INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS DIVISÃO DE SENSORIAMENTO REMOTO

Disciplina de Geoprocessamento

Laboratório 1: Modelagem e criação de banco de dados

EMILY TSIEMI SHINZATO

Docentes: Prof. Dr. Miguel Viera Monteiro

Prof. Dr. Eymar Lopes

São José dos Campos - SP 25 de março de 2013

Sumário

1.	INTR	ODUÇÃO	5
2.	OBJE	TIVOS	5
3.	DESE	NVOLVIMENTO	6
•	3.1. M	odelagem de Banco de dados	6
	3.1.1.	Criar Diretório	6
	3.2.2.	Criar projeto	6
	3.2.3.	Criação de categorias e classes	6
3	3.2. In	nportando limite do Distrito Federal	7
	3.2.1.	Conversão do arquivo para ASCII – SPRING	7
	3.2.2.	Importação do arquivo ASCII	8
	3.2.3.	Ajustar, poligonizar e associar as classes temáticas	8
3	3.3. In	nportando Corpos de água	10
3	3.4. In	nportando Rios de arquivo shape	11
-	3.5. In	nportando Escolas de arquivos shape	12
-	3.6. In	nportando Regiões administrativas de arquivos ASCII – SPRING	12
-	3.7. In	nportando Rodovias de Arquivos ASCII – SPRING	13
	3.7.1.	Visualização de PI criado	14
3	3.8. In	nportando Altimetria de arquivos DXF	15
	3.8.1.	Gerar Tiponomia de amostras	16
3	3.11.	Geração de Grade de Declividade e Fatiamento	18
3	3.12.	Criar Mapa Quadras de Brasília	19
	3.12.1.	Importar arquivo de linhas para criar mapa cadastral	19
	3.12.3.	Geração de toponímia dentro de cada polígono	20
	3.12.4.	Carregar módulo de consulta e verificar tabela	21
	3.12.5.	Recursos de análises gráficas	23

3	3.13. A	Atualização de Atributos utilizando o LEGAL	25
3	3.14. I	mportação de imagens LANDSAT e QUICKBIRD	26
	3.14.1.	Importando as bandas de uma cena Landsat ETM como referênc	ia 26
3	3.15.	Classificação supervisionada por pixel	27
	3.15.1.	Criar uma imagem sintética de fundo	27
	3.15.2.	Criação de um arquivo de contexto	28
	3.15.3.	Definição de amostras de treinamento	28
	3.15.4.	Análise das amostras	29
	3.15.5.	Classificação da Imagem	29
	3.15.6.	Pós-classificação	30
	3.15.7.	Mapeamento para o modelo temático	30
	Mapean	do de temas da imagem classificada para classes de uso da Terra	30
4.	CONC	LUSÕES	30
5.	BIBLIC	OGRAFIA	31

Índice de ilustrações

Figura 1 - Definição de diretório	6
Figura 2 - Criação de projeto.	6
Figura 3 - Categorias.	7
Figura 4 – Classes temáticas de Declividade	7
Figura 5 - Conversão arquivo ASCII para SPRING.	8
Figura 6 - Importação do arquivo ASCII	8
Figura 7 – Verificação da polinização.	9
Figura 8 - Ponto verde.	9
Figura 9 – Validação da poligonização	10
Figura 10 - Importação do corpo de água em formato de linhas	10
Figura 11 - Importação do polígono de corpo de água.	11
Figura 12 - Rios em formato de linha	11
Figura 13 – Rios em formato de polígonos.	12
Figura 14 - Escolas.	12
Figura 15 - Unidades Politicas	13
Figura 16 - Atualização de Tabela de atributos.	13
Figura 17 – Objetos vias de acesso	14
Figura 18 – Linhas e Objetos de Vias de Acesso.	14
Figura 19 – Relatório de dados de uma via de acesso.	15
Figura 20 - Altimetria.	15
Figura 21 – Mudança na coloração da altimetria.	16
Figura 22 - Apresentação gráfica	16
Figura 23 – Grade TIN com linha de quebra.	17
Figura 24 - Geração de grade retangular.	17
Figura 25 - Malha retangular.	18
Figura 26 - Grades numéricas.	18
Figura 27 - Mapa de declividade	18
Figura 28 - Mapa declividade corrigido.	19
Figura 29 – Linhas importadas para confecção do mapa cadastral	19
Figura 30 – Associação linha e objeto	20
Figura 31 - Atributos.	20
Figura 32 – Rótulo de cada polígono	21
Figura 33 – tabela do objeto selecionado (vermelho)	21
Figura 34 – Estatísticas da população	22
Figura 35 - Ordenamento de acordo com o uso	22
Figura 36 - Coluna nome oculta.	23
Figura 37 - Histograma	23
Figura 38 – Scatter plot: população x número de imóveis.	24

