

Ministério da Ciência, Tecnologia e Inovação

SER-300 INTRODUÇÃO AO GEOPROCESSAMENTO: ÁLGEBRA DE MAPAS

Rodolfo Georjute Lotte

Relatório do Laboratório 04 apresentado na disciplina de Introdução ao Geoprocessamento (SER-300) para nota parcial no programa de doutorado em Sensoriamento Remoto (SER/INPE)

São José dos Campos-SP <http://urlib.net/>

LISTA DE FIGURAS

<u> </u>

2.1	Geração de Grade Retangular: PI Teores_Cromo	5
2.2	Geração de Grade Retangular: PI Teores _C obalto. $\ldots \ldots \ldots \ldots \ldots \ldots$	6
2.3	Mapa Ponderado da Geologia utilizando LEGAL	7
2.4	Mapeamento da do PI Teores_Cromo utilizando lógica <i>Fuzzy.</i>	8
2.5	Grade do PI Teores_Cobalto, gerada por meio da lógica <i>fuzzy.</i>	9
2.6	Cruzamento dos PIs Cromo_Fuzzy e Cobalto_Fuzzy por meio da função	
	Fuzzy Gama.	10
2.7	Parâmetros do Suporte à Decisão	11
2.8	Criação do PI Cromo_AHP	12
2.9	Fatiamento no Geo-Campo Gama_Fuzzy.	13
2.10	Fatiamento no Geo-Campo Cromo_AHP.	14
2.11	Mapa de Potencialidade de Cromo gerados pelas técnicas de AHP e Fuzzy	
	Gama	15

1 INTRODUÇÃO

O presente relatório consiste na apresentação das atividades propostas no laboratório 4 da disciplina de Introdução ao Geoprocessamento, abordando a utilização da álgebra de mapas. Objetivo deste trabalho é a seleção de áreas potenciais a prospecção de Cromo, a partir das técnicas AHP (Processo Analítico Hierárquico) e *Fuzzy Logic*. Os dados foram obtidos através de campanhas de campo realizadas na região de Pinheiros Altos, município de Piranga, Minas Gerais, no período de Abril a Julho de 1996, em uma área de 51, $33Km^2$. Na próxima seção, serão apresentadas a evolução de cada etapa, seguindo o roteiro pré-estabelecido.

2 DESENVOLVIMENTO

2.1 Exercício 1. Geração de Grade Regular para o PI: Teores_Cromo

Ø	9	SPRING-4.3.	3 (06/0	5/2008)) -[Pirar	nga][Crom	no]					- 🗆 🗙
<u>Arquivo Editar Exibir Imagem Iemático MNT C</u> adastral <u>R</u>	ede A <u>n</u> álise	Exec <u>u</u> tar <u>F</u> e	rramenta	is Aju <u>d</u> a								
🔝 😼 🜌 🔂 Auto 💌 1/ 74347	Inativa 🔤	- 🔣 🖻	I + F	₽ O !	۷. 🗵	2 2 2	X 4	- 5	8			
	+ +	+ +										+
Daipal da C 📼 🗖 X	59,4 67.9 + +	69.5 66.9 +	73.7	79.5	82.3 8	7.6 99.6	90.6	83.7	83.1	83.3	74.3	+
Cotoportan 44.9	45.3 62.8	70.7 75.1	78.7	81.5	81.1 8	4.9 90.5	73.3	76.2	78.6	82.0	73.6	
(V) Amostras												+
() Drenagem 44	2 61.8	66.7 95.0	77.9	80.3	80.3 8	2.0 B1.8	74.7	74.7	76.8	77.1	73.0	+
() Geologia () Recorte												
81.6	83.7 65.6	61.6 73.1	64.6	74.4	80.5 8	4.2 73.6	78.7	78.8	79.1	75.8	72,6	+
64.9	74.2 67.0	68.1 70.6	70.4	75.4	76.0 9	0.1 53.2	76.5	79.9	82.7	64.4	Ζ.	
Planos de Informação <u>V</u>										+	+	+
() Teores_Cobato (Glm) Teores_Cromo 70,8 :	74.6 72.3	69.8 72.5	74.3	78.6	76.7 7	8.B B0.7	B1.2	B2.6	B1.3	70.4	+	+
04.0		+ + +	+	4	0.2.1 7	4.5 07.5	67.8	66.6	66,5	91.9	T.	+
71.1 :	70.2 68.0	69.0 71.9	80.3	86.6	93.8 9	0.7 111.2	90.6	88.4	90.7	91.7	75.0	
Prioridade: 300 CR												
Amostras Isolinhas	64.2 + +	65.5 72.0 + +	83.5	90.6	94.7 9	1.2 85.7	89.6	86.6	91.2	95.0	97.4	
Grade Texto		64.4 74.4	83.8	90.6	93.7 9	4.5 98.1	111.9	BB.6	94.5	96.5	99.G	106.0
Colorizona Consultar												
Controle de Telas	59.8 62.3 + +	67.1 75.8	82.5	87.5	93.5 9	9.9 103.6	107.1	102.9	102.6	106.1	101.3	105.0
Ativar: 0 1 0 2 0 3 0 4 0 5		0.0	01.1		07.4 1/	105.1	100.1	100.0	107.7	107.0	100.7	1000
Exable: 2 3 4 5		°+′ ′+°	°‡'	64.0	93.4 IX	19.2 10p.1	+	+	+.1	107.6	+	100.0
Acoplar: 2 3 4 5 5	57.2 61.9	61.9 61.3	79.G	95.9 1	110.5 10	07.2 107.5	113.2	115.9	106.7	108.0	114.4	106.0
Ampliar: 1 C 2 C 4 C 8												
Fechar Ajuda 540 3		60.7 45.1 + +	71.3	101.0 1	104.7 10	116.2	136.0	138.4	117.2	114.8	118.2	100.0
54.5 1	54.9 59.8	60.3 60.5	74.1	92.7 1	100.5 10	8.9 127.6	151.9	151.8	133.3	126.9	124.3	106.0
							+	+	+	+	+	
610	54.1 53.8 + +	60.2 69.2 + +	76.1	86.3 1	101.5 11	12.3 127.2	143.8	147.5	142.2	133.8	129.5	106.0
											PI: Teor	res_Cromo

