Data mining using Rough Sets

Alber Sánchez¹ alber.ipia@inpe.br

¹Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil

Referata Geoinformatica, 2015

1/44

Table of Contents

Rough Sets

Reducts

Knowledge reduction

Applications

Software

References

(ロ)、(部)、(主)、(主)、(三)の(C 2/44

Rough Set Theory

- Who? Zdzisław Pawlak
- When? In the 80's
- What? Classificatory analysis of data tables.
- Why? To synthesize approximations of concepts from data.

Cutting to the chase - It allows to go from this...

Table 1 : Decision table

	Diploma	Experience	French	Reference	Decision
<i>x</i> ₁	MCE	Low	No	Good	Stand By
<i>x</i> ₂	MCE	Low	No	Neutral	Stand By
<i>x</i> 3	MBA	Low	No	Neutral	Rejected
<i>X</i> 4	MCE	Medium	No	Good	Rejected
<i>X</i> 5	MCE	Medium	No	Excellent	Accept
<i>x</i> 6	Msc	Medium	No	Excellent	Accept
<i>X</i> 7	Msc	High	Yes	Excellent	Accept
<i>x</i> 8	Msc	High	Yes	Excellent	Accept

To this...

Table 2 : Core values of conditions

U	Diploma	Experience	Reference	Decision
x_1	MCE	Low	*	Stand By
<i>x</i> ₂	MBA	*	*	Rejected
<i>x</i> 3	*	Medium	Good	Rejected
<i>x</i> ₄	*	*	Excellent	Accept

Venn diagram

Figure 1 : A Set.

 Taken from http://staff.www.ltu.se/~larserik/applmath/chap10en/
 Image: Comparison of the second second

Information systems

Also known as tables

- ► *A* = (*U*, *A*)
- U: non-empty finite set of objects
- A: non-empty finite set of attributes
- ► $a: U \to V_a, \quad \forall a \in A$
- ► V_a is the value set of a.

Table 3 : An information system

	Age	LEMS	
<i>x</i> ₁	16 - 30	50	
<i>x</i> ₂	16 - 30	0	
<i>x</i> 3	31 - 45	1 - 25	
<i>x</i> 4	31 - 45	1 - 25	
<i>X</i> 5	46 - 60	26 - 49	
<i>x</i> 6	16 - 30	26 - 49	
<i>x</i> 7	46 - 60	26 - 49	

Decision tables

	Age	LEMS	Walk
<i>x</i> ₁	16 - 30	50	Yes
<i>x</i> ₂	16 - 30	0	No
<i>x</i> 3	31 - 45	1 - 25	No
<i>X</i> 4	31 - 45	1 - 25	Yes
<i>X</i> 5	46 - 60	26 - 49	No
<i>x</i> 6	16 - 30	26 - 49	Yes
<i>x</i> ₇	46 - 60	26 - 49	No

Table 4 : An Decision Table

Equivalence

Equivalence relation

- $R \subseteq X \times X$
- Binary
- Reflexive (xRx)
- Symmetric ($xRy \iff yRx$)
- Transitive $(xRy \land yRz \implies xRz)$
- Equivalence class
 - The EC of $x \in X$ consists all of $y \in X \mid xRy$

9/44

Indiscernibility relation

- ► *IND_A(B)* is called the *B*-*Indiscernibility relation*
- Let A = (U, A) be an Information System
- ▶ Then $\forall B \subseteq A \exists IND_A(B)$
- ▶ Where $IND_A(B) = \{(x, x') \in U^2 \mid \forall a \in B \mid a(x) = a(x')\}$

Indiscernibility relation example

Table 5 : A decision Table

	Age	LEMS	Walk
<i>x</i> ₁	16 - 30	50	Yes
<i>x</i> ₂	16 - 30	0	No
<i>x</i> 3	31 - 45	1 - 25	No
<i>x</i> ₄	31 - 45	1 - 25	Yes
<i>x</i> 5	46 - 60	26 - 49	No
<i>x</i> 6	16 - 30	26 - 49	Yes
<i>X</i> 7	46 - 60	26 - 49	No