Figura 39 – Gráfico de pizza: população x ASA (norte ou sul)	24
Figura 40 – Inserindo um atributo ao objeto no banco.	25
Figura 41 – Média do atributo MEDCDLIV.	26
Figura 42 – Importação Imagem LANDSAT.	26
Figura 43 – Importação imagem Quick Bird.	27
Figura 44 – Composição colorida.	27
Figura 45 – Mudança no contraste.	28
Figura 46 – Criação de contexto.	28
Figura 47 – Amostras de treinamento.	29
Figura 48 – Classificação da imagem.	29
Figura 49 – Imagem pós-classificada.	30
Figura 50 – Modelo temático.	30

1. INTRODUÇÃO

Um Sistema de Informação Geográfica (SIG) ou Geographic Information System (GIS), para a sigla em inglês, é um sistema de informação baseado em computador que permite capturar, modelar, manipular, recuperar, consultar, analisar e apresentar dados geograficamente referenciados (Câmera Neto, 1995).

Desde a década de 80, o uso de SIG tornou-se comum em empresas, universidades e agências governamentais, sendo que atualmente diversos profissionais o utilizam para as mais variadas aplicações, Star e Estes (1990), citam como potenciais utilizadores desses sistemas os setores da agricultura, floresta, cartografia, geologia, além do cadastro urbano e redes de concessionárias, como água, energia e telefonia.

Nas últimas décadas, a análise ambiental recebeu um impulso bastante grande com o desenvolvimento dos SIG's. Das atividades mais beneficiadas podem ser citadas os zoneamentos (Veríssimo et al., 1998); os mapeamentos de risco (Temesgen et al., 2001); de vulnerabilidade (Bryan et al., 2001); de sensibilidade (Abdel-Kader et al., 1998); de impactos ambientais (Moe et al., 2000) etc. Essa tecnologia de SIG pode trazer enormes benefícios devido à sua capacidade de manipular a informação espacial, de forma precisa, rápida e sofisticada (Goodchild et al., 1993).

Neste contexto, insere-se o software livre SPRING que é um projeto do Instituto Nacional de Pesquisas Espaciais (INPE / DPI – Divisão de Processamento de Imagens), e permite construir um SIG para diversas aplicações, tornar amplamente acessível para a comunidade brasileira um SIG de rápido aprendizado, bem como fornecer um ambiente unificado de Geoprocessamento e Sensoriamento Remoto para aplicações urbanas e ambientais, e ser um mecanismo de difusão do conhecimento desenvolvido pelo INPE e seus parceiros, sob forma de novos algoritmos e metodologias.

2. OBJETIVOS

Esse laboratório teve por objetivo a criação de banco de dados e modelagem do mesmo para familiarização do estudante de mestrado diante de novos conceitos e tecnologias no que tangem o campo de geoinformações.

3. DESENVOLVIMENTO

3.1. Modelagem de Banco de dados

3.1.1. Criar Diretório

O primeiro passo consiste na definição de um banco de dados, onde é armazenado todas as informações tabulares, como apresentado na Figura 1.

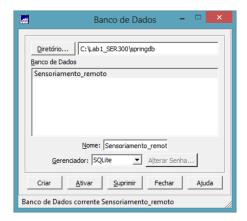


Figura 1 - Definição de diretório.

3.2.2. Criar projeto

Em segundo passo, foi criado um projeto denominado DF, Figura 2, com as respectivas coordenadas geográficas: de 48° 17' 40" O e 47° 17' 55" O em Longitude e de 16° 3' 55" S e 15° 29' 10" S em Latitude. Esse pontos correspondem as diagonais de um retângulo que envolve a área de interesse.

