

Análise Espacial de Dados Geográficos

Relatório de atividades sobre o laboratório 5, referente à disciplina SER - 300 - Introdução ao Geoprocessamento, sob orientação do Prof. Dr. Antonio Miguel Vieira Monteiro.

Aluno: Cesare Di Girolamo Neto

Matrícula: 130338

São José dos Campos.

Junho, 2014.

Conteúdo

1	Intro	odução:
2	Des	envolvimento:
	2.1	Carregar bando de dados no SPRING:4
	2.2	Análise exploratória dos dados:6
	2.3	Análise da variabilidade espacial por semivariograma:8
	2.4	Modelagem do semivariograma experimental:9
	2.5	Validação do modelo de erro:11
	2.6	Interpolação por Krigeagem ordinária:12
	2.7	Visualização da superfície de argila:13
	2.8	Detecção de anisotropia:14
	2.9	Criação e Modelagem dos semivariogramas direcionais:15
	2.10	Validação do modelo de ajuste:16
	2.11	Interpolação por Krigeagem ordinária #2:17
	2.12	Visualização da superfície de argila oriunda do modelo anisotrópico17
3	Aná	lise dos resultados18
4	Bib	liografia:

1 Introdução:

O Software SPRING é um SIG (Sistema de Informações Geográficas) desenvolvido pelo INPE (Instituto Nacional de Pesquisas espaciais) na divisão de processamento de Imagens (DPI). Diversas outras instituições colaboraram com o desenvolvimento dele, como a Embrapa Informática Agropecuária (EMBRAPA/CNPTIA), a IMB Brasil, o Grupo de Tecnologia em Computação Gráfica (TECGRAF - PUCRIO) e o Centro de Pesquisas "Leopoldo Miguez", da PETROBRÁS.

As principais funcionalidades do SPRING estão relacionadas a processamento de imagens, análise espacial, modelagem numérica de terreno e consulta a bancos de dados espaciais, possibilitando aplicações diretas nas áreas de agricultura, reflorestamento, gestão ambiental, geografia, geologia e planejamento urbano. Diversas outras aplicações e funcionalidades do software SPRING podem ser encontradas em Camara et al. (1996).

Como parte do curso de Introdução ao Geoprocessamento, foi proposto um exercício de laboratório para se familiarizar com o software SPRING, sendo que o objetivo deste exercício foi realizar uma análise espacial de dados geográficos.

2 Desenvolvimento:

A atividade proposta apresenta um tutorial de desenvolvimento, contendo diversos dados preparados para serem carregados no SPRING (versão 5.2.6). A seqüência de atividades desenvolvidas foram:

- Carregar bando de dados no SPRING;
- Análise exploratória dos dados;
- Análise da variabilidade espacial por semivariograma;
- Modelagem do semivariograma experimental;
- Validação do modelo de erro;

- Interpolação por Krigeagem ordinária;
- Visualização da superfície de argila;
- Detecção de anisotropia;
- Geração de semivariogramas direcionais;
- Modelagem dos semivariogramas direcionais;
- Modelagem da anisotropia;
- Validação do modelo de ajuste;
- Interpolação por Krigeagem ordinária #2;
- Visualização da superfície de argila oriunda do modelo anisotrópico;
- Análise dos resultados;

2.1 Carregar bando de dados no SPRING:

Esta etapa foi o carregamento do banco de dados e do projeto (Figura 1). O banco de dados consiste em um diretório onde são armazenados dados geográficos associados às definições de categorias de dados e os Planos de Informação. O Projeto consiste na definição da área geográfica da área de trabalho, onde serão inseridos diversos arquivos e/ou mapas (PI) desta determinada área geográfica (Figura 2). O Projeto possui, ainda, propriedades cartográficas associadas a ele, como a projeção e o datum, que são definidas pelo próprio usuário no momento de sua criação.

Projetos 🗖 🗖	×
Projetos	
Canchim	
Nome: Canchim	_
Projeção UTM/Ellipsoid->Hayford	
Projeção de Referência	
Projeção	
Retängulo Envolvente	
Coordenadas: O GMS O GD O Planas	
X1: 204000.0000 X2: 211000.0000	
Y1: 7565000.0000 Y2: 7575000.0000	
Hemisfério: O N O S O N O S	
Criar Ativar Desativar Alterar Suprimir	
Fechar Ajuda	
Projeto corrente: Canchim	

Figura 1: Projeto carregado no SPRING.

Figura 2: Visualização do projeto.

2.2 Análise exploratória dos dados:

A análise exploratória dos dados foi realizada avaliando estatísticas descritivas (Figura 3), histogramas (Figura 4) e Gráfico da probabilidade normal (Figura 5).

Figura 3: Estatísticas descritivas.

Figura 4: Histograma.

Figura 5: Probabilidade normal.

2.3 Análise da variabilidade espacial por semivariograma:

O semivariograma (Figura 6) é um gráfico que mostra a medida do grau de dependência espacial entre amostras ao longo de um suporte específico. As diferenças dos quadrados dos registros são utilizadas na sua construção. O semivariograma é, basicamente, uma medida da variabilidade condicionada pela distância.

