

SER-300-INTRODUÇÃO AO GEOPROCESSAMENTO

Laboratório 5: Geoestatística Linear

Cibele Teixeira Pinto

INPE São José dos Campos Maio/2013

Introdução

Neste relatório são apresentados os procedimentos e os resultados obtidos do Laboratório 5 da disciplina Introdução ao Geoprocessamento (SER 300). Este laboratório teve como objetivo explorar através de procedimentos geoestatísticos a variabilidade espacial de propriedades naturais amostrados e distribuídos espacialmente. A seguir são descritos os procedimentos realizados neste laboratório.

1. Carregar os dados no Sistema Spring

Primeiro foi realizado a ativação do Banco de Dados "SaoCarlos" e do Projeto "Canchim". Depois, foi ativado os PIs "Limites" e "Amostras_campo" "Argila" (**Figura 1**).

Figura 1: Visualização dos PI's selecionados.

2. Análise Exploratória

Nesta etapa do laboratório foi realizada a análise exploratória dos dados, executando: (1) estatísticas descritivas (**Figura 2**); (2) histograma (**Figura 3**); e (3) gráfico da probabilidade normal (**Figura 4**).

SPRING-5.2.1 [SER300_BD_SaoCarlos][Canchim]	_ = X
Arquivo Editar Exibir Imagem Temático MNT Cadastral Rede Anális	e SCarta Executar Ferramentas TerraLib Plugins Ajuda
🛢 🖬 🛢 🖩 🖉 🖘 😱 🔍 🗵 + 💠 0 🗞 🖉 🔍 🖉	🏅 🗇 🐐 🍟 🕶 🍕 🕶 🛄 🌾 🌮 Auto 🔹 1/ 64726.3125 Inativa 🔹 💡
Painel de Controle 🗗 🗙	
Tela Ativa : Principal	
PI Disponíveis PI Selecionados	
Categoria / Plano de Informação	
M (V) Amostras_Campo	
() altimetria	
() altitude () areia fina	Relatono de Dados
() areia_grossa E	
(A) argila	E S T A T İ S T I C A S: argila
() calcio () magnesio	=> Número de Pontos 85 => Número de Pontos Válidos 85
() silte Análise Exploratória - Geoestat	=> Média
▶ T () Classes_So	=> Desvio Padrão 16.97156588 => Coeficiente de Variação 0.51374042
T (V) Limites	=> Coeficiente de Assimetria0.21392033 => Coeficiente de Curtose2.34402510
(L) recorte	=> Valor Minimo 4.00000000 => Quartil Inferior 19.00000000
Plano de Informação	=> Quartil Superior 43.00000000 => Valor Máximo 73.00000000
IE 🔤 💥 Ativo: argia	
V Amostras	Salvar
Grade Executar Fechar Ajuda	Apagar Fechar Ajuda
T + - Principal / Auxiliar	/ Tela 2 / Tela 3 / Tela 4 /

Figura 2: Executando estatísticas descritivas.

Figura 3: Executando histograma.

Figura 4: Executando o gráfico da probabilidade normal.

3. Caso Isotrópico

A isotropia em fenômenos naturais é um caso pouco freqüente de ser observada. Neste caso, um único modelo é suficiente para descrever a variabilidade espacial do fenômeno em estudo. Na prática quando lidamos com semivariogramas, a primeira suposição é isotropia na tentativa de detectar uma estrutura de correlação espacial. Para tal, utiliza-se tolerância angular máxima (90 graus) assim a direção torna-se insignificante.

3.1 Análise da Variabilidade Espacial por Semivariograma

A geração do semivariograma, primeiramente, foi realizada de acordo com os parâmetros estabelecidos. Entretanto, se observarmos a **Figura 5**, verificamos que o semivariograma possui uma variação ou forma não muito adequada quando comparado a um semivariograma ideal. Para melhorar sua forma foi necessário alterar os parâmetros de Lag. Os parâmetros de Lag foram modificados para: (a) No. Lag = 4; (b) Incremento = 968; e (c) Tolerância = 484. O resultado desta modificação pode ser observado na **Figura 6**.