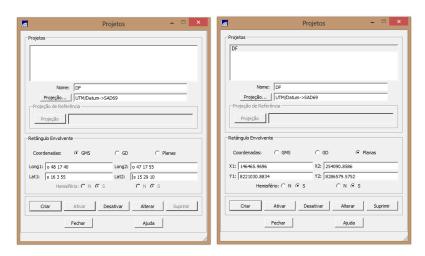


Figura 2 - Criação de projeto.

3.2.3. Criação de categorias e classes

Determinou-se algumas categorias que para compor os planos de informação, como apresentado na Figura 3.

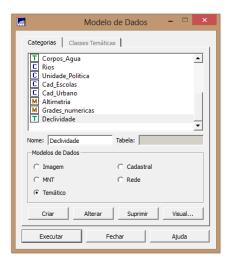


Figura 3 - Categorias.

Além disso, foi determinado intervalos de declividade, como exposto na Figura 4.

Figura 4 – Classes temáticas de Declividade.

3.2.Importando limite do Distrito Federal

3.2.1. Conversão do arquivo para ASCII – SPRING

A conversão de Shape para ASCII_SPRING cria os arquivos com a extensão ".spr", para que fosse possível dar continuidade a preparação dos dados, conforme apresentado na Figura 5.

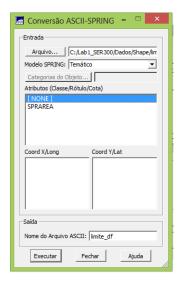


Figura 5 - Conversão arquivo ASCII para SPRING.

3.2.2. Importação do arquivo ASCII

Efetuou-se a importação do arquivo "limite_df_L2D.spr" criado pela conversão, como é apresentado na Figura 6.

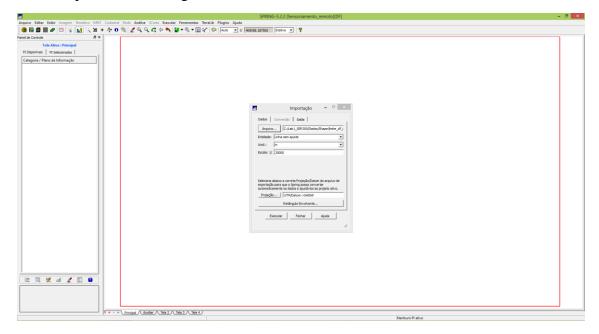


Figura 6 - Importação do arquivo ASCII.

3.2.3. Ajustar, poligonizar e associar as classes temáticas

Uma vez que a linha foi criada pela importação, faz-se necessário ajustar os nós (verificar se as extremidades estão conectadas). Para tanto, foi necessário criar o polígono e identificar o polígono de limite à classe temática " Distrito Federal ", como é apresentado na Figura 7.

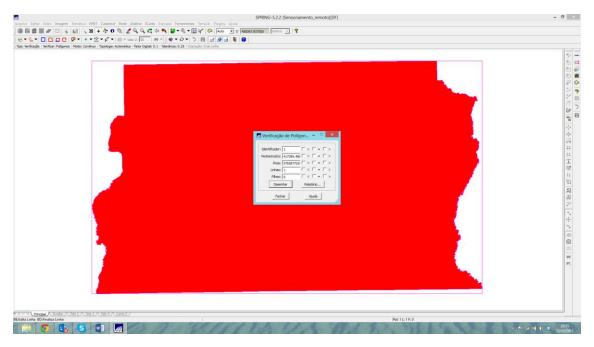


Figura 7 – Verificação da polinização.

Além disso, foi verificado a existência de nós com uma ligação que precisam ser ajustados. Todos os pontos AZUIS equivaleram a nós não ajustados, já os pontos VERDES equivaleram à dois ou mais nós ajustados, como é apresentado na Figura 8.