Figura 2.1 - Geração de Grade Retangular: PI Teores_Cromo.

2.2 Exercício 2. Geração de Grade Regular para o PI: Teores_Cobalto.

2.3 Exercício 3. Gerar Mapa Ponderado da Geologia.

Neste exercício é gerado o mapa ponderado da Geologia por meio da linguagem LEGAL no SPRING. Abaixo é mostrado o código utilizado para a geração do mapa exibido na Figura 2.3.

```
Código-Fonte 2.1 - LEGAL: Mapa Ponderado da Geologia.
```

```
{
1
      //Declaracoes
2
      Tematico geo ("Geologia");
3
      Numerico geoP ("Geologia_Ponderada");
4
      Tabela geoT (Ponderacao);
5
6
      //Instanciacoes
7
      geo = Recupere (Nome="Mapa_Geologico");
8
      geoP = Novo (Nome = "Geologia_Ponderada" , ResX = 30, ResY = 30,
9
      Escala = 50000, Min = 0, Max = 1);
10
```


Figura 2.2 - Geração de Grade Retangular: PI Teores_Cobalto.

```
geoT = Novo (CategoriaIni = "Geologia",
11
                             "Granito-Granodiorito" : 0,
12
                             "Arvs - Unidade Superior" : 0,
13
                             "Arvm - Unidade Media" : 0.7,
14
                             "mv1 - Sto Antonio Pirapetinga" : 1,
15
                             "mb - Sto Antonio Pirapetinga" : 0.5,
16
                             "Asap - Sto Antonio Pirapetinga" : 0.7);
17
18
      //Operacao
19
      geoP = Pondere (geo, geoT);
20
21
```

2.4 Exercício 4. Mapear a grade (representação) do PI Teores_Cromo utilizando *Fuzzy Logic*.

Neste exercício é gerado o mapa da grade do PI Teores_Cromo por meio da lógica *fuzzy* na linguagem LEGAL no SPRING. Abaixo é mostrado o código utilizado para a geração do mapa exibido na Figura 2.4.

Código-Fonte 2.2 - LEGAL: Mape
amento da grade do PI Teores_Cromo utilizando Fuzzy
Logic.

```
1 {
```

 $\mathbf{2}$

```
//Fuzzy cromo (ponto ideal com um teor de 1.855 e ponto de
```


Figura 2.3 - Mapa Ponderado da Geologia utilizando LEGAL.

```
cruzamento em 0.32)
      //Declaracoes
3
      Numerico cromo ("Amostras");
4
      Numerico cromofuzzy ("Cromo_Fuzzy");
5
6
      //Instanciacoes
7
      cromo = Recupere ( Nome= "Teores_Cromo" );
8
      cromofuzzy = Novo (Nome = "Cromo_Fuzzy", ResX=30, ResY=30, Escala
9
          =50000,
      Min=0, Max=1);
10
^{11}
      //Operacoes
12
      cromofuzzy = (\text{cromo} < 0.20)? 0 : (\text{cromo} > 1.855)? 1 : 1/(1 + (0.424))
13
          * ((cromo -
      1.855)^{2})));
14
   }
15
```

