

CBERS AUTOMATIC CO-REGISTRATION

Daniele De Vecchi – Mostapha Harb

Mail: daniele.devecchi03@universitadipavia.it

Telecommunications and Remote Sensing Lab.

Overview

• Main concept

TLC

& R S Lab

- Automatic subset selection
 - Grid-based
 - Unsupervised-classification-based
- CCD-to-CCD co-registration
- CCD-to-HRC co-registration
- Implementation
- Application

MAIN CONCEPT

Telecommunications and Remote Sensing Lab.

Starting Point

- A method was developed in Pavia to co-register Landsat images
 - Harb, M., De Vecchi, D., Dell'Acqua, F., Iannelli, G. C., "A novel approach in refining the geometrical accuracy of Landsat images in the context of temporal tracking of Built-up areas as physical vulnerability indicator", in progress
- Detection of points using SURF
- Correction of translational shift
- Evolution of the method used for mosaicking of HRC CBERS images

TLC

&RS Lab

Starting Point

Telecommunications and Remote Sensing Lab.

TLC

& R S Lab J

Main Idea

- Use the same method to fix the shift among panchromatic and multispectral bands for CBERS-2B CCD images
- Match HRC panchromatic with CCD bands
 - Interesting for urban area monitoring purposes

TLC

& R S Lab

Issues of the original method

- Not capable to run on the complete image
 - Errors in point extraction
 - Time consuming
- Determination of a single point not the best solution
 - Noise affected
 - Unstable

TLC

& R S Lab

Telecommunications and Remote Sensing Lab.

AUTOMATIC SUBSET SELECTION

Telecommunications and Remote Sensing Lab.

Subset selection

- Automatic method for subset extraction
 - Try to avoid clouds
 - High variability of the scene \rightarrow improve point selection
 - Reduced processing time
- 2 different methods developed
 - Grid-based

TLC

& R S Lab

- Unsupervised-classification-based

Grid-based

- Division in regular tiles (6x6)
- Statistics for each tile
 - Frequency of max and min values (among the 20 most common values)
 - Distance between min and max
 - Frequency standard deviation

Telecommunications and Remote Sensing Lab.

Dept. ECBE, Univ. of Pavia

Grid-based

Telecommunications and Remote Sensing Lab.

Grid-based

Telecommunications and Remote Sensing Lab.

Dept. ECBE, Univ. of Pavia

^{Lab} Unsupervised-classification-based

- Combination of multispectral bands
- Unsupervised classification
- Statistics for each class
 - Min and max value
 - Distance between min and max
 - Standard deviation
 - Min and max value frequency
 - Total number of value

• Green class to be selected

Telecommunications and Remote Sensing Lab.

• Selected class can't be used directly \rightarrow errors

Telecommunications and Remote Sensing Lab.

Unsupervised-classification-based

Mask from classification

Morphologica filter

Max area selection

Telecommunications and Remote Sensing Lab.

Unsupervised-classification-based

• Regular tile

Telecommunications and Remote Sensing Lab.

TLC &RS Lab J

CCD-TO-CCD CO-REGISTRATION

Telecommunications and Remote Sensing Lab.

- Target: fix the shift between panchromatic (BAND 5) and all the other bands (BAND 1, 2, 3 and 4)
- Assumption of linear shift
- Used as preliminary test for the method

Telecommunications and Remote Sensing Lab.

CCD-to-CCD co-registration

Point N	Dist. before (m)	Dist. after (m)	Dist. before (pix)	Dist. after (pix)
1	127,579	17,978	6,37895	0,8989
2	126,41	12,539	6,3205	0,62695
3	135,469	12,225	6,77345	0,61125
4	122,714	13,592	6,1357	0,6796
5	142,027	20,836	7,10135	1,0418
6	128,01	12,888	6,4005	0,6444
7	134,098	21,837	6,7049	1,09185

RMSE = 16,43916101 meters / 0,821958051 pixels

Average Euclidean Error (AEE) = 15,985 meters / 0,79925 pixels

Telecommunications and Remote Sensing Lab.

CCD-TO-HRC CO-REGISTRATION

Telecommunications and Remote Sensing Lab.

