Spatial Resolution Assessment from Real Image Data

Ralf Reulke (Institute for Robotics and Mechatronics, DLR, Germany)

Andreas Brunn, Horst Weichelt (RapidEye AG, Brandenburg/Havel,

Germany)

States and the second states and the second states

Institute for Robotics and Mechatronics Optical Information Systems

Optical Information Systems

- **HiRes**: High resolution In-Orbit-Instruments (GSD < 1m)
- **HiSpec**: hyperspectral systems, $\lambda = 400 \text{ nm} 14 \mu \text{m}$ (VIS...IR)
- **HiProc**: real time processing, from data to information

Space Systems

- **SmartSat**: innovative, low-cost small satellites
- **CMMI**: Software-Engineering, Capability Maturity Model

Current Projects

MERTIS

- IR-Spectrometer on BepiColombo-Mission λ≈(7...14µm)
- ESA-Project

KompSat3

- Geometrically high resolution Sensor (0.7m)
- Project of the Korean Space Agency, Cooperation with EADS

TET/OOV

- Small Satellite as platform for technology tests
- Project of the German Space Agency

3D-Worlds

- Virtual World generated from stereo images
- Different Customers

Heritage: Spaceborne Sensors

Michelson Interferometer Venus Mission 15 **PMV**

Star Navigation ASTRO - 1 (M)

CCD-Line Camera Mars 96 **WAOSS**

19 Channel Imager MOS-IRS

Michelson Interferometer Mars EX **PFS** (running)

MIR and TIR Line Scanner **HSRS** (running)

Hyperspectral Imager **VIRTIS** Comet Churyumov-Gerasimenko (running)

Bi-spectral IR Detection **BIRD** (running)

Camera technology in Space Rapid Eye

- Constallation with 5 Satellites for agriculture mapping and cartography
- → 6.5m GSD, 77km swath
- → 5 spectral bands (blue, green, red, red edge, near infrared)
- Focal plane provided by DLR based on ADS40 heritage

Agenda

- → Introduction / motivation
- → Image quality
- → PSF Determination from real image data
- → Results / outlook

Introduction / Motivation

- → Instrument in-orbit behaviour / traceability
- Models, algorithms & measurements for all components of the camera & pre-processing
 - → PSF / MTF
 - → SNR
 - \neg Pre-processing, image restoration
 - → Geometric accuracy / direct geo-referencing
 - → Radiometric accuracy (including atmospheric correction)
 - **7** ...
- → Parameter-determination from Lab-calibration
- \neg Test and verification with data from real images

a star production of the second t

Sampling, Resolution, Image Quality – Object Interpretability

- (Spatial) resolution ability to resolve (spatial) detail or detect (spatial) objects or feature of certain size
- Resolution is determined by a number of factors, including GSD, the performance of the camera optics, pixel size and the sensor noise
- \neg Additional image processing algorithms also influence the resolution
- \neg Image quality smear & noise
- The concept of object interpretability provides a direct link to the design and application of optoelectronic sensors
- Same standards are the US "National Image Interpretability Rating Scales" (http://www.fas.org/irp/imint/niirs.htm) and NATO STANAG 3769, which recommends the appropriate ground pixel size for the detection, recognition, identification in some cases also technical analysis of image objects.

NIIRS

- → Jon C. Leachtenauer: Image Quality Equations and NIIRS
- NIIRS is an empirically, criteria-based, 10-point scale used to indicate the amount of information that can be extracted by imagery. A commonly accepted form of the GIQE that accounts for the effects is:

$$NIIRS = c_0 + c_1 \cdot \log_{10} GSD + c_2 \cdot \log_{10} RER + c_3 \cdot \frac{G}{SNR} + c_4 \cdot H$$

$$\neg$$
 GIQE 4.0 (for RER<0.9)

$$c_0 = 10.251, c_1 = -3.16, c_2 = 2.817, c_3 = -0.334, c_4 = -0656$$

- → GSD system ground sample distance,
- → RER system post-processing relative edge response,
- → G system post-processing noise gain,
- → SNR signal-to noise ratio of the unprocessed imagery,
- \rightarrow H system post-processing edge overshoot factor.