- IND({Age}) = {{x1, x2, x6}, {x3, x4}, {x5, x7}}
- ► $IND(\{LEMS\}) = \{\{x1\}, \{x2\}, \{x3, x4\}, \{x5, x6, x7\}\}$
- ► $IND(\{Age, LEMS\}) = \{\{x1\}, \{x2\}, \{x3, x4\}, \{x5, x7\}, \{x6\}\}$
- The equivalence classes of the B-indiscernibility relation are denoted [x]_B

Set approximation

The concept walk cannot be defined as a crisp set using Age and LEMS because of {x3, x4}

12/44

- However, we can approximate it using 3 sets.
 - Those objects which fulfil Walk = Yes
 - Those objects which fulfil Walk = No
 - The remaining objects

Set approximation 2

- Let A = (U, A) be a IS
- Let $B \subseteq A$
- Let $X \subseteq U$

X can be approximated using only the information contained in B using 3 sets:

- ▶ *B*-lower approximation of *X*, $\underline{B}X = \{x \mid [x]_B \subseteq X\}$
- *B*-upper approximation of *X*, $\overline{B}X = \{x \mid [x]_B \cap X\}$
- B-boundary region, $BN_B = \overline{B}X \underline{B}X$

On the basis of knowledge in B:

- Objects in <u>B</u>X can be with certainly classified as members of X
- Objects in $\overline{B}X$ can be only classified as possible members of X
- Objects we cannot decisively classify into X

Besides, there is the set *B*-outside region of *X* which is $U - \overline{B}X$

Rough Set definition

A set is said to be *rough* if the boundary region is non-empty.

Rough Set example

Table 6 : A decision Table

	Age	LEMS	Walk
x_1	16 - 30	50	Yes
<i>x</i> ₂	16 - 30	0	No
<i>x</i> 3	31 - 45	1 - 25	No
<i>x</i> ₄	31 - 45	1 - 25	Yes
X_5	46 - 60	26 - 49	No
<i>x</i> 6	16 - 30	26 - 49	Yes
<i>X</i> 7	46 - 60	26 - 49	No

•
$$U - \overline{A}W = \{x2, x5, x7\}$$

Rough Set graphic example

Figure 2 : A rough set.

Rough Set properties

1.
$$\underline{B}(X) \subseteq X \subseteq \overline{B}(X)$$

2. $\underline{B}(\emptyset) = \overline{B}(\emptyset), \quad \underline{B}(U) = \overline{B}(U) = U$
3. $\overline{B}(X \cup Y) = \overline{B}(X) \cup \overline{B}(Y)$
4. $\underline{B}(X \cap Y) = \underline{B}(X) \cap \underline{B}(Y)$
5. $X \subseteq Y$ implies $\underline{B}(X) \subseteq \underline{B}(Y)$ and $\overline{B}(X) \subseteq \overline{B}(Y)$
6. $\underline{B}(X \cup Y) \supseteq \underline{B}(X) \cup \underline{B}(Y)$
7. $\overline{B}(X \cap Y) \subseteq \overline{B}(X) \cap \overline{B}(Y)$
8. $\underline{B}(-X) = -\overline{B}(X)$
9. $\overline{B}(-X) = -\underline{B}(X)$
10. $\underline{B}(\underline{B}(X)) = \overline{B}(\underline{B}(X)) = \overline{B}(X)$
11. $\overline{B}(\overline{B}(X)) = \underline{B}(\overline{B}(X)) = \overline{B}(X)$

Where -X denotes U - X

)

Rough Set classification

- ▶ X is roughly B-definable, iff $\underline{B}(X) \neq \emptyset$ and $\overline{B}(X) \neq U$
- ▶ X is internally B-indefinable, iff $\underline{B}(X) = \emptyset$ and $\overline{B}(X) \neq U$
- ▶ X is externally *B*-indefinable, iff $\underline{B}(X) \neq \emptyset$ and $\overline{B}(X) = U$
- X is totally B-indefinable, iff $\underline{B}(X) = \emptyset$ and $\overline{B}(X) = U$

