

Laboratório 5 – Geoestatística Linear

Disciplina

Introdução ao Geoprocessamento - SER 300

Prof. Antonio Miguel Vieira Monteiro

Aluno: Matheus Caetano Rocha de Andrade

INPE, São José dos Campos.

Junho, 2013.

Introdução

Este relatório foi realizado de acordo com as proposições estabelecidas pelo Laboratório 5 da disciplina de Introdução ao Geoprocessamento.

O objetivo central do "Laboratório 5" foi explorar os procedimentos estatísticos implementados pelo SPRING. Através destes processos deve-se analisar a variabilidade espacial de propriedades naturais amostradas e distribuídas espacialmente (argila).

Os dados foram obtidos através de campanhas de campo realizadas no município de São Carlos, São Paulo. As amostras foram coletadas nas camadas de horizonte Bw de solos (profundidade média de 1m).

O exercício mostra a variação espacial do teor argila no solo da Fazenda Canchim. O teor de argila ao longo do perfil foi classificado segundo Calderano Filho et al., 1996 como é mostrado abaixo:

- · MUITO ARGILOSO: solos que apresentam 59% ou mais de argila;
- · ARGILOSO: solos que apresentam de 35% a 59% de argila;
- · MÉDIO: solos que apresentam de 15% a 35% de argila;
- · ARENOSO: solos que apresentam menos de 15% de argila

A exploração geoestatistica dos dados foi norteada por meio de dois parâmetros: o primeiro isotrópico, e o segundo anisotrópico. As etapas empregadas foram: análise exploratória dos dados; análise estrutural (cálculo e modelagem do semivariograma) e (c) realização de inferências (Krigeagem ou Simulação).

Os resultados deste Laboratório foram evidenciados ao longo dos tópicos a seguir.

1. Exercícios

O banco de dados São Carlos foi carregado e o projeto Canchim foi ativado no software SPRING.O Painel de controle foi ativado e a visualização dos PI's foi obtida como mostra a Figura 1. Neste laboratório, foi utilizado o banco de dados SER300_BD_SaoCarlos, e o projeto Canchim, com projeção UTM/Hayford, determinado pelas seguintes coordenadas: 47º 52' 0.46"O, 21º 59' 43,63"S; 47º 47' 49,36"O e 21º 54' 14,58"S.

Figura 1. Visualização dos Pl's.

Em seguida foi feita uma análise exploratória através da estatística descritiva, como mostrada na Figura 2. Para uma melhor visualização destas análises, ferramentas gráficas também foram geradas como: histograma (10 e 20 classes) e a probabilidade normal, como mostra a Figura 3 (a, b, c) respectivamente. Figura 2.

Imige Relation de Dados Crespois Imige Relation de Portos 65 Imige Notices 65 Imige No	📓 🛃 🔬 Auto 🔺 17 55306 Institute 🛫 🌆 🖼 🕂 🍄 🛈 🔍 🗹 🕵 🐼 😤	🖉 Painet de Contr 😑 💽 🗙
Abivar (F1 C 2 C 3 C 4 C 5 Salvar	Relatório de Dados ESTATISTICAS: agla Nomeo de Pontos 65 Nédia	Cstegoris (M Amotitis Campo (I Classin, Solo (I Classin, Solo (I Imagen (M Linites (I Mapa, Solos (M Amotitis (I Athretis (I Athretis (I Athretis (I Athretis (I Athr
	Salvar	Alivaci@ 1 C 2 C 3 C 4 C 5 Exebit: C 2 C 3 C 4 C 5

Figura 2. Análise exploratória: estatística descritiva.

(c)

Figura 2. Ferramentas gráficas: (a) histograma com 10 classes, (b) histograma com 20 classes, (c) probabilidade normal.

Nesse exercício foi aplicado, de duas maneiras, o método de interpolação espacial probabilística, a Krigeagem: primeiramente, supondo isotropia da distribuição espacial; e posteriormente, supondo a anisotropia – direção preferencial das variabilidade da variável em estudo.

Em ambos os casos, são seguidas as seguintes etapas: análise exploratória dos dados; geração de semivariograma; ajuste da curva gerada; validação do semivariograma; e aplicação da interpolação por krigeagem.