RER & NIIRS determination

DLR

in der Helmholtz-Gemeinschaft

Image Quality Determination Calibration / Verification

- \neg Image quality investigation in all mission phases
- → Influence of pre-processing algorithms (Brunn, JACIE-Conf.)
- → Focus / defocus assessment of the satellite camera
- → Radiometric and geometric accuracy based on artificial test fields
 - → Homogeneous targets of different size
 - ✓ Well measured reflectance and location
 - → Reference measurement on Earth
 - \neg Several campaigns on different test sites

PSF – Determination from real Image Data

- \neg PSF response of an imaging system to a point-like object
- → Based on the definition of a translation invariant PSF

$$V(x,y) = \iint dx' dy' H(x-x',y-y') \cdot U(x',y')$$

- with knowledge of the two-dimensional input signal U(x', y') and measurement of V(x, y) the PSF of the system H(x, y) can be derived
- Particularly simple and transparent solutions are obtained for point (PSF), linear (LSF) and edge signals (ESF)

PSF, LSF & ESF

We can measure

- → PSF from response of a point-like object (delta-function) $U(x',y') = \delta(x',y') \Rightarrow V(x,y) = H(x,y)$
- \neg LSF from response of a line-like object (parallel to y-axis)

$$U(x',y') = \delta(x') \Longrightarrow V(x) = \int_{-\infty}^{\infty} dx' H(x-x')$$

→ ESF from response of a black to white edge (parallel to y-axis)

$$U(x',y') = \begin{cases} 0 & x > 0 \\ 1 & x \le 0 \end{cases} \implies V(x) = \int_{-\infty}^{x} dx' H(x-x')$$

- → LAB: PSF / LSF / ESF with pinhole, slit or (slanted) edge
- → From real images: ESF from light to dark transitions

ISO 12233

- ISO 12233: Photography Electronic still-picture cameras Resolution measurements
- → Describes the spatial frequency response (SFR) measurement method
- Digitized image values near slanted vertical and horizontal black to white edges are digitized and used to compute the SFR values
- The use of a slanted edge allows the edge gradient to be measured at many phases relative to the image sensor detector-elements, in order to eliminate the effects of aliasing

- ✓ Selection of an area with a strong contrast transition
- Usual, the signal is differentiated to determine directly the LSF (see ISO 12233)
- The problem is that the noise increases dramatically during differentiation
- Instead of the PSF the edge spread function (ESF) was determined directly
- \neg It is assumed that the PSF is described by a normal distribution:

$$H(x) = \frac{1}{\sigma_H \sqrt{2\pi}} \cdot e^{-\frac{x^2}{2 \cdot \sigma_H^2}}$$

- $\checkmark\,$ The size of $\sigma_{\rm H}$ gives a quantitative value for the assessment of the PSF
- ✓ The determination of this value suffices for the description of the PSF and the change by the application of the different filters

MTF - Resolution

→ Frequency response (OTF – optical transfer function):

$$\tilde{H}(K_x, K_y) = \left| \tilde{H}(K_x, K_y) \right| e^{-j\phi_H(K_x, K_y)}$$
MTF (modulation transfer function)

- \neg Resolution depends on:
 - → Optics (camera misfocus)
 - → Detector

$$MTF = \left| \tilde{H}(K) \right| \cong e^{-2\pi^2 \cdot \sigma_{MTF}^2 K^2}$$

- → Motion blur
- → Atmosphere
- 7 ...

$$MTF = |H(K)| \cong e^{-2\pi \cdot G_{MTF}K}$$
$$|\tilde{H}(K)| = |\tilde{H}_{O}(K)| \cdot |\tilde{H}_{D}(K)| \cdot |\tilde{H}_{M}(K)|$$
$$\sigma_{MTF}^{2} = \sigma_{O}^{2} + \sigma_{D}^{2} + \sigma_{M}^{2}$$

MTF – Resolution (rough calculation)

→ Frequency response (OTF – optical transfer function): $\tilde{H}(K_x, K_y) = \left| \tilde{H}(K_x, K_y) \right| e^{-j\phi_H(K_x, K_y)}$

MTF – Resolution (rough calculation)

- \neg Derivation of performance measures
- → MTF @Nyquist frequency corresponds here to $n = \frac{1}{2} [1/pixel]$:

$$\tilde{H}(v) = e^{-2 \cdot \pi^2 \cdot \sigma_H^2 \cdot v^2} \quad \leftrightarrow \quad \tilde{H}\left(v = \frac{1}{2}\right) = e^{-\frac{\pi^2 \cdot \sigma_H^2}{2}}$$

An important parameter for the description of the distribution is Full-Width Half-Maximum, or FWHM (for a normalized distribution):

$$\frac{1}{2} = e^{-\frac{x^2}{2 \cdot \sigma_H^2}} \rightarrow x_{+FWHM} = \sigma_H \cdot \sqrt{2 \cdot \ln(2)}$$
$$\Delta_{FWHM} = x_{+FWHM} - x_{-FWHM} = 2\sigma_H \cdot \sqrt{2 \cdot \ln(2)}$$

$$U(x',y') = \begin{cases} a & x > x_0 \\ b & x \le x_0 \end{cases} \implies V(x) = \int_{-\infty}^x dx' H(x-x')$$

