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Rough Set Theory

I Who? Zdzis law Pawlak

I When? In the 80’s

I What? Classificatory analysis of data tables.

I Why? To synthesize approximations of concepts from data.
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Cutting to the chase - It allows to go from this...

Table 1 : Decision table

Diploma Experience French Reference Decision

x1 MCE Low No Good Stand By
x2 MCE Low No Neutral Stand By
x3 MBA Low No Neutral Rejected
x4 MCE Medium No Good Rejected
x5 MCE Medium No Excellent Accept
x6 Msc Medium No Excellent Accept
x7 Msc High Yes Excellent Accept
x8 Msc High Yes Excellent Accept
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To this...

Table 2 : Core values of conditions

U Diploma Experience Reference Decision

x1 MCE Low * Stand By
x2 MBA * * Rejected
x3 * Medium Good Rejected
x4 * * Excellent Accept
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Venn diagram

Figure 1 : A Set.

Taken from http://staff.www.ltu.se/~larserik/applmath/chap10en/
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Information systems
Also known as tables

I A = (U,A)

I U: non-empty finite set of
objects

I A: non-empty finite set of
attributes

I a : U → Va, ∀a ∈ A

I Va is the value set of a.

Table 3 : An information system

Age LEMS

x1 16 - 30 50
x2 16 - 30 0
x3 31 - 45 1 - 25
x4 31 - 45 1 - 25
x5 46 - 60 26 - 49
x6 16 - 30 26 - 49
x7 46 - 60 26 - 49
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Decision tables

Table 4 : An Decision Table

Age LEMS Walk

x1 16 - 30 50 Yes
x2 16 - 30 0 No
x3 31 - 45 1 - 25 No
x4 31 - 45 1 - 25 Yes
x5 46 - 60 26 - 49 No
x6 16 - 30 26 - 49 Yes
x7 46 - 60 26 - 49 No
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Equivalence

I Equivalence relation
I R ⊆ X × X
I Binary
I Reflexive (xRx)
I Symmetric (xRy ⇐⇒ yRx)
I Transitive (xRy ∧ yRz =⇒ xRz)

I Equivalence class
I The EC of x ∈ X consists all of y ∈ X | xRy
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Indiscernibility relation

I INDA(B) is called the B-Indiscernibility relation

I Let A = (U,A) be an Information System

I Then ∀ B ⊆ A ∃ INDA(B)

I Where INDA(B) = {(x , x ′) ∈ U2 | ∀a ∈ B a(x) = a(x ′)}
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Indiscernibility relation example

Table 5 : A decision Table

Age LEMS Walk

x1 16 - 30 50 Yes
x2 16 - 30 0 No
x3 31 - 45 1 - 25 No
x4 31 - 45 1 - 25 Yes
x5 46 - 60 26 - 49 No
x6 16 - 30 26 - 49 Yes
x7 46 - 60 26 - 49 No

I IND({Age}) =
{{x1, x2, x6}, {x3, x4}, {x5, x7}}

I IND({LEMS}) =
{{x1}, {x2}, {x3, x4}, {x5, x6, x7}}

I IND({Age, LEMS}) =
{{x1}, {x2}, {x3, x4}, {x5, x7}, {x6}}

I The equivalence classes of the
B-indiscernibility relation are
denoted [x ]B
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Set approximation

I The concept walk cannot be defined as a crisp set using Age
and LEMS because of {x3, x4}

I However, we can approximate it using 3 sets.
I Those objects which fulfil Walk = Yes
I Those objects which fulfil Walk = No
I The remaining objects
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Set approximation 2

I Let A = (U,A) be a IS

I Let B ⊆ A

I Let X ⊆ U

X can be approximated using only the information contained in B
using 3 sets:

I B-lower approximation of X, BX = {x | [x ]B ⊆ X}
I B-upper approximation of X, BX = {x | [x ]B ∩ X}
I B-boundary region, BNB = BX − BX
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Set approximation 3

On the basis of knowledge in B:

I Objects in BX can be with certainly classified as members of
X

I Objects in BX can be only classified as possible members of X

I Objects we cannot decisively classify into X

Besides, there is the set B-outside region of X which is U − BX
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Rough Set definition

A set is said to be rough if the boundary region is non-empty.
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Rough Set example

Table 6 : A decision Table

Age LEMS Walk

x1 16 - 30 50 Yes
x2 16 - 30 0 No
x3 31 - 45 1 - 25 No
x4 31 - 45 1 - 25 Yes
x5 46 - 60 26 - 49 No
x6 16 - 30 26 - 49 Yes
x7 46 - 60 26 - 49 No

I Let W = {x |Walk(x) = yes},
then:

I AW = {x1, x6}
I AW = {x1, x3∗∗∗, x4, x6}
I BNA(W ) = {x3, x4}
I U − AW = {x2, x5, x7}
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Rough Set graphic example

Figure 2 : A rough set.
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Rough Set properties

1. B(X ) ⊆ X ⊆ B(X )

2. B(∅) = B(∅), B(U) = B(U) = U

3. B(X ∪ Y ) = B(X ) ∪ B(Y )

4. B(X ∩ Y ) = B(X ) ∩ B(Y )

5. X ⊆ Y implies B(X ) ⊆ B(Y ) and B(X ) ⊆ B(Y )

6. B(X ∪ Y ) ⊇ B(X ) ∪ B(Y )

7. B(X ∩ Y ) ⊆ B(X ) ∩ B(Y )

8. B(−X ) = −B(X )

9. B(−X ) = −B(X )

10. B(B(X )) = B(B(X )) = B(X )

11. B(B(X )) = B(B(X )) = B(X )

Where −X denotes U − X
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Rough Set classification

I X is roughly B-definable, iff B(X ) 6= ∅ and B(X ) 6= U

I X is internally B-indefinable, iff B(X ) = ∅ and B(X ) 6= U

I X is externally B-indefinable, iff B(X ) 6= ∅ and B(X ) = U

I X is totally B-indefinable, iff B(X ) = ∅ and B(X ) = U
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Accuracy of approximation

αB(X ) = |B(X )|
|B(X )| , where |X | is the cardinality of X 6= ∅

I 0 ≤ αB(X ) ≤ 1

I if αB(X ) = 1, X is crisp with respect to B

I If αB(X ) < 1, X is rough with respect to B
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Quality of approximation

γB(X ) = |B(X )|
|U| , where |X | is the cardinality of X 6= ∅

It express the percentage of possible correct decisions when
classifying objects employing the knowledge B
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Reducts

Let A = (U,A)

A reduct of A is a minimal set of attributes B ⊆ A such that
INDA(B) = INDA(A)

A reduct is a minimal set of attributes from A that preserves the
partitioning of the universe, and hence, the ability to perform
classifications as the whole attribute set A does.
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Reduct example

A = (U, {Diploma,Experience,French,Reference})

Table 7 : An unreduced decision table

Diploma Experience French Reference Decision

x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 Msc High Yes Neutral Accept
x5 Msc Medium Yes Neutral Reject
x6 Msc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject
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Discernibility matrix and function

DM is a symmetric nxn matrix which entries are:
cij = {a ∈ A|a(xi ) 6= a(xj)} for i , j = 1, ..., n

DF fA is a Boolean function of m Boolean variables a∗1, ..., a
∗
m

(corresponding to attributes a1, ..., am) defined as below, where
c∗ij = {a∗|a ∈ cij}

fA(a∗1, ..., a
∗
m) =

∧
{
∨

c∗ij |1 ≤ j ≤ i ≤ n, cij 6= ∅}

The set of all prime implicants of fA determines the set of all
reducts of A1

1An implicant of a Boolean function f is any conjuntion of literals (variables
or their negations) such that if the values of that literals are true under an
arbitrary valuation v of variables then thge value of the function f under v is
also true. A rpime implicant is a minimal implicant. Here we are interested in
implicants of monotone Boolean functions only i.e. functions constructed
without negation.
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k-relative discernibility function & reducts

Resulting from constructing a Boolean function by restricting the
conjuntion to only run over column k in the discernibility matrix
(instead of all the columns).

The set of all prime implicants of this function determines the set
of all k-relative reducts of A. These reducts reveal the minimum
amount of information needed to discern xk ∈ U (or more pecisely
[xk ] ⊆ U) from all other objects.
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Example

Table 8 : Decision table

Diploma Experience French Reference Decision

x1 MCE Low No Good Stand By
x2 MCE Low No Neutral Stand By
x3 MBA Low No Neutral Rejected
x4 MCE Medium No Good Rejected
x5 MCE Medium No Excellent Accept
x6 Msc Medium No Excellent Accept
x7 Msc High Yes Excellent Accept
x8 Msc High Yes Excellent Accept
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Encode values

I Diploma
I 0 → MBA
I 1 → MCE
I 2 → Msc

I Experience
I 0 → Low
I 1 → Medium
I 2 → High

I French
I 0 → No
I 2 → Yes

I Reference
I 0 → Neutral
I 1 → Good
I 2 → Excellent

I Decision
I 0 → Rejected
I 1 → Stand By
I 2 → Accept

Table 9 : Encoded decision table

U a b c d e

x1 1 0 0 1 1
x2 1 0 0 0 1
x3 0 0 0 0 0
x4 1 1 0 1 0
x5 1 1 0 2 2
x6 2 1 0 2 2
x7 2 2 2 2 2
x8 2 2 2 2 2
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Compute indiscernibility relation

Table 10 : Encoded
decision table

U a b c d e

x1 1 0 0 1 1
x2 1 0 0 0 1
x3 0 0 0 0 0
x4 1 1 0 1 0
x5 1 1 0 2 2
x6 2 1 0 2 2
x7 2 2 2 2 2

I IND{a} =
{{x1, x2, x4, x5}, {x3}, {{x6, {x7}}

I IND{a, b, c} =
{{x1, x2}, {x3}, {x4, x5}, {x6}, {x7}}

I (...)