Figura 6: Geração do semivariograma e seus parâmetros.

2.4 Modelagem do semivariograma experimental:

O semivariograma foi modelado de forma a apresentar uma forma mais próxima a um semivariograma ideal, para melhorar sua forma é importante alterar os parâmetros de Lag, incremento e tolerância (Figura 7). Também foi ajustado um modelo ideal (Figura 8)

Figura 7: Semivariograma ajustado.

Figura 8: Modelo gaussiano ajustado.

2.5 Validação do modelo de erro:

Foi feito o processo de validação do modelo de ajuste (Figura 9), etapa que antecede a Krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto aos dados utilizados, verificando se é necessário estimar novamente este modelo.

2.6 Interpolação por Krigeagem ordinária:

Após realizado o ajuste foi feita a krigeagem (A grade pode ser encontrada na Figura 10).

SPRING-5.2.1 [SER300_BD_SaoCarlos_23_05_2013_	22_41][Canchim]												a X
Arquivo Editar Exibir Imagem Temático M	ANT Cadastral Rede Análise S	Carta Executar	r Ferramentas	TerraLib PI	ugins Ajuda								
🛢 🖬 🚝 📨 🗖 🥫 🛐 🔍 घ -	+ 💠 🛯 🗞 🥖 🍕 🍕 🖧 🛵	🥱 🕌 🗸 🛯	a - 1 8 k* 1	🂫 Auto 🔻	1/ 25931.67382	8 Inati	va 🔹 🦓						
Painel de Controle 🗗 🗙	+	+ +	+ /*	+ +	° + 5	+	+ +	+	+	+ +	+	+	+
Tela Ativa : Principal	34.2	34.5 33.7	30.6 25.2	18.7 13.5	11.0 11.7	13.5 1	<u>6</u> .7 1 <u>5</u> .7	15.3	15.6	<u>5</u> .1 1 <u>5</u> .7	21.0	22.4	23.4
PI Disponíveis PI Selecionados	19.7	30.5 38.7		25.0 21.4	18.1 19.4	21.4		9. a		1.0	19.7	22.0	73.6
Categoria / Plano de Informação		+ +		+ +	+ +	4 ⁴ o	+ +	+	1º	*** 10**	+	+	+
 (V) Amostras_Campo () altimetria 	39.7 +	42.0 42.2 + +	1.8 38.9 +0 +	34.9 32.0 + +	28.9 31.3	o <u>33,</u> 0 3	KQ.7 25.1	19.0 +	13.9 1	2.5 15.1	19.Z	22.6	2 4.3 +
() altitude () areia fina	39.8	42.5 44.3	44,1 43,8	42.4 38.8	39.2 43.4	44,4 4	кі.7 32.0	20.4	14.2 1:	27 15.8	20,1	24.9	26.9
() areia_grossa		+ +		+ +	+ + 0	+	 0	+	T	+0	t –	+	+
(A) argila () calcio	40-1	42.1 41.8	42.8	44.4 43.4	46.0 50.5 +	51.4 4	4.3 3543	22.0	14.6	17.5 17.5	24.1 +	30.2	33.6
() magnesio () silte	38.0	38.9 39.4	3 <u>9</u> .5 3 <u>8</u> 7	41.9 42.8	46.9 o 51.7	52.2 4	4.4 36.9	24.9	17.8 1	5.9 20.B	27.3	33.1	38.0
▷ Ţ () Classes_Solo	37,7	37.7 37.9	36.3 36.0	Ø6.7 39.8	44.7 47.8	45.4 4	13.6 97.6	3 <u>0</u> .3 O	25.1 2	2.5 2 <u>6</u> .D	30.7	36.8	39.6
 Imagem T (V) Limites 		T T	T T	 1160 171	70 7	0	T T	т то т	T	т т 10 о 70 е	•	TO E	70 7
▷ T () Mapa_Geologia ▷ C () Mapa Solos	+	+ +	+ +		34.2 42.3 (° [‡] ‡	÷ +	+ 0	o 12 0	19 0 3 <u>1</u> 8	1	4	***
▷	41,7	40.4 37.7 + +	35.2 33.6	35.1 39.9 0 +	44.7 48.4 +	48.6 4 +	15.5 45.6	45.6 +	43.3 0 ⁺	4.8 38. 7	38.0	39.7 +	37.4 +
() Mapa_vias (V) Superficie	41.g	39.9 36.3	34.4 52	38.5 43.2	48.2 51.5 +	50,9 5	4.2 o 52.7	53.6 +	5g.8 4	7.5 44.3	41.5	41.0 +	40 <u>.</u> 5
(G) Imagem_KRI_ISO () Imagem_KRI_ISO_KV	39,5	38,4 38,6	985,2 37,4	0 0 41.8 47.20	52.4 52.4	50.1 5	kq.9 _54.0	56.5	54.9 5	1.0 46.4	42.0	39.9	39.9
	T 193	345 344	T T	47.8 473	51.7 51.1	T O	0	1	53.9 5	T T	42.9	39.1	35.7
	+	+ +	+ +	4.4 4.4	0 ⁺ +	+	+ 0+	1	+	+ +	+	4	+
	40 <u>.</u> 1	38.8 37.2 + +	36.1 37.9	41.4 44.8	444 437	42.3 4	11.2 47.9	5B.0 +	60.2 5	1.1 47.6	42.2	39.9	37.1
	38.7 +	38.1 37	35.7 36.7 + +	38.7 39.1 + +	380 344	33,3	41.8	47.5	45.6 4	4.7 45.5	43.8 +	39.2 +	38.3 +
	3 9 .4 +	38.5 38.6	35.4 35.4 + +	35.8 35.1 + +	32.3 28.1	A.5 3	2.2 37.7 + +	43.3 +	42.6 4 +	1.3 43.7	42.8	41.7 +	41.3 +
	39.0	38.2 36.8	35.4 °35.5	34.7 32.9	29.4 24.9	27,1 3	1.2 37.2	41.3	46.1 4	2.7 35.4	41.8 +	41.3	+1.0
	39.2 +	38.2 37.2	36 1 37.4	0 36.3 34.5	31.0 28.0	29.4 3	12.9 38.2	42.9	45.8 4	9.8 39.5	33.0	41.0 +	40.9
	39.2 +	38.6 37.6	36.9 37.2	0 38,5 37,6	340 31.4	33.0 3	15.9 39.3	43.2	44.9 4	3.5 45.1	39.0	36.9	40.8 +
	39.8	39.1 37.8	3/9 37.0	37.8 36.3	6.D 33.8	34.1 3	8.1 41.3	44.2	44.6 43	5.9 47.B	40.9	33.4	36.6
	+	+ +	/* *	+ +	V + +	+	+ +	+	+	+ +	+	+	+
	40.7 +	39.7 37.8	36.3 35.9 + 0	36.6 36.4	36.4 35.1 + +	34,1 3	16.9 41.1	39.7	45.8 4	5.2 45.2	45.0	40.8	36.6
Amostras Isolinhas	41 <u>-</u> 3	40.0 37.8	35,2 34,2 0 4,2	34.6 33.6 + +	33.4 34.7 +	35.5 3	4.3 38.1	42.3	43.1 4	9.1 45. 3	48.3	40.8 +	40.8
Grade Texto	41.3	37.2	34.4 32.9	32.7 33.7	31.4 33.9	38.5 3	13.5 37.1	37.5	38.6 4	3.3 42.B	45.3	45.3	40.8
TIN Imagem	□ + - > \ Principal \ Auviliar \ To	ela 2 /\ Tela 3 /	\ Tela 4 /	1						·			27
PE Imagem_KRI_ISO													
🚱 🥭 🚝 💽 🕘 🚂 🖳 🖳 🗳										≤ .	× 🛍 (19:11 /05/2014