Accuracy of approximation

$$\alpha_B(X) = \frac{|\underline{B}(X)|}{|\overline{B}(X)|}$$
, where $|X|$ is the cardinality of $X \neq \emptyset$

•
$$0 \leq \alpha_B(X) \leq 1$$

- if $\alpha_B(X) = 1$, X is *crisp* with respect to B
- If $\alpha_B(X) < 1$, X is rough with respect to B

Quality of approximation

$$\gamma_B(X) = rac{|\underline{B}(X)|}{|U|}$$
, where $|X|$ is the cardinality of $X
eq \emptyset$

It express the percentage of possible correct decisions when classifying objects employing the knowledge B

Table of Contents

Rough Sets

Reducts

Knowledge reduction

Applications

Software

References

・ロ ・ ・ 一部 ・ く 注 ト く 注 ト 注 の Q C
22 / 44

Reducts

Let A = (U, A)

A reduct of A is a minimal set of attributes $B \subseteq A$ such that $IND_A(B) = IND_A(A)$

A reduct is a minimal set of attributes from A that preserves the partitioning of the universe, and hence, the ability to perform classifications as the whole attribute set A does.

Reduct example

 $A = (U, \{Diploma, Experience, French, Reference\})$

Table 7 : An unreduced decision table

	Diploma	Experience	French	Reference	Decision
<i>x</i> ₁	MBA	Medium	Yes	Excellent	Accept
<i>x</i> ₂	MBA	Low	Yes	Neutral	Reject
<i>x</i> 3	MCE	Low	Yes	Good	Reject
<i>x</i> 4	Msc	High	Yes	Neutral	Accept
<i>x</i> 5	Msc	Medium	Yes	Neutral	Reject
<i>x</i> 6	Msc	High	Yes	Excellent	Accept
<i>X</i> 7	MBA	High	No	Good	Accept
<i>x</i> 8	MCE	Low	No	Excellent	Reject

Discernibility matrix and function

DM is a symmetric *nxn* matrix which entries are: $c_{ij} = \{a \in A | a(x_i) \neq a(x_j)\}$ for i, j = 1, ..., n

DF f_A is a Boolean function of m Boolean variables $a_1^*, ..., a_m^*$ (corresponding to attributes $a_1, ..., a_m$) defined as below, where $c_{ij}^* = \{a^* | a \in c_{ij}\}$

$$f_{\mathcal{A}}(a_1^*,...,a_m^*) = \bigwedge \{\bigvee c_{ij}^* | 1 \leq j \leq i \leq n, c_{ij} \neq \emptyset\}$$

The set of all prime implicants of f_A determines the set of all reducts of A^1

¹An implicant of a Boolean function f is any conjuntion of literals (variables or their negations) such that if the values of that literals are true under an arbitrary valuation v of variables then thge value of the function f under v is also true. A rpime implicant is a minimal implicant. Here we are interested in implicants of monotone Boolean functions only i.e. functions constructed without negation. Resulting from constructing a Boolean function by restricting the conjuntion to only run over column k in the discernibility matrix (instead of all the columns).

The set of all prime implicants of this function determines the set of all *k*-relative reducts of *A*. These reducts reveal the minimum amount of information needed to discern $x_k \in U$ (or more pecisely $[x_k] \subseteq U$) from all other objects.