2.5 Exercício 5. Mapear a grade (representação) do PI Teores_Cobalto utilizando *Fuzzy Logic*.

Neste exercício é gerado a grade do PI Teores_Cobalto por meio da lógica *fuzzy* na linguagem LEGAL no SPRING. Abaixo é mostrado o código utilizado para a

æ		S	PRING-	4.3.3 (06,	/05/2008)	-[Pirang	ja][Cro	mo]						 ×
Arquivo Editar Exibir Imagem Temático MN	T <u>C</u> adastral	Rede Análise	Executar	<u>F</u> erramer	ntas Aju <u>d</u> a									
🎒 🎁 🚝 🖉 🔊 Auto 💌 1/ 7434	7	Inativa	- IN	ヨ +	🦛 👩 🦳		S* 9	C 📿 I	(?				
	+ +	+ +		+	+ +		+		+	+ +	+			
	1.000 1.00	0 1.000 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	1.00	0 1.000	+		
🛃 Painel de C 🗕 🗆 🛛 🗡	1000 100	0 1000 100		1.000	000 1.000	1.007		rado r		000 1.00				
Categorias	+ +	+ +	+	+	+ +	+	+1	Tapp 1	+	+ +	0 1.000	*• +		
(V) Amostras	1.000 -1.00	0 1.00 1.00	0 1.000	1.000	L000 1.00D	1.000	1.000	1.000 1	1.000 1.	.000 1.00	0 1.000	4.		
(V) Cromo_Fuzzy		+ +	-	+ 1	+- +-	+	÷	+	+	+ +	+	+		
() Geologia	1.000 1.00	0 1.000 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	.000 1.00	0 1.000			
() Geologia_Ponderada		· •	Ŧ	4	· +*		- 1							
() Recorte	1.000 1.00	1.000 1.00	0 1.000	1.000 1	.000 1.000	-1.000	1 000	1.000 1	1.000 1.	.000 1.00	0 4.10-	+		
Planos de Informação V		L +		+		÷+	1.5							
(Glm) Cromo_Fuzzy	1.000 1.00	xii 000 1.00	0 1.000	1.000 1	1.000	1.000	1.000	1.000 1	1.000 1.	.poo 1.qo	۴ ۲	+		
	4 000 4 00					4.000	4 000							
	+ +	10 1.400 1.4	u 1.000	+	+ +	1.000	+	+	+	+ +	÷ +	+		
	1.000 1.00	0 1.000 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	000 1.00	0 1.000	2		
	+ +	+ +	+	+	+ +	.÷.,	- <u>F</u> T-	+	+	+ +	+	+		
Phondade: 300 CR	1.000 1.00	0 1.00 1.00	0 1.000	1.000 1	.000 1.000	1.000	1,000	1.000 1	1.000 1.	.000 1.00	0 1.000	4.16		
🔽 Amostras 🔽 Isolinhas	T T		Ŧ	Ŧ	т т	Ŧ	14	· ·	т	тт	Ŧ			
Grade Texto	1.000 1.00	00 1.00 0 1 .00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	ы <u>х</u> оо 1.	.poo 1.oo	0 1.000	1.000		
I IN I♥ Imagem								+						
Selecionar Consultar	1.000 1.00	0 1.000 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	.000 1.00	0 1.000	1.000		
Controle de Telas	1000 100	1000 100	0 1000	1.000 1	000 1000	1.000	1.000	1.000 1	000 1	000 1.00	0 1000	1.000		
	+ +	+ +	+	+	+ +	+	+	+	+	+ +	+	+		
	1.000 1.00	0 1.000 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	.000 1.00	0 1.000	1,000		
Acopiar: 2 3 4 5	+ +	+ +	+	+	* +	- +	+	+	+	++ +	+	+		
Ampliar: © 1 C 2 C 4 C 8	1.000 1.00	0 1.000 1.0	0. 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	.000 1.00	0 1.000	1.000		
Ajuda	т т	т т	-	. T	т т	Ŧ	Ŧ	Ŧ	Ŧ	т т	Ŧ	Ŧ		
	1.000 1.00	0 1.000 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	000 1.00	0 1.000	1.000		
								1						
	1.000 1.00	0 1.00 1.00	0 1.000	1.000 1	.000 1.000	1.000	1.000	1.000 1	1.000 1.	.D00 1.00	0 1.000	1.000		
											DL C	4		
					J						PI: CI	romo_Fuzz	y	1

Figura 2.4 - Mapeamento da do PI Teores_Cromo utilizando lógica Fuzzy.

geração do mapa exibido na Figura 2.5.