By breaking the integral, interchanging the limits of integration and using the probability (error) integral

$$\Phi\left(\frac{x-x_0}{\sigma_H\sqrt{2}}\right) = \frac{1}{\sigma_H\sqrt{2\pi}}\int dx' e^{-\frac{(x-x')^2}{2\sigma_H^2}}$$

→ One can obtain for the signal

$$V(x) = a_0 \cdot \Phi\left(\frac{x - a_1}{a_2\sqrt{2}}\right) + a_3 + a_4 \cdot x$$

- \neg The value a_2 is according to the σ_H and $a_1 = x_0$
- An offset and a linear change of the image gray values in addition are estimated within this approach

- The determination of the parameters was carried out in the context of a nonlinear least squares fit (Bevington and Robinson, 2002)
- This method is a gradient-expansion algorithm which combines the gradient search with the method of linearizing the fitting function
- \neg The value a₂ is according to the $\sigma_{\rm H}$.
- \neg The measurement unit of σ_{H} is arbitrary. Here σ_{H} is measured in pixel.
- \neg a₀=(a-b)/2, a₃=(a+b)/2 (from profile data left & right from the edge)
- An offset and a linear change of the image gray values in addition are estimated within this approach
- → Initial values for
 - \neg a₂= $\sigma_{\rm H}$ = 1
 - \neg a₁ from edge position

www.dlr.de/os

Results

www.dlr.de/os

Further Improvements

- → Evaluate more than one profile
- → Accuracy estimation

File Name	Easting	Northing	Channel	σ_{MTF}	Standard- deviation
2009-07- 27_RE4_org	442330	5887445	NIR	1.07	0.12
2009-07-	399080	5875830	green	1.74	0.41
27_RE1_org					

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Further Improvements

- → Evaluate more than one profile
- → Accuracy estimation

- \neg Some uncertainties in the results
- The quality of the result depends strongly on signal-noise and the PSF itself
- Only few values particularly at the transition from bright to dark are available for the evaluation ("under-sampling" problem)
- Different approaches were suggested to solve this problem (Helder, et. all, 2004, ISO – slanted edge method)

Further Improvements

- → Evaluate more than one profile
- → Accuracy estimation

- → On a slanted edge the shift of the measured profiles is determined by the parameter a_1
- One then takes into account this shift and puts all profiles together in the right order in one profile
- Through this one gets considerably more points in the transition region

S MTF Tool V1.200410

MTF tool main window

- \neg Status bar (1) displays important notifications
- UTM bar (2) gives UTM coordinates of the actual mouse cursor position if proper GeoTiff information is loaded
- \neg An image point for profile measurements is marked with a red cross (3)
- Border line (4) limits the area where points can be measured. The size depends on the particular profile dimension.
- In the top right corner (5) the position of the cursor is displayed.
 Additionally, all channel values are given.
- A channel for profile measurements is chosen by the 'select channel'drop down list (6)
- Up to four views (7) of the measured image points are shown right from the main window
- \neg In the lower right corner the particular profile view is displayed (8)
- \neg Finally, the file menu (10) offers some basic operations.

Results / Outlock

- We presented a robust method and implementation for PSF determination based on a Gaussian shaped PSF
- With the help of the described procedure a more exact determination of the PSF can be carried out
- Particularly the differences at the application of the filters can be examined
- → Error sources:
 - → Model limitations
 - The considered edge is in reality not an exact transition. This is possible only with a test field.
 - → Atmospheric blurring, platform jitter, etc.
- → Automatic approaches for NIIRS determination
- Investigation of alternative image quality criteria, based on physical sensor models

References

- → Jahn, H. and R. Reulke (1995) "Systemtheoretische Grundlagen optoelektronischer Sensoren", 1995 WILEY-VCH Verlag GmbH & Co.
- Helder, D., T. Choi and M. Rangaswamy (2004). "In-flight characterization of spatial quality using point spread function". In: Morain, S. A. and A.M. Budge (2004). "Post-Launch Calibration of Satellite Sensors", Taylor & Francis Group, London UK
- Bevington, P.R. and K.D. Robinson (2002). "Data Reduction and Error Analysis for the Physical Sciences", Mcgraw-Hill Higher Education
- ISO 12233:2000 Photography -- Electronic still-picture cameras --Resolution measurements, 2000