Figura 10: Grade de Krigeagem.

2.7 Visualização da superfície de argila:

Em seguida foi visualizada a superfície de argila (Figura 11).

Figura 11: Grade com valores e representação da Krigeagem.

2.8 Detecção de anisotropia:

A anisotropia em propriedades naturais é um caso muito freqüente de ser observado. Neste caso, a anisotropia, pode ser facilmente constatada através da observação da superfície de semivariograma (Figura 12).

Figura 12: Semivariograma de superfície.

2.9 Criação e Modelagem dos semivariogramas direcionais:

Os semivariogramas direcionais foram criados e modelados de forma similar ao item 2.4 (Figura 13 e 14)

Figura 13: Criação dos semivariogramas direcionais.

Figura 14: Modelagem dos semivariogramas direcionais.

2.10 Validação do modelo de ajuste:

O modelo foi validado de forma análoga ao item 2.5 (Figura 15).

Figura 15: Validação do modelo

2.11 Interpolação por Krigeagem ordinária #2:

Após realizado o ajuste foi feita a krigeagem (A grade e a superfície estão na Figura 16).

Figura 16: Grade e superficie da Krigeagem.

2.12 Visualização da superfície de argila oriunda do modelo anisotrópico

A superficie com escala pode ser visualizada na Figura 17.

Figura 17: Classificação dos teores de argila.

3 Análise dos resultados

A pratica deste laboratório nos permitiu uma aproximação ao software SPRING, a qual foi particularmente muito útil para quem nunca teve contato com o software. As principais aplicações puderem ser entendidas, e o roteiro disponibilizado, além de esclarecer dúvidas conceituais pode ser utilizado para realizar novos projetos.

4 Bibliografia:

CAMARA, G.; SOUZA, R. C. M.; FREITAS, U. M.; GARRIDO, J. SPRING: Integrating remote sensing and GIS by object-oriented data modelling. **Computers & Graphics**. v. 20, n.3, p. 395-403, Mai/Jun, 1996.