Em seguida foi analisada a variabilidade espacial através da geração do semivariograma, como mostra a Figura 3.

Figura 3. Geração do semivariograma.

O semivariograma acima quando comparado a um semivariograma ideal não apresenta uma forma adequada, assim os parâmetros lag, tolerância e incremento foram alterados para que sua forma fosse melhorada, como mostra a Figura 4.

Figura 4. Semivariograma com alteração dos parâmetros lag, tolerância e incremento.

Com estas alterações pode-se perceber que o semivariograma acima adequa-se a um semivariograma ideal. Em seguida foi modelado o semivariograma experimental, como mostra a Figura 5. E assim definidos os parâmetros dos modelos isotrópicos, como mostra a Figura 6.

	Pannel de Contr
Alstato de Semitvariograna Austin Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autonitico Autoni	Cetepties 390 M/America, Cenera 351 M/America, Cenera 351 Maga, Sold 312 Place & forbings 273 I althole 1 234 I althole Y 234 I althole Y 234 I althole Y 105 I althole Y 234
Padinebos Edudarais	Paraturane javo Water 1 Iolinati 1158 Paraturane javo Margaria 117 117 Fination Fination 117 117 Seleconve Consister 78 78 Margaria 11 2 C a C 4 C 5 39 39 Easter F 2 C a C 4 C 5 39

Relató	rio de Dados				
1	AJUSTE D	O SEMIVA	RIDGRAMA		
Sumário Arquir geo\La No. d No. d Parāme Eleib Para Cont Alcar	x ro: C.\Documer boratório_1\Lab e variáveis: 3 e Lags: 6 e Lags usados: tros iniciais: Pepila (Co): 1 modelo transfiv ibuição (C1): 2 cce (a): 2400.21	Its and Settings/E coratório_4/LAB_LI 6 129.524 x. Gaussiano 10.195 63 200 64 200 200 200 200 200 200 200 200 200 20	ci Uda'/Desktop/II EGAL\\SER300_8	IPE Wigue Naborato D_SaoCarlos/Canch	nio- im/GeoStatistic/argila_0.var
No.	Akaike	Eleito Pepita	Contribuição	Alcance	
1	-39.929	145.434	198.536	2997.992	
2	-41.704	143.649	204.116	3162.341	
3	-41.713	143.743	204.454 Salvat	116.31	
	Ара	gar	Fechar		Ajuda

Figura 5. Modelagem do semivariograma experimental.

Arquivo Editar Exibir Imagem Temático MINT Cadastral Rede Análise Exe	cutar Ferramentas Ajuda
🕃 🔯 🗲 🕢 🚺 Auto 💌 1/ 65906 Inativa	🔽 💹 🗏 + 🏘 0 🔍 🗾 😒 🧟
Ajuste de Semivariograma	🖉 Parâmetros Estruturais
Automático C Visual	Parâmetros Número de Estruturas:
Número de Estruturas © 1 C 2 C 3	Efeito Pepita: 118.854
Modelos Modelo 1: Gaussiano Modelo 2: Esférico Modelo 3: Esférico	Primeira Estrutura Tipo: Gaussiano 💌 Contribuição: 230.892 Angulo Anis.: 0 Alcance Máx.: 3989.20 Alcance Mín.: 3989.20
Verificar Ajustesargila_0.var	Segunda Estrutura Tipo: Esférico 💌 Contribuição: Ângulo Anis.: Alcance Máx.: Alcance Mín.:
Parâmetros Estruturais	Terceira Estrutura Tipo: Estérico Contribuição: Ângulo Anis.: Alcance Máx.: Alcance Mín.:
Executar Fechar Ajuda	Executar Fechar Ajuda

Figura 6. Definindo os parâmetros dos modelos isotrópicos.

Posteriormente foi feita a validação do modelo de ajuste, o qual precede as técnicas de krigeagem. Esta etapa é necessária pois permite avaliar a adequação do modelo proposto no processo. As etapas e os resultados são mostrados na Figura 7.