- Target: fix the shift between panchromatic HRC and all the CCD bands (BAND 1, 2, 3 and 4)
- Assumption of linear shift

CCD

HRC

Telecommunications and Remote Sensing Lab.

- Match CCD resolution
 - Resample HRC 2.5m to 20m
- Extract subset using the unsupervised-classification approach

CCD-to-HRC co-registration

- Output of detection, description and matching

Telecommunications and Remote Sensing Lab.

CCD-to-HRC co-registration

• Output after filter

CCD-to-HRC co-registration

Telecommunications and Remote Sensing Lab.

• Original shift

ID	Delta X	Delta Y	Deviation X	Deviation Y
1	-5439,46	3920,38	-34,6787143	-32,8086
2	-5431,62	3902,1	-26,8477143	-51,0886
3	-5387,25	3983,02	17,52428571	29,83143
4	-5408,13	3967,36	-3,35671429	14,17143
5	-5371,59	3951,69	33,18628571	-1,49857
6	-5408,13	3946,48	-3,35371429	-6,70857
7	-5387,25	4001,29	17,52628571	48,10143
AVG	-5404,78	3953,189		

• After correction with single HRC

ID	Delta X	Delta Y	Deviation X	Deviation Y
1	-120,671	-134,74	-4,49371429	15,65714
2	-84,397	-98,16	31,78028571	52,23714
3	-129,417	-169,62	-13,2397143	-19,2229
4	-113,728	-144,64	2,449285714	5,757143
5	-142,199	-229,38	-26,0217143	-78,9829
6	-101,539	-108,64	14,63828571	41,75714
7	-121,29	-167,6	-5,11271429	-17,2029
AVG	-116,177	-150,397		

RMSE = 13.80036 meters

AEE = 190.4499 meters

Telecommunications and Remote Sensing Lab.

- A method for HRC co-registration was also developed in Pavia
- Semi-automatic approach

TLC

& R S Lab

- Registration of a few images manually
- Automatic registration of the others taking advantage of the overlapping area
- Developed by Gianni Cristian Iannelli and Mostapha Harb

Telecommunications and Remote Sensing Lab.

- Consider all the HRC images within the area covered by the CCD image
- Pick 5 random HRC

Telecommunications and Remote Sensing Lab.

- Filter extracted points according to the slope
- Weighted average using frequency of detected points

ID	Delta X	Delta Y	Deviation X	Deviation Y
1	-51,58	-50,84	1,15	5,79
2	-75,13	-75,85	-22,40	-19,22
3	-15,31	-29,07	37,42	27,56
4	-68,17	-145,49	-15,44	-88,86
5	-15,03	-85,42	37,70	-28,79
6	-91,67	78,89	-38,94	135,52
7	-52,20	-88,64	0,53	-32,01
AVG	-52,7271	-56,6314		

RMSE = 9.879638 meters

AEE = 97.60725 meters

Telecommunications and Remote Sensing Lab.

IMPLEMENTATION

Telecommunications and Remote Sensing Lab.

Implementation

- Python language
- Libraries:

TLC

& R S Lab

- OpenCV
- GDAL/OGR
- Numpy
- Scipy
- Orfeo Toolbox
- Code released with open source license
- Easy to implement as QGIS plugin

Implementation

• 5-HRC method

TLC

& R S Lab

- CCD image size: 6800 x 6300
- Processing time: 190.28 sec/CCD image

APPLICATIONS

Telecommunications and Remote Sensing Lab.

TLC &RS Lab

Applications

• Pan-sharpened image

Telecommunications and Remote Sensing Lab.

Applications

• Combine

TLC

& R S Lab

- spatial information from panchromatic
- spectral information from multispectral CCD
- Urban Area monitoring purposes
 - NDVI layer generated from CCDs
 - Improve the extraction from HRC-only designed in Pavia

Applications

Telecommunications and Remote Sensing Lab.

Applications

Telecommunications and Remote Sensing Lab.

Telecommunications and Remote Sensing Lab.

THANK YOU!

Telecommunications and Remote Sensing Lab.