

LABORATÓRIO 5

Disciplina SER-300: Introdução ao Geoprocessamento

Carolline Tressmann Cairo

São José dos Campos

2016

Introdução

O laboratório 5 teve o objetivo de explorar por meio de procedimentos geoestatísticos a variabilidade espacial de propriedades naturais amostradas e distribuídas espacialmente. A exploração geoestatística dos dados foi norteada por meio de dois parâmetros: o primeiro isotrópico, e o segundo anisotrópico. As etapas empregadas foram: análise exploratória dos dados; análise estrutural (cálculo e modelagem do semivariograma) e realização de inferências (Krigeagem ou Simulação).

Os dados utilizados, de propriedade do Centro Nacional de Pesquisas de Solos (CNPS -RJ), foram obtidos no levantamento dos solos da Fazenda Canchim, em São Carlos -SP. Estes se referem a uma amostragem de 85 observações georreferenciadas coletadas no horizonte Bw (camada do solo com profundidade média de 1m). Dentre as variáveis disponíveis, selecionou-se para estudo o teor de argila.

A partir da Krigeagem obteve-se a variação espacial do teor argila no solo da Fazenda Canchim. O teor de argila ao longo do perfil foi classificado segundo Calderano Filho et al. (1996) como: (1) MUITO ARGILOSO: solos que apresentam 59% ou mais de argila; (2) ARGILOSO: solos que apresentam de 35% a 59% de argila; (3) MÉDIO: solos que apresentam de 15% a 35% de argila; e (4) ARENOSO: solos que apresentam menos de 15% de argila.

Este relatório vai apresentar na sequência os resultados das 14 atividades propostas.

Atividades Realizadas

Exercício 1. Carregar o banco de dados / Ativar o projeto / Vizualização dos PI's

Banco de Dados 🛛 – 🗖 🗙
Diretório C:/Users/Carolline/Desktop/Lab_geo Banco de Dados Lab5_SER300_BD_SaoCarlos
Nome: Lab5_SER300_BD_Sa Gerenciador: Access
Criar Ativar Suprimir Fechar Ajuda Banco de Dados corrente Lab5_SER300_BD_SaoCarlos

Figura 1 - Ativar banco de dados "São Carlos"

🛲 Projetos 🗕 🗆 🗙
Projetos
Canchim
Nome: Canchim
Projeção
Projeção de Referência
Projeção
Retângulo Envolvente
Coordenadas: C GMS C GD 🕞 Planas
X1: 204000.0000 X2: 211000.0000
Y1: 7565000.0000 Y2: 7575000.0000
Hemisfério: C N 📀 S C N 🕞 S
Criar Ativar Desativar Alterar Suprimir
Fechar Ajuda
Projeto corrente: Canchim

Figura 2 - Ativar projeto "Canchin" (UTM/Ellipsoid->Hayford)

Figura 3 - Vizualização dos PI's "Amostra_Campo" e "Limites"

Exercício 2. Análise exploratória das amostras de argila

No Spring a análise exploratória dos dados é realizada por meio de estatísticas univariadas e bivariadas. As estatísticas univariadas fornecem um meio de organizar e sintetizar um conjunto de valores, que se realiza principalmente por meio do histograma. As estatísticas bivariadas fornecem meios de descrever o relacionamento entre duas variáveis, isto é, entre dois conjuntos de dados ou de duas distribuições.

Este procedimento tem como objetivo familiarizar o analista de Geotecnologias às variáveis antes de iniciar os procedimentos de manipulação dos dados já existentes e a geração de novos dados.

Figura 4 - Análise exploratória dos dados de argila - estatística descritiva / histograma / gráfico de probabilidade normal

- CASO ISOTRÓPICO

Exercício 3. Análise da variabilidade espacial por sermivariograma

Para melhorar a forma do semivariograma (para a mais próxima de um modelo ideal) foi necessário alterar os parâmetros de Lag. Os parâmetros utilizados foram: (1) No. Lag = 4; (2) Incremento = 968; e (3) Tolerância = 484.

Figura 5 - Geração do semivariograma

Exercício 4. Modelagem do semivariograma experimental

Esta parte implica em ajustar o semivariograma de acordo com o modelo experimental (matemático) que melhor represente os valores de amostras de argila utilizados na elaboração do semivariograma. Para tanto, foi adotado o modelo gaussiano, que apresentou o melhor ajuste entre os resultados modelados e os valores amostrados. A partir do modelo definido, os parâmetros do modelo, como efeito pepita, contribuição, ângulo anisotrópico e os alcances mínimo e máximo, foram definidos para posterior utilização na krigeagem.