(a)

(b)

ESTATISTICAS DO ERRO e> Plano de Informação: argila e> Número de anostras 85 e> Média 0.310 e> Variância 147,929 e> Desvio Padrão 12183 e> Coeficiente de Variação 39,219 e> Coeficiente de Variação 333,33 e> Valor Mínimo 35,479 e> Valor Máximo 35,277	🚈 Relatório de Dados 🛛 📃 🗖 🔰	
ESTATISTICAS DO ERRO -> Plano de Informação: argila -> Número de anostras -> Número de anostras -> Média -> Námero de anostras -> Média -> Variância -> Desvio Padião -> Desvio Padião -> Coeficiente de Assimetria -> 0.313 -> Coeficiente de Curtose -> Valor Máximo -> Valor Máximo -> Valor Máximo -> Valor Máximo -> Celeciona -> Valor Máximo -> Consultar -> Controle de Telas -> Ativar: © 1 C 2 C 3 C 4 C 5		Fechar Painel de Contr 📘 🗆 🗙
Prioridade: 300 CR Image: Consultar: Image: Consultar: Image: Consultar: Image: Consultar: Selecionar: Consultar: Consultar: - Controle de Telas Ativar: Image: Consultar: Consultar:	ESTATISTICAS DO ERRO => Plano de Informação: argila => Número de amostras 85 => Média 0.310 => Variância 147.929 => Desvio Padrão 12.163 => Coeficiente de Variação -39.219 >> Coeficiente de Assimetria 0.313 => Valor Mínimo -35.479 => Valor Máximo 35.277	Categorias (V) Amostras_Campo () Classes_Solo () Imagem (V) Limites () Mapa_Geologia () Mapa_Solos Planos de Informação V () altimetria () altimetria () areia_fina () areia_grossa (A) argila () calcio
Salvar Exibir: 2 3 4 5 Acoplar: 2 3 4 5 Acoplar: 2 3 4 5	Salvar	Prioridade: 300 CR Image: Constraint of the state of the st

(d)

Figura 7. Validação do modelo de ajuste (a), Histograma de erro (b), estatística de erro (c), Diagrama de valores observados versus estimados (d).

Após a analise do modelo parte-se para o procedimento da krigeagem ordinária, as etapas e resultados são apresentados na Figura 8.

866 - Inativa 🔹 🎹 🔟 🕂 🍄 💽 📚 🖉 🖓 😫 🖉	🗖 Painel de Contr 🖃
	Categorias
Pl Alivo Nome: arpin	(V) Amostras_Campo () Classer_Solo () Imagem (V) Limites () Maga. Geologia
	[] Mapa_Solos
Tax Out the state	Planos de Informação
Definição de Guade Rez. X: [35.000000 Rez. Y: [50.000000 Retângulo Envolvente]	() altimetria () altinude () aresa_fina () aresa_grosta (A) orgán () calcio
Patâmetros de Interpolação Número de Pontos no Elipsóide de Busca Mínimo: 4 Máximo: [16 Elipsóide de Busca (Raio e Orientação) R. Mín: [12206.55] R. Máx: [12206.55] Angulo: [0	Prioridade: [300 CR]
- Saida Categoria Ptano de Informação:	Controle de Telas Ativación 1 C 2 C 3 C Exister C 2 C 3 C
Executar Fechar Ajuda	Acoptar: T 2 T 3 T Amoter C 1 C 2 C 4

(a)

(b)

rlos][Canchim]	
ede Análise Executar Ferramentas Ajuda	
🗌 Instive 🕑 🔟 🛨 🛃 🔍 🔍 🔍 🖉 🛠 🕱 🛠 🗶	🖪 Painel de Contr 🔳 🗖 🔀
	Categorias
30,1 28,1 23,5 15,7 11,0 15,2 18,4 17,3	(V) Limites () Mapa_Geologia
32,0 28,8 Jes 10,1 12,8 14,1 6,2 16,1	() Mapa_Solos () Mapa_drenagem () Mapa_vias
39.0 40.0 32.0 22.8 29.4 19.4 13.7 18.7	M Superficie
40.5 43.0 44.2 44.6 48.8 30.2 12.5 \$2.4	Planos de informação V [G] KRIG_ISD_argila () KRIG_ISD_argila_KV
37.7 37.4 20.3 44.0 40.2 34.7 22.6 34.9	
41.7 36.8 341 44.3 47.8 42.4 <u>44.</u> 3 34.8	
ديه ديد ايهن ديد ديد ميه مهد	Prioridade: 300 CR
30.6 34.6 37.4 39.4 30.2 44.6 45.8 44.1	I Grade I Testo I TIN I Imagem
30.0 20.5 - 32.4 30.0 27.5 30.3 40.3 41.7	Selectionat Consultar
39.5 37.4 a7.7 350 34.9 42.1 45.7 38.0	Ativac @ 1 C 2 C 3 C 4 C 5
41,2 Zeo zeo 24,2 32,0 41,0 45,1 45,2	Exople: 2 3 4 5 Acople: 2 3 4 5
40.8 38.0 Jai 20.8 32.6 37.2 38.8 42.8	Ampliat: 1 2 4 8 Fechar Ajuda
PI: KRIG	_ISO_argla