Código-Fonte 2.3 - LEGAL: Mapeamento da grade do PI Teores_Cobalto utilizando *Fuzzy* Logic.

```
{
1
      // Fuzzy cobalto ( ponto ideal com um teor de 150.92 ppm e ponto de
2
          cruzamento em 80ppm)
      //Declaracoes
3
      Numerico cobal ("Amostras");
4
      Numerico cobalfuzzy ("Cobalto_Fuzzy");
5
6
      //Instanciacoes
\overline{7}
      cobal = Recupere ( Nome= "Teores_Cobalto" );
8
      cobalfuzzy = Novo(Nome = "Cobalto_Fuzzy", ResX = 30, ResY = 30,
9
          Escala = 50000, Min = 0, Max = 1);
10
      //Operacoes
11
      cobalfuzzy= (cobal <60) ? 0 : (cobal >150.92)? 1 : 1/( 1
12
          +(0.000198*((cobal - 150.92)^2)));
13
   }
```


Figura 2.5 - Grade do PI Teores_Cobalto, gerada por meio da lógica fuzzy.

2.6 Exercício 6. Cruzar os PIs Cromo_Fuzzy e Cobalto_Fuzzy utilizando a função *Fuzzy Gama*.

Neste exercício é realizado o cruzamento dos PIs Cromo_Fuzzy e Cobalto_Fuzzy por meio da função *Fuzzy Gama* na linguagem LEGAL no SPRING. Abaixo é mostrado o código utilizado para a geração do mapa exibido na Figura 2.6.

Código-Fonte 2.4 - LEGAL: Cruzamento dos PIs Cromo_Fuzzy e Cobalto_Fuzzy utilizando a função *Fuzzy Gama*.

```
{
1
      //Declaracoes
2
      Numerico cobal("Cobalto_Fuzzy"), cromo("Cromo_Fuzzy"), geol
3
      ("Geologia_Ponderada");
4
      Numerico gama ("Gama_Fuzzy");
5
6
      //Instanciacoes
7
      cobal = Recupere (Nome= "Cobalto_Fuzzy");
8
      cromo = Recupere (Nome= "Cromo_Fuzzy");
9
      geol = Recupere (Nome= "Geologia_Ponderada");
10
      gama=Novo (Nome="Gama_Fuzzy", ResX=30, ResY= 30, Escala=50000, Min
^{11}
          =0, Max=1);
12
      //Operacoes
13
```


Figura 2.6 - Cruzamento dos PI
s Cromo_Fuzzy e Cobalto_Fuzzy por meio da função $Fuzzy\ Gama.$

2.7 Exercício 7. Criar o PI Cromo_AHP utilizando a técnica de suporte à decisão AHP (Processo Analítico Hierárquico).

Para a criação do PI Cromo_AHP, neste exercício, é utilizado a ferramenta de Suporte à Decisão (AHP), Figura 2.7.

Utilizando-se a linguagem LEGAL (Código-Fonte 2.5), é possível gerar o mapa de Cromo_AHP, Figura **??**.

Código-Fonte 2.5 - LEGAL: PI Cromo_AHP utilizando a técnica de suporte à decisão AHP (Processo Analítico Hierárquico).

1 {

2

- // Pesos a ser aplicados
- 3 // Cromo_Fuzzy = 0.733
- $_4$ // Cobalto_Fuzzy = 0.199
- 5 // Geologia_Ponderada = 0.068

Gama_Fuzzy_Lito Geologia Geologia_Ponder Recorte	ologia ada		Exibi	r
Critér	io	Peso	Critério	
Cobalto_Fuzzy	5	Melhor	Cromo_Fuzzy	<=>
Cobalto_Fuzzy	8	Criticamente Melhor	Geologia_Pondera	<=>
Cromo_Fuzzy	4	Moderadamente Melho	Geologia_Pondera	<=>
		Igual	•	<=>
		Igual	•	<=>
		Igual	•	<=>
		Igual	•	<=>
		Igual	•	<=>
		Igual	•	<=>
		Igual	•	<=>
	Razão	de Consistência 0.081		