Table of Contents

Rough Sets

Reducts

Knowledge reduction

Applications

Software

References

・ロ ・ ・ 一部 ・ く 注 ト く 注 ト 注 の Q (C)
27 / 44

Example

Diploma Experience French Reference Decision MCE low No Good Stand By X_1 MCE low No Neutral Stand By X_2 MBA Low No Neutral Rejected X_3 MCE Medium No Good Rejected *X*4 MCE Medium No Excellent Accept X_5 Msc Medium No Excellent Accept X_6 Msc High Yes Excellent Accept X_7 Msc High Yes Excellent Accept X8

Table 8 : Decision table

Encode values

- Diploma
 - ► 0 → MBA
 - \blacktriangleright 1 \rightarrow MCE
 - ▶ 2 → Msc

Experience

- ► 0 → Low
- 1 \rightarrow Medium
- ▶ 2 → High

French

- 0 → No
- ▶ 2 → Yes

Reference

► 0 → Neutral

• $1 \rightarrow \text{Good}$

▶ 2 → Excellent

Decision

0 → Rejected

- $1 \rightarrow \text{Stand By}$
- ▶ 2 → Accept

Table 9 : Encoded decision table

U	а	b	С	d	е
<i>x</i> ₁	1	0	0	1	1
<i>x</i> ₂	1	0	0	0	1
<i>x</i> 3	0	0	0	0	0
<i>X</i> 4	1	1	0	1	0
<i>X</i> 5	1	1	0	2	2
<i>x</i> 6	2	1	0	2	2
<i>x</i> 7	2	2	2	2	2
<i>x</i> 8	2	2	2	2	2

Compute indiscernibility relation

Table 10 : Encoded decision table

U	а	b	с	d	e
x_1	1	0	0	1	1
<i>x</i> ₂	1	0	0	0	1
<i>x</i> 3	0	0	0	0	0
<i>x</i> 4	1	1	0	1	0
X_5	1	1	0	2	2
<i>x</i> 6	2	1	0	2	2
<i>X</i> 7	2	2	2	2	2

- *IND*{a} = {{x₁, x₂, x₄, x₅}, {x₃}, {{x₆, {x₇}} *IND*{a, b, c} = {{x₁, x₂}, {x₃}, {x₄, x₅}, {x₆}, {x₇}}
 (...) *IND*{a, b, d} = {{x₁}, {x₂}, {x₃}, {x₄}, {x₅}, {x₆}, {x₇}}
- ► *IND*{*a*, *b*, *c*, *d*} =
 - $\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}\}\$
- Attribute c is superfluous because IND{a, b, d} = IND{a, b, c, d}

Compute core values of conditions

For rule x_1 :

• $F = \{ [x_1]_a, [x_1]_b, [x_1]_d \}$ • $F = \{ \{x_1, x_2, x_4, x_5\}, \{x_1, x_2, x_3\}, \{x_1, x_4\} \}$

Table 11 : Reduced decision table

U	а	Ь	d	е
<i>x</i> ₁	1	0	1	1
<i>x</i> ₂	1	0	0	1
<i>x</i> 3	0	0	0	0
<i>x</i> ₄	1	1	1	0
<i>x</i> 5	1	1	2	2
<i>x</i> 6	2	1	2	2
<i>x</i> 7	2	2	2	2

Consider that

• $[x_1]_{a,b,d} = [x_1]_a \cap [x_1]_b \cap [x_1]_d = \{x_1\}$ • $[x_1]_e = \{x_1, x_2\}$

Find a smaller relation being a subset of $[x_1]_e$

- $[x_1]_b \cap [x_1]_d = \{x_1\} \subseteq [x_1]_e$
- $[x_1]_a \cap [x_1]_d = \{x_1, x_4\}$
- $[x_1]_a \cap [x_1]_b = \{x_1, x_2\} \subseteq [x_1]_e$

So, $b(x_1) = 0$ is a *core value* because it is present in $[x_1]_b \cap [x_1]_d$ and $[x_1]_a \cap [x_1]_b$, both are subsets of $[x_1]_e$

Result of computing the core values of conditions

Table 12 : Core values of conditions

U	а	b	d	е
<i>x</i> ₁	-	0	-	1
<i>x</i> ₂	1	-	-	1
<i>x</i> 3	0	-	-	0
<i>x</i> 4	-	1	1	0
<i>X</i> 5	-	-	2	2
<i>x</i> 6	-	-	-	2
<i>x</i> ₇	-	-	-	2