(c)

Figura 7. Inicializando o processo de krigeagem (a); definindo a categoria de saída (b); grade de krigeagem gerada (c).

O procedimento geoestatístico é finalizado, a etapa seguinte foi transformar a grade em imagem, as etapas e resultados são mostrados na Figura 8.

🖉 🚮 Auto 🔹 1/ 70153 In	stiva 💌 🚺	¥ + 🖗 0 象 Z S S S 🖉 🗢 🖇	🖉 Painel de Contr 💶 🗔 🔀
	-tt		Categorias
	30,1 28	1 23.5 15.7 13.0 15.2 18.4 17.3	(V) Linites
Geração de Imagem MNT 📃 🗆 🔀	32.0 29.1	a 144 141 148 141 62 141	[]Mapa_solos []Mapa_drenagem []Mapa_vias
Imagem: (* Nivel de Cinza) (* Sombreada	39.0 40.1	32.0 12.8 20.5 18.4 13.7 18.7	(V) Superficie
VMn: 9.406797 VMax: 56.464405			Planos de Informação V
Calegota de Saída.	41.5 43/) 44.2 44.5 44.8. 30.2 12.2 52.4	(G) KRIG_ISO_argla
Pi de Saída:	all a start and	$\gamma = \cdots = \gamma$	(Innia_iso_algia_n
Parlimetros de la minas la	37.7 37.	6 48.3 64.0 64.2 34.7 · 22.8 34.0	
anne a formail 45 Flavar in formail 45	41.7	Line in a line	
Current de Dataux (2010)	44. st	The star star . The star	n m
Exadelo de Helevo, Poziet	39.8 50.	40.0 31.7 51.9 54.1 53.3 43.3	Phondade: 300 CR
Executar Fechar Ajuda			F Amostras F Isotohas
	39.6 39	5 32.4 300 · 35.2 · 45.8 45.8 44.1	Vitade Texto
	(• •/	j un j inagen
	39.0 (36)	5 · 35,4 30,0 27,5 30,3 40,3 41,7	Selecionar Consultar
	301.5 3.7	Dirit we up an an wa	Ativer 6 1 C 2 C 3 C 4 C 5
	44 44		
	41.2 2	1 149 34.2 33.9 41.9 45.1 45.2	
	· /.	\cdot	Acopier. 1 2 1 3 1 4 1 5
	40.8 30H	√31.6 20.8 33.5 37.2 38.8 42.8	Ampliante 1 C 2 C 4 C 8
	V. 1.2		Fechar Ajuda

alise Executor	Ferramentas Ajuda	
alma 👻		🖉 Painel de Contr 🔳 🗆 🔀
	NEW MINT ALL THE THE THE TAX	Categorias
50,1	and and the the the the	() Classes_Solo (V) Imagem (V) Limites
32.0	and fine the last the last	[]Mapa_Geologia []Mapa_Solos
20'0	40.0 32.0 22.8 25.6 10.4 10.7 16.7	Planos de Informação
هېه	13.0 14.2 14.0 19.8 30.2 1 32.4	()IMA_KRIG_ANIS_argla ()IMA_KRIG_ISO_argla LLBEC_IMA_KRIG_ANIS_argla
37.7	37.4 20.3 44.0 40.2 34.7 + 22.5 30	() REC_IMA_KRIG_ISO_argia (M) KRIG_ISO_argia_magem
41.7	35.5 34.1 44.3 47.0 47.4 . 44 34.0	An an a factor take 1
340	A 40.0 31.7 51.7 54.1 53.3 43.3	Phondade: 0
		🖾 M 🗖 Testo
22.6	3 5 37.4 39H 352 44.5 45.5 44.1	
38.0	x 5 - 35.4 300 / 27.5 38.3 40.3 49.7	Selecionar Consultar
39.5	37.4 47.7 357 34.0 42.1 45.7 38.0	Ativer: 1 Controle de Teles Ativer: 1 C C C C C C C C C C C C C C C C C C
+1.2	20 20 342 330 410 46.1 49.2	Exibit:
40.8	370 31.6 28.8 33.6 37.2 38.8 42.8	Amplia:(€ 1 (2 (4 (0

