



# Análise Espacial de Dados Geográficos

Relatório de atividades sobre o laboratório 5, referente à disciplina SER - 300 - Introdução ao Geoprocessamento, sob orientação do Prof. Dr. Antonio Miguel Vieira Monteiro.

Aluno: Cesare Di Girolamo Neto

Matrícula: 130338

São José dos Campos.

Junho, 2014.

## Conteúdo

| 1 | Intr          | odução:                                                             | . 3 |
|---|---------------|---------------------------------------------------------------------|-----|
| 2 | Des           | envolvimento:                                                       | . 3 |
|   | 2.1           | Carregar bando de dados no SPRING:                                  | . 4 |
|   | 2.2           | Análise exploratória dos dados:                                     | . 6 |
|   | 2.3           | Análise da variabilidade espacial por semivariograma:               | . 8 |
|   | 2.4           | Modelagem do semivariograma experimental:                           | .9  |
|   | 2.5           | Validação do modelo de erro:                                        | 11  |
|   | 2.6           | Interpolação por Krigeagem ordinária:                               | 12  |
|   | 2.7           | Visualização da superfície de argila:                               | L3  |
|   | 2.8           | Detecção de anisotropia:                                            | 14  |
|   | 2.9           | Criação e Modelagem dos semivariogramas direcionais:                | 15  |
|   | 2.10          | Validação do modelo de ajuste:                                      | 16  |
|   | 2.11          | Interpolação por Krigeagem ordinária #2:                            | L7  |
|   | 2.12          | Visualização da superfície de argila oriunda do modelo anisotrópico | L7  |
| 3 | Aná           | ilise dos resultados                                                | 18  |
| 1 | Bibliografia: |                                                                     |     |

### 1 Introdução:

O Software SPRING é um SIG (Sistema de Informações Geográficas) desenvolvido pelo INPE (Instituto Nacional de Pesquisas espaciais) na divisão de processamento de Imagens (DPI). Diversas outras instituições colaboraram com o desenvolvimento dele, como a Embrapa Informática Agropecuária (EMBRAPA/CNPTIA), a IMB Brasil, o Grupo de Tecnologia em Computação Gráfica (TECGRAF - PUCRIO) e o Centro de Pesquisas "Leopoldo Miguez", da PETROBRÁS.

As principais funcionalidades do SPRING estão relacionadas a processamento de imagens, análise espacial, modelagem numérica de terreno e consulta a bancos de dados espaciais, possibilitando aplicações diretas nas áreas de agricultura, reflorestamento, gestão ambiental, geografia, geologia e planejamento urbano. Diversas outras aplicações e funcionalidades do software SPRING podem ser encontradas em Camara et al. (1996).

Como parte do curso de Introdução ao Geoprocessamento, foi proposto um exercício de laboratório para se familiarizar com o software SPRING, sendo que o objetivo deste exercício foi realizar uma análise espacial de dados geográficos.

#### 2 Desenvolvimento:

A atividade proposta apresenta um tutorial de desenvolvimento, contendo diversos dados preparados para serem carregados no SPRING (versão 5.2.6). A sequência de atividades desenvolvidas foram:

- Carregar bando de dados no SPRING;
- Análise exploratória dos dados;
- Análise da variabilidade espacial por semivariograma;
- Modelagem do semivariograma experimental;
- Validação do modelo de erro;

- Interpolação por Krigeagem ordinária;
- Visualização da superfície de argila;
- Detecção de anisotropia;
- Geração de semivariogramas direcionais;
- Modelagem dos semivariogramas direcionais;
- Modelagem da anisotropia;
- Validação do modelo de ajuste;
- Interpolação por Krigeagem ordinária #2;
- Visualização da superfície de argila oriunda do modelo anisotrópico;
- Análise dos resultados;

### 2.1 Carregar bando de dados no SPRING:

Esta etapa foi o carregamento do banco de dados e do projeto (Figura 1). O banco de dados consiste em um diretório onde são armazenados dados geográficos associados às definições de categorias de dados e os Planos de Informação. O Projeto consiste na definição da área geográfica da área de trabalho, onde serão inseridos diversos arquivos e/ou mapas (PI) desta determinada área geográfica (Figura 2). O Projeto possui, ainda, propriedades cartográficas associadas a ele, como a projeção e o datum, que são definidas pelo próprio usuário no momento de sua criação.