Compute value reducts

For rule x_1 : $F = \{ [x_1]_a, [x_1]_b, [x_1]_d \} = \{ \{x_1, x_2, x_4, x_5\}, \{x_1, x_2, x_3\}, \{x_1, x_4\} \}$

We need to find all subfamilies $G \subseteq F | \bigcap G \subseteq [x_1]_e = \{x_1, x_2\}$

•
$$[x_1]_b \cap [x_1]_d = \{x_1, x_2, x_3\} \cap \{x_1, x_4\} = \{x_1\} \subseteq [x_1]_e$$

•
$$[x_1]_a \cap [x_1]_d = \{x_1, x_2, x_4, x_5\} \cap \{x_1, x_4\} = \{x_1, x_4\}$$

▶
$$[x_1]_a \cap [x_1]_b = \{x_1, x_2, x_4, x_5\} \cap \{x_1, x_2, x_3\} = \{x_1, x_2\} \subseteq [x_1]_e$$

So, only $[x_1]_b \cap [x_1]_d$ and $[x_1]_a \cap [x_1]_b$ are reducts of the family F

Results of computing value reducts

U	а	b	d	е
<i>x</i> ₁	1	0	*	1
x'_1	*	0	1	1
<i>x</i> ₂	1	0	*	1
x_2'	1	*	0	1
<i>x</i> 3	0	*	*	0
<i>X</i> 4	*	1	1	0
<i>X</i> 5	*	*	2	2
<i>x</i> 6	*	*	2	2
x_6'	2	*	*	2
X7	*	*	2	2
x'_7	*	2	*	2
x7''	2	*	*	2

Table 13 : Core values of conditions

Many possible solutions

U	а	b	d	е
<i>x</i> ₁	1	0	*	1
<i>x</i> ₂	1	*	0	1
<i>x</i> 3	0	*	*	0
<i>x</i> 4	*	1	1	0
X_5	*	*	2	2
x_6	*	*	2	2
x ₇	2	*	*	2

Table 14 : Core values of conditions Table 15 : Core values of conditions

U	а	b	d	е
x_1	1	0	*	1
x ₂	1	0	*	1
x3	0	*	*	0
x ₄	*	1	1	0
x ₅	*	*	2	2
× ₆	*	*	2	2
x7	*	*	2	2

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

35 / 44

Minimal solution

After removing duplicates and re-numbering

U	а	b	d	е
x_1	1	0	*	1
<i>x</i> ₂	0	*	*	0
<i>x</i> 3	*	1	1	0
<i>x</i> 4	*	*	2	2

Table 16 : Core values of conditions

Minimal solution decoded

Table 17 : Core values of conditions

U	Diploma	Experience	Reference	Decision
x_1	MCE	Low	*	Stand By
<i>x</i> ₂	MBA	*	*	Rejected
<i>x</i> 3	*	Medium	Good	Rejected
<i>x</i> ₄	*	*	Excellent	Accept

Table of Contents

Rough Sets

Reducts

Knowledge reduction

Applications

Software

References

Applications

Data mining

Al

Sense, plan, act

Table of Contents

Rough Sets

Reducts

Knowledge reduction

Applications

Software

References

・ロ ・ ・ 一部 ・ く 注 ト く 注 ト 注 の Q C
41 / 44

Software

- R packages RoughSetKnowledgeReduction and RoughSets
- RSES Rough Set Exploration System http://logic.mimuw.edu.pl/~rses/start.html
- Infobright Community Edition http://www.infobright.org

Table of Contents

Rough Sets

Reducts

Knowledge reduction

Applications

Software

References

References I

💊 Pawlak, Zdzisław.

Rough Sets: Theoretical Aspects of Reasoning about Data. Springer Netherlands, 1991.

Komorowski, Jan et al.

Rough sets: A tutorial. Rough fuzzy hybridization: A new trend in decision-making, pages 3-98, 1999.