Figura 5: Geração do semivariograma.

Figura 6: Geração do semivariograma com parâmetros de Lag modificados.

3.2 Modelagem do semivariograma experimental

A partir do semivariograma gerado, foi aplicado o modelo gaussiano, para ajustar o modelo às curvas geradas pelo semivariograma (**Figura 7**). Os parâmetros do modelo (Efeito Pepita, Contribuição e Alcance) são tomados sempre com referência ao menor valor de Akaike. Foram obtidos os seguintes valores: (a) Menor valor de Akaike: - 41.713; (b) Efeito Pepita: 143.743; (c) Contribuição: 204.454; (d) Alcance: 3176.397. Com base nestes resultados do ajuste do modelo pelo semivariograma, foram definidos os parâmetros do modelo isotrópico (**Figura 8**).

Auste Automático Vasal Numero de Estruturas 0 1 0 2 0 3 Modelos 1 Gaussiano Wenficar Austes prejia d. var 1 1 0 2 0 3 Modelo 2: Esférico Wenficar Austes prejia d. var 1 1 0 2 0 3 Modelo 3: Esférico Wenficar Austes prejia d. var 1 1 0 2 0 3 Modelo 3: Esférico Wenficar Austes prejia d. var 1 1 0 2 0 3 Modelo 3: Esférico Wenficar Austes Prejia d. var 1 1 0 2 0 3 Modelo 3: Esférico Wenficar Austes Prejia d. var 1 1 0 2 0 3 Modelo 3: Esférico Wenficar Austes Prejia d. var 1 1 0 2 0 0 4 Modelo 4 2 Esférico Wenficar Austes Prejia d. var 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ajuste de Semivariograma	Relatório de Dados
<pre>% Montode Apste = Gaussiano % Model of Apste = Gaussiano % Model of Apste = Gaussiano % Werficer Apste % Model of Apste = Gaussiano % Model of Apste = Ga</pre>	Ajuste	AJUSTE DO SEMIVARIOGRAMA
Modelo 1: Gaussiano Modelo 2: Esferico Modelo 2: Esferico Weficar Apates Breat modelo 1: ransitivo: Gaussiano Nodelo 2: Esferico Weficar Apates Breat modelo 1: ransitivo: Gaussiano Nodelo de Sanivariograma Gaussiano Nodelo de Ajuste - Gaussiano Modelo de Ajuste - Gaussiano Nodelo de Ajuste - Gaussian	Número de Estruturas 1 2 3 Modelos	Sumärio: Arquivo: C: /Users(chele/Desktop/Lab5/SER300_BD_SaoCarlos/Canchim/GeoStatistic/ argila_0.varriavits: 3 No. de Lags: 6 No. de Lags: 6 No. de Lags: 6 No. de Lags: 6
Verificar Ajastes argila 0. var A cance No. A katke Efeito Pepita Contribuição A cance 	Modelo 1: Gaussiano Modelo 2: Esférico Modelo 3: Esférico	Par Smetros iniciais: Para modelo transitivo: Gaussiano Contribuição (C1): 220.195 Alcance (a): 2408.269
Alcance Akaike Efetto Pepita Contribuição angla Quar 	Verificar Atustes	Modelo de Semivariograma Gaussiano
Decutar Definir Fechar Ajuda Image: Concutar and the second s	argila_0.var	No. Akaike Efeito Pepita Contribuição Alcance 196.536 2997.992 145.434 2 -41.704 143.649
$ \hline \begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Executar Definir Fechar Ajuda	Səlvar Aqəgar Fechar Ajuda
	The Autore offer Modelo de Ajuste = Gaussiano Image: Point and the American Autore of Americ	
0 1000 2000 4000 4010 4617	300 E 00 100 100 20% stanca ²⁰⁰	

Figura 7: Modelo de Ajuste: Gaussiano.