(b)

Como mostrado acima a imagem gerada ultrapassa o limite da fronteira da Fazenda Cachim, por isso fez-se necessária o recorte da mesma, como mostra a Figura 9.

Ibe Executar Ferramentas Ajuda Ibro Image
Ima I
type
20.1 22.1 23.5 12.7 11.0 15.2 12.4 17.3 (V) Imagen 22.6 22.8 15.2 12.4 17.4 17.4 (V) Imagen 22.6 22.8 15.2 15.1 15.2 15.1 (I) Mapa Geologias (I) Mapa Geologias (I) Mapa Geologias (I) Mapa Geologias (I) Mapa Geologias (I) Mapa Geologias
22.0 22.8 25.8 15.1 () Linkes () Mapa Geologia () Mapa Coologia
22.0 22.8 Ave. 1 1 1 1 2.2 15.1 () Meps Geologia () Meps Coologia () Meps
UMepo_Soba
I Division devision V
36.0 40.8 32.0 22.8 25.6 19.4 137 18.7 (Prepared enformed)
The Kells Aults and a
40.5 +3.0 +4.2 +4.4 +3.8, 30.2 + 32.4 () IMA_KRIG_ISO_ergia
A Álgehra () (KRIG_ISO_ergia_imagem
21 7 32 4 38 3 44 41 2 34 7 22 5 3 8 () () REC INA KRIG ANIS argia
(M REL_Mo_KRI6_SU_argie
Diretório C.\Documents and Set CR 41.7 35.8 36. 44.3 47.4 47.4 37.4 37.4
Programas 28.6 53 40.0 51.7 51.7 52.1 25.3 45.3
Fat_Recorte_iso
Recorte_imagem_anis 29.6 (36.5 + 35.4 20.0 / 27.6 39.3 49.3 41.7 Selsoinar Consultar
Recorte_imagem_iso
Nome: Recorts imagem iso 84.5 57.4 57.7 359 34.0 42.1 45.7 33.9 Aliva: 6.1 0.2 0.3 0.4 0.5
Criar Editar 41.3 36 36 36 34 35 41.9 45 45 45 45 45 45 45 45 45 45 45 45 45
Anglat 6 1 0 2 0 4 0 8
Function Factor Aindo

Figura 9. Recorte da imagem gerada.

Após o recorte da imagem utilizando o LEGAL, foi realizado o fatiamento da mesma segundo a classificação especificada no inicio deste relatório.O resultado é mostrado na Figura 10.

1	Z Auto - 1/ 69493	Indiva _		1 · ···	Z	888888	Palint de Contr 🔳 🗆 🖹
	Riegende 202	açıı 23.1	74.5	16.7 11.0 15.2	15.4	nja	Calegorias [V] Limites [) Mapa_Geologia
Algebra 📃 🖬 🎽	I ← recote	33.0 29.8	-	Rès rite dis	. (u	161	() Mapa_Solm () Mapa_denagem () Mapa_viaz
District Children and Call CD	Avenaso Avgilaso	28.0 40.0	-	ma ma. 4.1	in a	167	IVI Superficie
Programas	Mede Multo Argloso	40.5 43.5			14	1 m	IG) I PIG_ISO_argla () KNI6_ISO_argla_KV
atualiza Taroila		37.7 37.4	P	12 10 20	+ 12.4	3.	
Fat Recorte anis		41.7 34.8	+1	417 Mar 04		30.0	
Fat_Recorte_iso		39.6	80.8	10 10 100	-	41.3	Printidade 200 (R)
Reporte_imagem_anis					0. T		Canadas Filicianas IC Grade IF Texto
Nome: Eat Becorte iso		* 7			40		f" 70% Imagen
intente: progradente_bee		aka 🗺	* 25.8	300 US 13	41.3	41,7	Controle de Telas
Criar Editar		39.5 37.4	1 410	M 349 41	45.7	36.9	Alvar (* 1 C 2 C 3 C 4 C 3
	-	41.2	:6	34.2 33.9 41.9	45.1	45.2	
Executar Suprimir Fechar Ajuda		14	. /		+	*	Amplax @ 1 C 2 C 4 C 8
		-7. ÷	- six	site the site	de	48	Fechar Auda