#	SPRING-5.2.4 [L	ab5 SER300 BD SaoCarlos	[Canchim]			- 🗇 ×
Arquivo Editar Exibir Imagem Temático MN	NT Cadastral Rede Análise SCarta Executar Ferrament	11	Rel	atório de Dados		- 0
🛢 🖬 🥒 🗖 😽 📢 🔍 घ	+ 💠 0 🗞 🖉 🍳 🤇 🖧 🖙 🐴 🖥 🕶 🗞 🕶					
Painel de Controle 🗗	×	AJUSTE	AJUSTE DO SEMIVARIOGRAMA			
Tela Ativa : Principal PI Disponíveis PI Selecionados		Sumário: Arquivo: Ci/Users/Carolline/Desktop/Lab_geo\Lab5_SER300_BD_SacCarlos/Canchim/GeoStatistic/argila_0. No. de varávers: 3 No. de Lags: No. de Lags:				
Ajuste de Semivariogra – 🗆 🗙	🧖 Parâmetros Estruturais 🗕 🗆 📩	Parâmetros iniciais:	129 524			
Ajuste	Parâmetros Número de Estruturas: 1 2 3 	Para modelo transitivo: Gaussiano Contribuição (C1): 210.195 Alcance (à): 2408.269				
Número de Estruturas	Efeito Pepita: 143.743	Modelo de Semivariogra	na Gaussiano			
€ 1 C 2 C 3	Primeira Estrutura	No. Akaike	Efeito Pepita	Contribuição	Alcance	
Modelos	Tipo: Gaussiano 💌	1 -	9.929 145 11.704 143	. 434	198.536 204.116	2997.992 3162.341
Modelo 1: Gaussiano	Contribuição: 204.454 Ângulo Anis.: 0	3	41./13 143	./43	204.454	31/6.39/
Modelo 2: Esférico	Alcance Máx.: 76.397 Alcance Mín.: 76.397					
Modelo 3: Esférico 👻	Segunda Estrutura		Modelo de Ajuste	= Gaussiano -	- 🗆 🗙	
Verificar Aiustes	Tipo: Esférico 💌	A		· e. 🔺 🔿 🙆	🔅 🛅 » Ajuda	.
argila 0.var	Contribuição: Ângulo Anis.:				<u> </u>	-
signa_oron	Alcance Máx.: Alcance Mín.:	°	390	-		
	Terceira Estrutura		300	2		
	Tipo: Esférico <u>v</u>		2 200			
	Contribuição: Ângulo Anis.:		▶ ₹			
Evenutar Definir Earbar Aiuda	Alcance Máx.: Alcance Mín.:		100			
Executer Prove Ajore	Salvar Fechar Ajuda					
			0 1000	2000 3000 40	00 5000	
☐ Grade ☐ Texto			0000	Distância		
TIN F Imagem						
	T + - × Principal Auxiliar / Tela 2 / Tela 3 / Tela	4./				
			PI: argila			
💶 🚞 🧶 🚛 🌈	🔌 🔼 🔼 📶				- 🖹 🖬 👘 a	18:55

Figura 6 - Ajuste do semivariograma

Exercício 5. Validação do modelo de ajuste

O processo de validação do modelo de ajuste é uma etapa que precede as técnicas de krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais conhecidos. A análise dos resultados foi realizada por meio de uma série de análises gráficas de figuras elaboradas com os resultados calculados sobre o modelo ajustado. Entre estas formas gráficas estão o diagrama espacial do erro, histograma do erro, estatística do erro e diagramas de valores observados versus estimados.

Exercício 6. Interpolação por krigeagem ordinária

Uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem. O resultado da aplicação da krigeagem a m conjunto de dados retorna a uma matriz de valores estimados para a variável e uma matriz da variância resultante do processo estatístico aplicado. Os procedimentos realizados nessa etapa foram: (1) krigeagem; (2) transformação de grade para imagem; (3) recorte da imagem com os limites da região utilizando o LEGAL; e (4) fatiamento do recorte da imagem do teor de argila utilizando o LEGAL, gerando um mapa temático do teor de argila.

Figura 8 - Krigeagem ordinária

Figura 10 - Transformação da grade em imagem - grade da variância do teor de argila

Figura 11 - Recorte da imagem da distribuição espacial do teor de argila utilizando o LEGAL

Figura 12 - Fatiamento do recorte da imagem da distribuição espacial do teor de argila utilizando o LEGAL - Mapa temático do teor de argila em Canchin

- CASO ANISOTRÓPICO

Exercício 7. Detecção de anisotropia

A superfície de semivariograma é um gráfico, 2D, que fornece uma visão geral da variabilidade espacial do fenômeno em estudo. É utilizado para detectar os eixos de Anisotropia, isto é, as direções de maior e menor continuidade espacial da propriedade em análise. Também conhecido como *Mapa de Semivariograma*.

Analisando o semivariograma de superfície, nota-se que a presença da anisotropia é evidente. O espalhamento é mais intenso na direção de aproximadamente 17 graus e menos intenso na direção de aproximadamente 107 graus.