Parämetros			0.2
Foito De		2 742	03
Lielo Fe	chira: 14	5.745	
Primeira Estrutura			
Tipo:	Gaussia	no 🔻	
Contribuição:	204.454	Ângulo Anis	.: 0
Alcance Máx.:	3176.39	Alcance Min	.: 3176.39
Segunda Estrutura			
Tipo:	Esférico	-	
Contribuição:		Ângulo Anis	a.:
Alcance Máx.:		Alcance Min	.:
Terceira Estrutura			
Tipo:	Esférico		
Contribuição:		Ångulo Anis	4:
Alcance Máx.:		Alcance Min	.:

Figura 8: Definindo os parâmetros do modelo isotrópico.

3.3 Validação do Modelo de Ajuste

O processo de validação (Figura 9, Figura 10, Figura 11 e Figura 12) do modelo de ajuste é uma etapa que precede as técnicas de krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais conhecidos.

Figura 9: Diagrama Espacial do Erro.

Figura 10: Histograma do Erro.

Figura 11: Estatísticas do Erro.

Figura 12: Diagrama de valores observados versus estimados.

3.4 Interpolação por krigeagem Ordinária

Uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem (Figura 13).

Figura 13: Interpolação por krigeagem ordinária.

Após executar a krigeagem observe na Interface do Painel de Controle que o Plano de Informação KRIG_ISO_argila, definido no passo 5, está disponível para visualização. Além disso, o PI KRIG_ISO_argila_KV é gerado e refere-se à variância de Krigeagem (**Figura 14** e **15**).

Figura 14: Visualizando a grade de krigeagem gerada para a argila (KRIG_ISO_argila).

Figura 15: Plano de Informação KRIG_ISO_argila_KV, que refere-se à variância de Krigeagem.

3.5 Visualização da superfície de argila

Nesta etapa, foi gerada uma imagem, a qual foi recortada, através do LEGAL, para análise da variação gerada pelo modelo (**Figura 16**). Em seguida, a grade foi fatiada (**Figura 17**).

Figura 16: Recorte da grade do teor de argila.

Figura 17: Fatiamento da grade do teor de argila.

4. Caso Anisotrópico

A anisotropia em propriedades naturais é um caso muito freqüente de ser observado. Neste caso, a anisotropia, pode ser facilmente constatada através da observação da superfície de semivariograma, conforme descrito a seguir.

4.1 Detecção da anisotropia

A superfície de semivariograma é um gráfico, 2D, que fornece uma visão geral da variabilidade espacial do fenômeno em estudo. É utilizado para detectar os eixos de Anisotropia, isto é, as direções de maior e menor continuidade espacial da propriedade em análise (**Figura 18**). Também conhecido como Mapa de Semivariograma.

SPRING-5.2.1 [SER300_BD_SaoCarlos][Canchim]	<u> </u>
Arquivo Editar Exibir Imagem Temático MNT Cadastral Rede Anális	e SCarta Executar Ferramentas Terral.ib Plugins Ajuda
🛢 🖬 🚝 🖉 🗖 🥫 🔝 🔍 🗉 + 💠 0 🗞 🖉 🔍 🔍	🛃 Geração de Semivariograma
Painel de Controle 🗗 🗙	
Tela Ativa : Principal	PI Ativo: argila
Superfície de Semivariograma	Analise: Superfice Amostragem: Irregular
N 0°	Opções: Semivariograma 💌
	PI de Cruzamento
	Parâmetros da Amostra Regular
1.1.1.2	No Coluna,: No, Linhas:
/	Res, X: Res, Y:
	Parâmetros do Mapa de Superfície
	No. LanX: 50
	Cabecoria
	Gerar PI Saida:
ângula - 17.15, Alcance - 2051 49	Padronizar Resultado Numérico
Angulo - 1710 Alcalice = 2931.49	Executar Fechar Ajuda
TIN Imagem	
• + - * Principal (Auxiliar	PE argila

Figura 18: Detecção dos eixos de anisotropia.

4.2 Geração dos semivariogramas direcionais

Uma vez detectado as direções da anisotropia procede-se a geração dos semvariogramas direcionais (Figura 19).