Figura 10. Fatiamento e classificação da imagem.

Toda a atividade descrita até o momento foi considerado uma caso de isotropia, assim para o teste de uma caso anisotrópico os dados também foram testados. Assim foi gerado outro semivariograma e testado a anisotropia, como mostra a Figura 11.

anchim)	
🛛 Geração de Semivariograma	
PLAtivo: KRIG ISD argla	Caleman
Anstre: Superfice Amostragem: Irregular	[V] Amostras_Campo [] Classes_Solo
Oppões: Semivanograma	() Fatiamento_Augla () Imagem
Pl de Cruzamento	[V] Linites [] Mapa_Geologia
	Planos de Informação
Parametros da Amostra Regular	()KRIG_ISD_argla ()KRIG_ISD_argla_KV
No Columa	
Res. X Res. Y	
Parâmetros do Mapa de Superficie	Providade 300
an an an team tellan an a team tellan an team tellan	🗖 Amostras 🔽 Isoliniais
No. Lago (50) No. Lago (50) No.Parez (5)	T Grade T Texto T TIN T Imagem
	Selecionar. Consultar
F Gerar PI Salda	Conhole de Telas Ativac € 1 C 2 C 3 C 4 C 5
and a second	Exbir [2]3[4]
Padronizar Eesultado Numérico	Acopler: F2F3F4F
Executor Fector Auda	Amplac @ 1 C 2 C 4 C 8
	Fechar Ajuda

(a)

Figura 11. Geração do semivariograma (a); eixos de anisotropia (b)

Como mostrado nas Figuras acima há uma caso de anisotropia evidente, sendo o espalhamento mais elevado na direção de ~17 graus e menos intenso na direção de ~107 graus. Depois da análise de anisotropia procede-se com a geração dos semivariogramas direcionais, como mostrado na Figura 12.

Figura 12. Geração dos semivariogramas direcionais.

A Figura acima ilustra três semivariogramas. O Semivariograma em verde representa à direção de maior continuidade (~17o), o azul à direção de menor continuidade (~107o) e o vermelho o omnidirecional, o qual foi gerado apenas a título de representação média entre os semivariogramas de maiores e menores alcances. A seguir é indicada a modelagem dos semivariogramas direcionais, primeiramente na direção de maior continuidade 17 graus, como mostra a Figura 13, e posteriormente na direção de menor continuidade 107 graus, como mostra a Figura 14.

Figura 13. Modelagem do semivariograma na direção de maior continuidade 17 graus.

Figura 14. Modelagem do semivariograma na direção de menor continuidade 107 graus

Para a união dos dois modelos definidos anteriormente foi realizada a modelagem da anisotropia, que consiste num único modelo consistente, o qual descreva a variabilidade espacial do fenômeno em qualquer direção. O passo seguinte foi a gravação do modelo proposto e a validação do mesmo, como mostram as Figura 15 e 16.

