp 10	Natural 730	Natural Auto 17858	Hamyang Points	Tarp 10	Natural 707	Natural Auto 36101
Jinju Points RER	Tarp 10 0.3065	Natural 730 0.2898	Natural Auto 17858 0.2768	Hamyang Points RER	Tarp 10 0.2413	Natural 707 0.2736	Natural Auto 36101 0.2716
Jinju Points RER SNR	Tarp 10 0.3065 59.52	Natural 730 0.2898 42.94	Natural Auto 17858 0.2768 38.15	Hamyang Points RER SNR	Tarp 10 0.2413 48.68	Natural 707 0.2736 44.04	Natural Auto 36101 0.2716 36.02
Jinju Points RER SNR H	Tarp 10 0.3065 59.52 0.8058	Natural 730 0.2898 42.94 0.8529	Natural Auto 17858 0.2768 38.15 0.8445	Hamyang Points RER SNR H	Tarp 10 0.2413 48.68 0.7704	Natural 707 0.2736 44.04 0.8357	Natural Auto 36101 0.2716 36.02 0.8314
Jinju Points RER SNR H GRD(m)	Tarp 10 0.3065 59.52 0.8058 2.56	Natural 730 0.2898 42.94 0.8529 2.86	Natural Auto 17858 0.2768 38.15 0.8445 3.31	Hamyang Points RER SNR H GRD(m)	Tarp 10 0.2413 48.68 0.7704 3.34	Natural 707 0.2736 44.04 0.8357 3.26	Natural Auto 36101 0.2716 36.02 0.8314 3.44

✤ GRD/NIIRS estimation from sat. images

	QB001	IK001	K001
Acquisition date	2005/1/15/2/27	2002/2/7/2/34	2007/2/23/01/49
Area	Daejeon	Daejeon	Damyang
Image size	25044×27552	11004×11004	15000×15500
GSD X(m)	0.793	0.90	1.086
GSD Y(m)	0.711	0.96	1.039
G(Noise Gain)	4.16	4.16	2.34

- GRD/NIIRS estimation from sat. images
 - using natural targets
 - manual or automatic selection
 - Published NIIRS : Value in Metadata (QB) or in literature (IK)
 - Slight quality degradation for automated selection (but not big)
 - Differences in NIIRS are within the error range of GIQE ($1\sigma=0.30$)

type	edge selection	points	RER	SNR	Н	GRD(m)	NIIRS	Published NIIRS	
QuickBird	manual	2692	0.6389	42.89	1.037	1.11	4.65	4 5000	
	auto	20991	0.6128	38.55	1.043	1.15	4.57	4.5000	
IKONOS	manual	1247	0.5354	38.04	1.012	1.46	4.11	4 2000	
	auto	7387	0.5334	36.67	1.023	1.49	4.09	4.5000	
Kompsat-2	manual	372	0.3705	36.41	0.957	2.68	3.51		
	auto	11749	0.3336	34.29	0.932	2.99	3.39	-	

Automated NIIRS estimation for images along the same strip (Komspat-2 strip)

ID	1	2	3	4	5	6	7	8	9	10
Points	2316	2054	2493	1995	3059	3876	4336	3683	3497	2310
RER	0.3841	0.3894	0.3966	0.3901	0.4026	0.4186	0.4205	0.4160	0.4190	0.4201
SNR	36.34	34.77	35.19	35.24	34.80	34.10	34.41	35.17	35.32	35.32
Н	1.051	1.056	1.057	1.055	1.059	1.060	1.058	1.064	1.066	1.071
GRD(m)	2.92	2.93	2.89	2.91	2.87	2.79	2.78	2.81	2.82	2.82
NIIRS	3.36	3.36	3.39	3.37	3.41	3.46	3.42	3.40	3.46	3.45

*** GRD distribution**

> Mean: 2.86m, Stdev: 0.06m

NIIRS distribution

Mean: 3.40, Stdev: 0.04

* All images on the same strip showed very constant GRD/NIIRS values. NIIRS values are within the error range of GIQE $(1\sigma=0.30)!$

Automated NIIRS estimation for images along the same strip (IKONOS strip)

ID	1	2	3	4	5	6	7	8	9	10
Points	2236	1960	1503	1523	5230	6618	4574	4487	4099	3712
RER	0.5107	0.4998	0.4932	0.5089	0.5206	0.5209	0.5160	0.5219	0.5225	0.5137
SNR	39.90	38.91	41.17	41.77	46.30	46.72	46.82	45.01	42.60	42.11
Н	1.033	1.020	1.021	1.017	1.029	1.034	1.031	1.032	1.036	1.028
GRD(m)	1.69	1.71	1.72	1.67	1.60	1.60	1.61	1.63	1.65	1.67
NIIRS	3.97	3.95	3.94	3.99	4.01	4.01	4.00	4.01	4.07	3.99

GRD distribution

Mean: 1.65m, Stdev: 0.04m

***** NIIRS distribution

> Mean: 3.99, Stdev: 0.04

* All images on the same strip showed very constant GRD/NIIRS values. NIIRS values are within the error range of GIQE $(1\sigma=0.30)!$

Conclusions

Conclusions

- GRD/NIIRS estimation through edge analysis
 - Feasible but tests with ref. NIIRS are required.
- The use of natural target
 - Feasible but tests with more dataset are required.
- Automated image quality assessment is feasible
 - But, more rigorous selection criteria is required
- Can the proposed method be used for image quality assessment for operational basis?