Figura 19: Geração dos semivariogramas direcionais.

4.3 Modelagem dos semivariogramas direcionais

A partir do semivariogramas experimentais direcionais, foi feita a modelagem (ajuste) esférica para a direção de maior continuidade (17°) (**Figura 20**) e de menor continuidade (107°) (**Figura 21**).

Figura 20: Modelagem do semivariograma na direção de maior continuidade 17 graus.

k k + < 	No. de variaveis: 3 No. de Lags: 6 No. de Lags usados: 6	
	Parâmetros iniciais: Efeito Pepita (Co): 39.434 Para modelo transitivo: Esférico Contribuição (C1): 192.540 Alcance (a): 1985.218 Modelo de Semivariograma Esférico No. Akaike Efeito Pepita Contribuição Alcance	=
50	1 -36.343 28.674 201.116 1606.256 29.005 2 -37.232 29.005 202.133 1688.479 3 3 -37.237 27.975 203.065 1676.681 27.975	
0 500 1000 1500 2000 2500 3000 3500 3970 Distância	Salvar	

Figura 21: Modelagem do semivariograma na direção de menor continuidade 107 graus.

4.4 Modelagem da anisotropia

Esta etapa consiste em unir os dois modelos anteriormente definidos num único modelo consistente, o qual descreva a variabilidade espacial do fenômeno em qualquer direção. Após a realização da modelagem da anisotropia, o próximo passo é gravar o modelo proposto (**Figura 22**).

Parâmetros			
Número de Est	ruturas:	0 1 🔘 2 🧕	3
Efeito Pe	epita: 28	3	
Primeira Estr <mark>u</mark> tura			
Tipo:	Esférico	•	
Contribuição:	63	Ângulo Anis.:	17
Alcance Máx.:	1677	Alcance Min.:	0.00001
Segunda Estrutura			
Tipo:	Esférico	, •	
Contribuição:	140	Ângulo Anis.:	17
Alcance Máx.:	2962	Alcance Mín.:	1677
Terceira Estrutura			
Tipo:	Esférico	, •	
Contribuição:	71	Ângulo Anis.:	17
Alcance Máx.:	100000	Alcance Min.:	2962

Figura 22: Interface de Parâmetros Estruturais.

4.5 Validação do modelo de ajuste

O processo de validação do modelo de ajuste (Figura 23, 24, 25 e 26) é uma etapa que precede as técnicas de krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais conhecidos.

Figura 23: Diagrama Espacial do Erro.

Figura 24: Histograma do Erro.

Figura 25: Estatísticas do Erro.

Figura 26: Diagrama de valores Observados versus Estimados.

4.6 Interpolação por krigeagem ordinária

Uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem (**Figura 27**).

PI AUVO			
Nome:	argila		Verificar Modelo
Krigeage	m		
Tipo: O	rdinária 🔻 Média:		
Definição	de Grade		
Res. X:	34.99999992	Res. Y:	50.00000099
	Retângulo I	Envolvente	e)
Parâmeti	os de Interpolação Número de Pontos	no Elipsóid	e de Busca
Mínimo:	4	Máximo:	64
	Elipsóide de Busca	(Raio e O	rientação)
R. Mín.:	12206.555 R. Máx.:	12206.55	5 Ângulo: 0
Saída			
	Categoria) Superfic	je	
	1023 1020 T	a second s	

Figura 27: Interpolação por krigeagem ordinária.

Após executar a krigeagem observe na Interface do Painel de Controle que o Plano de Informação KRIG_ANIS_argila (**Figura 28**) está disponível para visualização. Além disso, o PI KRIG_ANIS_argila_KV (**Figura 29**) é gerado e refere-se à variância de Krigeagem.