🖌 Ajuste de Semivariograma 💽 🚺	<u> </u>	Painel de Contr			
Ajuste		Calegorias			
Automático C Visual	🗖 Parâmetros Estruturais 🛛 🔲 🖾	VI Amostras_Campo			
Número de Estruturas (F 1 C 2 C 3	Parlametros Número de Estruturas: C 1 C 2 C 3	() Fatiamento_Argila () Imagem (V) Limites			
Modelios	Efeito Pepita: [20	[]Mapa_Geologia			
Modelo 1: Estérico	Pimera Estudura	Planos de Informação			
Modelo 2 Estérico 👻	Tipo: Estérico 💌	[] almetna () almetna			
Modelo 3: Estérico *	Contribuição: 63 Angulo Anis: 17	[] areia_fina			
Verificar Aputes	Alcance Máx: 1677 Alcance Mín: 000001	() areia_grossa (A) argia			
agla_0.var	Segunda Estrutura	[] calcio			
argila_107.var	 Tipo: Estérico ★ 	Prioridade: 300 CR			
	Contribuição: 140 Anguio Anis: 17	Amostras 🖵 Lioliche			
	Alcance Máx: 2962 Alcance Mín: 1677	F Grade F Texto			
	Terceira Estrutura	Autor L cours			
	Tipo: Estérico 💌				
Parametros Estruturas	Contribuie-Tor 71 Annulo Anis 17	Aliver C 1 C 2 C 3 C			
Definit	Alcance Máx: 100000 Alcance Min: 2963	Exbit C2C3C4			
Europe Europe Aturba					
rechar /doua	Executar Fechar Ajuda	Austu C 1 C 1 C 4			
		Ampeaci+ 1 1 2 1 4			

Figura 15. Gravação do modelo proposto.

(a)

(b)

🖬 🛃 🜌 🚮 Auto 💌 1/ 60493		🗖 Painel de Contr 🕳 🔼 🎽
Validação tão Madelo Validação tão Madelo Patimetros de Interpolação Nome: gegla Verticar Modelo. Patimetros de Interpolação Nomero de Pontos no Eleptide de Busca Minimo: [4 Máximo: [64 Elptide de Busca [Riao e Orientação] R.Mín: [12206 5 R.Máx: [12206 5 Angula: [0 Restinados Estatísticas do Eno Estatísticas do Eno Estatísticas do Eno Executar Fechar Ajuda	ESTATISTICAS DO ERRO ** Plana de ladomação: agele *> Número de anostas	Categorias (M) Amortinas, Canego (I) Classing, Solo (I) Falsamento, Argla (I) Imagem (M) Limites (I) Mapa, Greckoga Planosis de Informação (I) admetria (I) admet
	Salvar Apagar Fechar Ajuda	Exbir Г 2 Г 3 Г 4 Г Acopter Г 2 Г 3 Г 4 Г Amplier Γ 2 Γ 4 Γ

(C)

(d)

Figura 16. Validação do modelo proposto e diagrama espacial do erro; histograma do erro (b); estatística do erro; diagrama dos valores observados.

Após a análise do modelo parte-se para o procedimento da krigeagem ordinária, as etapas e resultados são apresentados na Figura 17.

clos If Canci	Imb		
ede Análise	Executar	Ferramentas Ajuda	Painel de Contr
Inativa		N N F & O & Z C C C C S	Categorias
	32.6	30,1 26,0 16,3 14,9 22,9 26,6 32,1	(V) Limites () Mapa_Geologia () Mapa_Solos () Mapa_deexagem
	31_1	31'8 25'4 8668 18'4 51'8 18'8 58'0	[]Mapa_vias
	33,4	38.7 28.5 29.7 27.6 23.2 13.0 28.2	Planos de Informação
	34,8	40,2 33,0 43,3 44,0 27,3 11,1 7,9	()KBIG_ISO_argla ()KBIG_ISO_argla_KV IG)KBIG_ANIS_argla
	36.3	344 40 441 440 347 230 340	()KRIG_ANIS_argla_KV
	36.2	3¢1 3¢2 474 47,6 40,1 3¢+ 30,2	Prioridade: 300 CR
	37.4	\$2 341 429 429 5233 422 323	Amostras Isolinhas Grade Texto
	36.0	33 4 34 1 44A 34 47A 40B 340	F TIN F Imagem
	36,3	28.4 38.0 32.7 28.0 38.6 38.4 37.8	Controle de Telas
	36.7	34.1 +4.0 334 34.7 34.1 34.6 34.1	Exibi:
	ad'o	for the set set and set	Acoplar: E 2 E 3 E 4 E Amolac 6 1 C 2 C 4 C 8
	37.7	32 J27 9 24 4 24 27 8 29 1 27 9	Fechar Ajuda
		P1: KRIS AND	5 arala

Figura 17. Grade gerada pela krigeagem.