I IND{a, b, d} =
{{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}}

I IND{a, b, c , d} =
{{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}}

I Attribute c is superfluous because
IND{a, b, d} = IND{a, b, c , d}
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Compute core values of conditions

Table 11 : Reduced
decision table

U a b d e

x1 1 0 1 1
x2 1 0 0 1
x3 0 0 0 0
x4 1 1 1 0
x5 1 1 2 2
x6 2 1 2 2
x7 2 2 2 2

For rule x1:
I F = {[x1]a, [x1]b, [x1]d}
I F = {{x1, x2, x4, x5}, {x1, x2, x3}, {x1, x4}}

Consider that
I [x1]a,b,d = [x1]a ∩ [x1]b ∩ [x1]d = {x1}
I [x1]e = {x1, x2}

Find a smaller relation being a subset of [x1]e
I [x1]b ∩ [x1]d = {x1} ⊆ [x1]e
I [x1]a ∩ [x1]d = {x1, x4}
I [x1]a ∩ [x1]b = {x1, x2} ⊆ [x1]e

So, b(x1) = 0 is a core value because it is
present in [x1]b ∩ [x1]d and [x1]a ∩ [x1]b, both
are subsets of [x1]e
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Result of computing the core values of conditions

Table 12 : Core values of conditions

U a b d e

x1 - 0 - 1
x2 1 - - 1
x3 0 - - 0
x4 - 1 1 0
x5 - - 2 2
x6 - - - 2
x7 - - - 2
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Compute value reducts

For rule x1:
F = {[x1]a, [x1]b, [x1]d} = {{x1, x2, x4, x5}, {x1, x2, x3}, {x1, x4}}

We need to find all subfamilies G ⊆ F |
⋂

G ⊆ [x1]e = {x1, x2}
I [x1]b ∩ [x1]d = {x1, x2, x3} ∩ {x1, x4} = {x1} ⊆ [x1]e
I [x1]a ∩ [x1]d = {x1, x2, x4, x5} ∩ {x1, x4} = {x1, x4}
I [x1]a ∩ [x1]b = {x1, x2, x4, x5} ∩ {x1, x2, x3} = {x1, x2} ⊆ [x1]e

So, only [x1]b ∩ [x1]d and [x1]a ∩ [x1]b are reducts of the family F
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Results of computing value reducts

Table 13 : Core values of conditions

U a b d e

x1 1 0 * 1
x ′1 * 0 1 1

x2 1 0 * 1
x ′2 1 * 0 1

x3 0 * * 0

x4 * 1 1 0

x5 * * 2 2

x6 * * 2 2
x ′6 2 * * 2

x7 * * 2 2
x ′7 * 2 * 2
x ′′7 2 * * 2
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Many possible solutions

Table 14 : Core values of conditions

U a b d e

x1 1 0 * 1
x2 1 * 0 1
x3 0 * * 0
x4 * 1 1 0
x5 * * 2 2
x6 * * 2 2
x7 2 * * 2

Table 15 : Core values of conditions

U a b d e

x1 1 0 * 1
x2 1 0 * 1
x3 0 * * 0
x4 * 1 1 0
x5 * * 2 2
x6 * * 2 2
x7 * * 2 2
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Minimal solution

After removing duplicates and re-numbering

Table 16 : Core values of conditions

U a b d e

x1 1 0 * 1
x2 0 * * 0
x3 * 1 1 0
x4 * * 2 2
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Minimal solution decoded

Table 17 : Core values of conditions

U Diploma Experience Reference Decision

x1 MCE Low * Stand By
x2 MBA * * Rejected
x3 * Medium Good Rejected
x4 * * Excellent Accept
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Applications

I Data mining

I AI
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Sense, plan, act

Figure 3 : Sense, plan, act cycle.
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Software

I R packages RoughSetKnowledgeReduction and RoughSets

I RSES - Rough Set Exploration System
http://logic.mimuw.edu.pl/~rses/start.html

I Infobright Community Edition http://www.infobright.org
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