SPRING-5.2.1 [SER300_BD_SaoCarlos][Canchim]									X
Arquivo Editar Exibir Imagem	Ternático	MNT Cada	astral Rede	Análise	e SCart	Execut	tar Ferrame	ntas Te	rraLib	
🛢 🖬 💋 🗖 😵 ស	<u>ি</u> সি •	+ 💠 O	🗞 💆 🔍	9,0		1	®. • 🔟 🕅	* 📀	Auto 👻] 1/
nel de Controle	ē×		÷	т	т т	- 1	τ τ			
Tela Ativa : Principal			32.8	29.5	22.5 12	1 17.4	23.9 31.4			
PI Disponíveis PI Selecionados			32.3	100	20.7 18	4 248	16 27.0			
(G) KRIG_ANIS_argila / Superficie			+	+1	4 4	1 1	+			
(L) recorte / Limites			35.2 +	4043	30.2 39	.8 38.0	121 25.6			
			36,3 +	39.0	35.3 48	.1 39.3	25.5 34.9			
			36.6 +	34.7	38.2 50	3 47.7	4 8 35.4			
			36.4	¥7	40.8 42	.3 45.1	44.0 35.6			
			36.0	34.8	38.9 27	9 37.8	39.6 3 <u>5.</u> 9			
III 🗉 搅 🖬 🖉 🗉] 🔞		36.7	35.7	38.6 30	.5 35.7	38.3 38.1			
Amostras Isolinhas			38.3	135.5 1	38.8 35	.1 .36.0	38.8 38.0			
Grade Texto				~						
TIN Imagem				#307#						
		□ + - =		Auxiliar	/ Tela 2		/ Tela 4 /			

Figura 28: Visualizando a grade de krigeagem, oriunda de um modelo anisotrópico, gerada para o teor de argila (KRIG_ANIS_argila).

Arquivo	Editar	Exibir	Imagen	n Ter	nático	MNT	Cadas	tral f	Rede	Análi	se S	Carta	Execut	ar	Ferram	nentas	Terral	.ib	,
1	5 🏼	0		82	্ শ	+ 🔞	0	2 🧕	• 🕀	9	q (>	\$	1 ~ (Ð_, ▼	1	¥++ 0	Au	to 🔹 1	./ :
ainel de Co	ntrole				8	×			T	T	т	T	T	т	ि				1
	Tel	a Ativa	: Principa	al					335.2	257.8	144.5	147.4	182.7	190	2 252	2.9			
PI Dispo	níveis	PI Selec	tionados			1			327.2	202.9	175.2	140.1	161.9	167	8 233	5,7			
(G) KRI	5_ANIS_a	rgila_KV ites	/ Superfi	cie					T	1		T	7	Ŧ).				
									316.9 +	195.6	188.7	147.5	136.4	140.	4 Les	5.0			
									310.5 +	231.8	156.8	150.1	144.7	142	3 16	.3			
									296.9	185.2	134.8	161.7	126.0	155	3 256	5.0			
									+	1		+	+	1	4				
									27 B. 0 +	11.2]	172.0	132.6	131.0	233.	.3 313 +	5.9			
									263.3	139.9	157.2	149.9	215.0	287	7 329	9.5			
									256.7	154.7	151.0	17.8	272.3	307.	6 335	5.1			
8=	园 ¥	g all			2				745 4	1	[310	7 330				
		- 1183	-						+	++	1243.4	+	+	+	4				
Amos	tras		Isolinhi	85						~									
Grad	2		Texto																
			Imager	m		_										-			_
					1		+ - =)	Princip		Auxilia		ela 2	KRIG A		raila k	v			

Figura 29: Plano de Informação KRIG_ANIS_argila_KV, que refere-se à variância de Krigeagem.

4.7 Visualização da superfície de argila oriunda do modelo anisotrópico.

Nesta etapa, foi gerada uma imagem, a qual foi recortada, para análise da variação gerada pelo modelo (**Figura 30**). Em seguida, a grade foi fatiada (**Figura 31**).

Figura 30: Recorte da grade do teor de argila.

Figura 31: Fatiamento da grade do teor de argila.

5. Análise dos resultados

Comparando a variabilidade espacial, do teor de argila, entre o caso isotrópico e anisotrópico (**Figura 32**).

Figura 32: Em (a) caso isotrópico e (b) caso anisotrópico.