Figura 2.7 - Parâmetros do Suporte à Decisão.

```
// Razao de consistencia
6
      // CR = 0.081
7
      // Programa em LEGAL
8
      // Este programa deve ser completado
9
      // pelo usuario para incluir os dados
10
      // apresentados entre os sinais de > IMPORTANTE !
11
      // Definicao dos dados de entrada
12
      Numerico var1 ("Cromo_Fuzzy");
13
      Numerico var2 ("Cobalto_Fuzzy");
14
      Numerico var3 ("Geologia_Ponderada");
15
16
      // Definicao do dado de saida
17
      Numerico var4 ("<Cromo_AHP>");
18
19
      // Recuperacao dos dados de entrada
20
      var1 = Recupere (Nome="<Cromo_Fuzzy>");
21
      var2 = Recupere (Nome="<Cobalto_Fuzzy>");
22
      var3 = Recupere (Nome="<Geologia_Ponderada>");
23
^{24}
      // Criacao do dado de saida
25
      var4 = Novo (Nome="<Cromo_AHP>", ResX=<30>, ResY=<30>, Escala
26
          = <50000>, Min=0, Max=1);
27
      // Geracao da media ponderada
28
      var4 = 0.733 * var1 + 0.199 * var2 + 0.068 * var3;
29
   }
30
```


Figura 2.8 - Criação do PI Cromo_AHP.

2.8 Exercício 8. Realizar o Fatiamento no Geo-Campo Gama_Fuzzy.

Neste exercício é realizado o fatiamento no Geo-Campo Gama_Fuzzy na linguagem LEGAL no SPRING. Abaixo é mostrado o código utilizado para a geração do mapa exibido na Figura 2.9.

Código-Fonte 2.6 - LEGAL: Fatiamento no Geo-Campo Gama_Fuzzy.

```
{
\mathbf{1}
       //Declaracoes
\mathbf{2}
       Numerico num ("Gama_Fuzzy");
3
       Tematico tem ("Fatiamento");
4
       Tabela tab(Fatiamento);
\mathbf{5}
6
       //Instanciacoes
7
       num = Recupere (Nome = "Gama_Fuzzy");
8
       tab = Novo (CategoriaFim = "Fatiamento",
9
       [0.0, 0.2] : "Background",
10
       \begin{bmatrix} 0.2 \ , \ 0.5 \end{bmatrix} : "Baixo Potencial",
11
       [0.5, 0.7] : "Medio Potencial",
12
       [0.7, 1.0] : "Alto Potencial" );
13
14
       tem = Novo (Nome = "FAT_Gama_Fuzzy", ResX=30, ResY=30, Escala=50000)
15
```

```
16
17  //Operacoes
18  tem = Fatie (num, tab);
19 }
```


Figura 2.9 - Fatiamento no Geo-Campo Gama_Fuzzy.

2.9 Exercício 9. Realizar o Fatiamento no Geo-Campo Cromo_AHP.

Neste exercício é realizado o fatiamento no Geo-Campo Cromo_AHP na linguagem LEGAL no SPRING. Abaixo é mostrado o código utilizado para a geração do mapa exibido na Figura 2.10.

```
Código-Fonte 2.7 - LEGAL: Fatiamento no Geo-Campo Cromo_AHP.
```

```
{
1
      //Declaracoes
2
      Numerico num ("Cromo_AHP");
3
      Tematico tem ("Fatiamento");
4
      Tabela tab(Fatiamento);
5
6
      //Instanciacoes
7
      num = Recupere (Nome = "Cromo_AHP");
8
      tab = Novo (CategoriaFim = "Fatiamento",
9
      [0.0, 0.2] : "Background",
10
```

```
[0.2, 0.5] : "Baixo Potencial",
11
       \left[ \left. 0\,.\,5\,, ~~0\,.\,7 \right] : "Medio Potencial",
12
       [0.7, 1.0] : "Alto Potencial" );
13
14
       tem = Novo (Nome = "FAT_Cromo_AHP", ResX=30, ResY=30, Escala=50000);
15
16
       //Operacoes
17
       tem = Fatie (num, tab);
18
19
   }
```


Figura 2.10 - Fatiamento no Geo-Campo Cromo_AHP.

2.10 Exercício 10. Etapa Final

Na Figura 2.11 é exibido o mapa geológico de Piranga, tal que são exibidos as potencialidades de Cromo.

Figura 2.11 - Mapa de Potencialidade de Cromo gerados pelas técnicas de AHP e Fuzzy Gama.

3 Considerações finais

Observou-se algumas diferenças entre os mapas temáticos gerados pela técnica de Fuzzy e a AHP. Dentre elas pode-se citar que as classes de médio potencial foram mais concordantes. Entretanto, as de baixo e alto foram bastante diferentes entre si. A técnica por lógica *fuzzy* mostrou-se mais tolerante ao mapa geológico, enquanto a AHP mostrou efeitos maiores das grades interpoladas de Cromo e Cobalto.