Figura 13 - Geração do semivariograma de superfície para detecção da anisotropia

Exercício 8. Geração de semivariogramas direcionais

Os parâmetros utilizados foram: (1) No. Lag = 4; (2) Incremento = 968; (3) Tolerância = 484; e (5) Parâmetros da direção: Dir $1 = 0^{\circ}$ e Tol $1 = 90^{\circ}$ / Dir $2 = 17^{\circ}$ e Tol $1 = 35^{\circ}$ / Dir $3 = 107^{\circ}$ e Tol $3 = 35^{\circ}$. O gráfico gerado ilustra 3 semivariogramas: um relativo à direção de maior continuidade (~17°), outro à direção de menor continuidade (~107°) e o semivariograma omnidirecional, que foi gerado somente a título de ilustração, para mostrar que o mesmo representa uma média entre os semivariogramas de maior e menor alcances.

Figura 14 - Geração dos semivariogramas direcionais

Exercício 9. Modelagem dos semivariogramas direcionais

A modelagem dos semivariogramas direcionais foi realizada primeiro para a direção de maior continuidade (17°) e depois para a direção de menor continuidade (107°).

Figura 15 - Direção de maior continuidade (17°)

Figura 16 - Direção de menor continuidade (107°)

Exercício 10. Modelagem da anisotropia

Esta etapa resumidamente consiste em unir os dois modelos anteriormente definidos num único modelo consistente, o qual descreva a variabilidade espacial do fenômeno em qualquer direção. Para a modelagem da anisotropia, o modelo esférico foi o que mais se ajustou aos semivariogramas direcionais. Os parâmetros adotados para essa etapa se encontram na figura abaixo.

Figura 17 - Modelagem da anisotropia - ajuste dos semivariogramas direcionais

Exercício 11. Validação do modelo de ajuste

Esta etapa segui o mesmo procedimento realizado para o semivariograma omnidirecional. Foram extraídas as medidas estatísticas obtidas a partir do modelo da anisotropia, estas medidas são dispostas no diagrama espacial do erro, histograma do erro, estatística do erro e diagrama de valores observados versus estimados.

Figura 18 - Validação do modelo de ajuste

Exercício 12. Interpolação por krigeagem ordinária

Esta é a etapa final do processo de geração dos mapas de probabilidade dos teores de argila utilizando o modelo elaborado sobre o conceito de anisotropia da distribuição desta variável. Para realizar esta tarefa foi adotada mais uma vez uma krigeagem ordinária ou linear, que retornou a um mapa dos possíveis teores de argila e um mapa da variância da interpolação. Os procedimentos realizados nessa etapa foram: (1) krigeagem; (2) transformação de grade para imagem; (3) recorte da imagem com os limites da região utilizando o LEGAL; e (4) fatiamento do recorte da imagem do teor de argila utilizando o LEGAL, gerando um mapa temático do teor de argila.

Figura 19 - Krigeagem ordinária - grade da espacialização dos teores de argila - anisotropia

Figura 20 - Transformação da grade em imagem - grade do teor de argila

Figura 21 - Transformação da grade em imagem - grade da variância do teor de argila

Figura 22 - Recorte da imagem da distribuição espacial do teor de argila utilizando o LEGAL

Figura 23 - Fatiamento do recorte da imagem da distribuição espacial do teor de argila utilizando o LEGAL - Mapa temático do teor de argila em Canchin - Anisotrópico

Exercício 13. Análise dos resultados

Comparando a variabilidade espacial do teor de argila, entre o caso isotrópico e anisotrópico.

Figura 24 - Comparação do fatiamento para o (A) caso isotrópico e (B) caso anisotrópico

Computou-se o teor médio de argila para cada classe de solo, a partir das superfícies isotrópicas e anisotrópicas, e a tabela de atributos foi atualizada. Este procedimento foi realizado no LEGAL.

Figura 25 - Tabela de atributos com o teor médio de argila para a superfície isotrópica e anisotrópica

Figura 26 - Agrupamento por quartil para os atributos (A) "Teor_Argila_Iso" e (B) "Teor_Argila_Anis"

Conclusão

Por meio deste Laboratório 5 foi possível obter conhecimentos de análise geoestatística, aplicando-os no software SPRING e analisando os seus resultados a partir das imagens, semivariogramas e relatórios gerados. Além disso, foi possível perceber que as operações utilizando geoestatística tem um bom potencial para modelar variáveis da natureza. A aplicação de krigeagem por semivariograma supondo anisotropia da variável argila e posterior relação com o tipo de solo, mostrou-se um pouco diferente do método supondo isotropia. Isso ocorreu pelo fato de que, uma vez identificado a direção preferencial da variação do parâmetro analisado por meio da geração do semivariograma de superfície é possível realizar uma estimativa mais precisa espacialmente da variável analisada.