Figura 1: Projeto carregado no SPRING.



Figura 2: Visualização do projeto.

#### 2.2 Análise exploratória dos dados:

A análise exploratória dos dados foi realizada avaliando estatísticas descritivas (Figura 3), histogramas (Figura 4) e Gráfico da probabilidade normal (Figura 5).



Figura 3: Estatísticas descritivas.



Figura 4: Histograma.



Figura 5: Probabilidade normal.

### 2.3 Análise da variabilidade espacial por semivariograma:

O semivariograma (Figura 6) é um gráfico que mostra a medida do grau de dependência espacial entre amostras ao longo de um suporte específico. As diferenças dos quadrados dos registros são utilizadas na sua construção. O semivariograma é, basicamente, uma medida da variabilidade condicionada pela distância.



Figura 6: Geração do semivariograma e seus parâmetros.

#### 2.4 Modelagem do semivariograma experimental:

O semivariograma foi modelado de forma a apresentar uma forma mais próxima a um semivariograma ideal, para melhorar sua forma é importante alterar os parâmetros de Lag, incremento e tolerância (Figura 7). Também foi ajustado um modelo ideal (Figura 8)



Figura 7: Semivariograma ajustado.



Figura 8: Modelo gaussiano ajustado.

#### 2.5 Validação do modelo de erro:

Foi feito o processo de validação do modelo de ajuste (Figura 9), etapa que antecede a Krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto aos dados utilizados, verificando se é necessário estimar novamente este modelo.



Figura 9: Exemplo de consulta das informações de uma determinada rodovia.

### 2.6 Interpolação por Krigeagem ordinária:

Após realizado o ajuste foi feita a krigeagem (A grade pode ser encontrada na Figura 10).



Figura 10: Grade de Krigeagem.

### 2.7 Visualização da superfície de argila:

Em seguida foi visualizada a superfície de argila (Figura 11).



Figura 11: Grade com valores e representação da Krigeagem.

### 2.8 Detecção de anisotropia:

A anisotropia em propriedades naturais é um caso muito frequente de ser observado. Neste caso, a anisotropia, pode ser facilmente constatada através da observação da superfície de semivariograma (Figura 12).



Figura 12: Semivariograma de superfície.

### 2.9 Criação e Modelagem dos semivariogramas direcionais:

Os semivariogramas direcionais foram criados e modelados de forma similar ao item 2.4 (Figura 13 e 14)



Figura 13: Criação dos semivariogramas direcionais.



Figura 14: Modelagem dos semivariogramas direcionais.

### 2.10 Validação do modelo de ajuste:

O modelo foi validado de forma análoga ao item 2.5 (Figura 15).



Figura 15: Validação do modelo

### 2.11 Interpolação por Krigeagem ordinária #2:

Após realizado o ajuste foi feita a krigeagem (A grade e a superfície estão na Figura 16).



Figura 16: Grade e superficie da Krigeagem.

### 2.12 Visualização da superfície de argila oriunda do modelo anisotrópico

A superficie com escala pode ser visualizada na Figura 17.



Figura 17: Classificação dos teores de argila.

### 3 Análise dos resultados

A pratica deste laboratório nos permitiu uma aproximação ao software SPRING, a qual foi particularmente muito útil para quem nunca teve contato com o software. As principais aplicações puderem ser entendidas, e o roteiro disponibilizado, além de esclarecer dúvidas conceituais pode ser utilizado para realizar novos projetos.

### 4 Bibliografia:

CAMARA, G.; SOUZA, R. C. M.; FREITAS, U. M.; GARRIDO, J. SPRING: Integrating remote sensing and GIS by object-oriented data modelling. **Computers & Graphics**. v. 20, n.3, p. 395-403, Mai/Jun, 1996.