O procedimento geoestatístico é finalizado, a etapa seguinte foi transformar a grade em imagem, as etapas e resultados são mostrados na Figura 18.

Figura 18. MNT gerado.

Como mostrado acima e como feito no caso isotrópico, a imagem gerada ultrapassa o limite da fronteira da Fazenda Cachim, por isso fez-se necessária o recorte da mesma, como mostra a Figura 19.

[Conchi	im)	1947/197709	0.00													- 🖻 🔛
Anälise	Executar	Ferran	nentas	Aju	da	-	-			-		i i	-	-	Painel de Contr	
Inativa	-		꾀	+	1	0		1	3.	55	8	9	23	X	Categorias	
	τ.	Ŧ	Ŧ		<i>T</i> -			Ŧ	Ŧ						(V) Imagem	
	32.6	30.1	25.0	0	6.5	14	9	22.9	28.6	É i	32.1				(V) Limites	
	1.0		1	61				-							[]Mapa_Geologia	
	31.1	31.8	100					SH &	0.6	6	29.0				[]Mapa_sole	
		1	4							8.0					[]Mapa_vias	-
	33.4	36.7	28.5		4	15	112	22.2			26.2				Planos de Informação	
	1243	<				10.0		R		4	1				[]IMA_KRIG_ISD_argla	
	34.8	40.2	2220		d)	45	•	-			1.0				[]KRIG_ISO_argla_mag	em avola
			1.	2.5							1				[]IMA_KRIG_ANIS_argl	à
	+	+	T					- san in			•				[]IMAGEM_ANIS	
	36.7	36.1	100	1	7.4	·	6	45.1		-	35.2				[M] REC_IMA_KRIG_ANI	S_argla
	+	-	1		¥3	+		*	1		+				Prioridade: 0 CR	2
	37,4	\$i	36.1	1	2.0	40.		103.37	43.2		35.3					
	0.51				•		3	./							M L 1000	22
	36.0	394	38.1	1	44	. 35	:-	67.4	40.8	r s	36.0				FM FG	1 8
		ſ	•			/									Selecionar	Consultar
	36.3	2.5	• 38.9		3.7	120	9	38.6	38.4	6.6	37.8				Controle de Telas	
		-	>.		1										Advar. @ 1 C 2 C	3 C 4 C
	34.7	341	0.86	~	r	30.	7	34.1	36.6		3목1				Exbit: T 2 T	3 - 4 -
	122	1	:1					-	220	2 8	222				Acoplar: T 2 T	3 - 4 -
	+	1	1		+	+		+	+	6	90.0				Ampliat @ 1 @ 2	C4 C8
	37,7	30	189	1	6.4	34/	6	37.8	39.1		37.9				Fechar	Ajuda

Figura 19. Recorte da imagem gerada.

Após o recorte da imagem utilizando o LEGAL, foi realizado o fatiamento da mesma segundo a classificação especificada no início deste relatório. O resultado é mostrado na Figura 20.

Figura 20. Fatiamento e classificação da imagem.

Para comparação dos dados, os mapas a seguir são mostrados na Figura 21. Na Figura 22 é mostrado o mapa geológico resultante.

(a)

(b)

Figura 21. Caso anisotrópico (a); Isotópico (b).

Figura 22. Mapa geológico.

Foi computado o teor médio de argila para cada classe de solo, a partir das superfícies isotrópicas e anisotrópicas. Os resultados estão presentes na Figura 23.

Figura 23. Computado o teor de argila para o caso isotrópico (a); e anisotrópico (b).

Conclusão

A aplicação de krigeagem por semivariograma supondo anisotropia da variável argila e posterior relação com o tipo de solo e geologia, mostrou-se um pouco mais precisa do que pelo método supondo isotropia. Isso ocorreu pelo fato de que, uma vez identificado a direção preferencial da variação do parâmetro analisado por meio da geração do semivariograma de superfície, é possível realizar uma estimativa mais precisa espacialmente da variável analisada.

Considerações Finais

Por meio deste Laboratório 5 foi possível obter conhecimentos de análise geoestatística, aplicando-os no software SPRING e analisando os seus resultados a partir das imagens, semivariogramas e relatórios gerados.