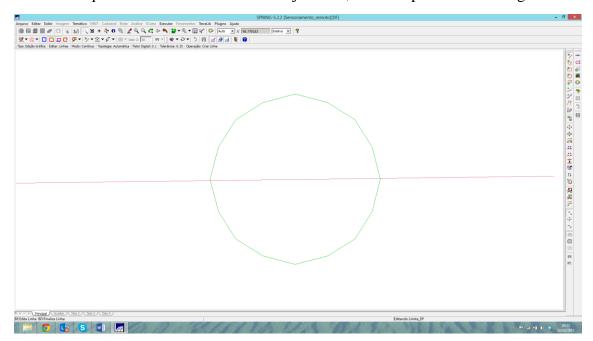


Figura 8 - Ponto verde.

Após verificado a poligonização, pôde-se alterar algumas propriedades do plano de informação, como apresentado na Figura 9.

O polígono foi associado com uma classe do distrito federal.

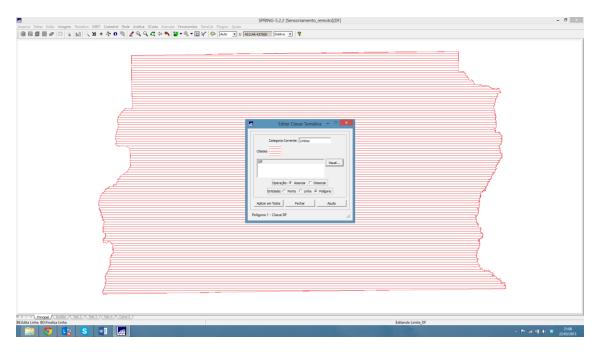


Figura 9 – Validação da poligonização.

3.3. Importando Corpos de água

Os planos de informação do curso de água foram importados em ambiente SPRING, como apresentado na Figura 10.

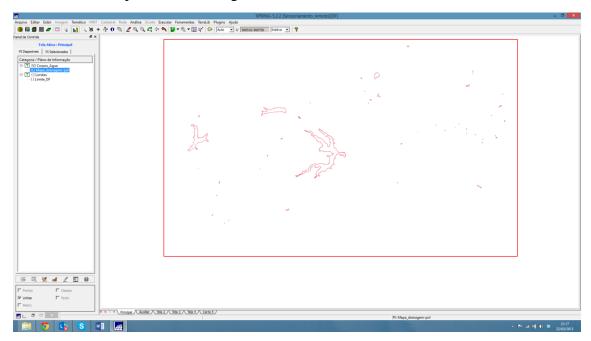


Figura 10 - Importação do corpo de água em formato de linhas.

Em seguida, foi importado os polígonos de curso de água, como exposto na Figura 11.

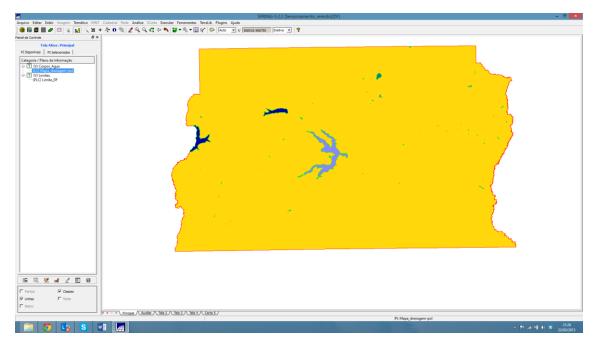


Figura 11 - Importação do polígono de corpo de água.

3.4. Importando Rios de arquivo shape

Após a importação de polígonos de corpos de água, importou-se os rios em formato de linha, como apresentados na Figura 12.

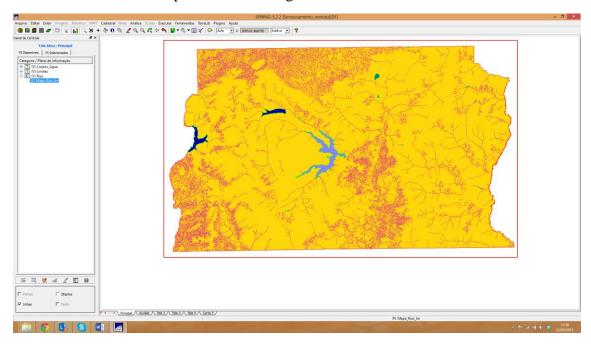


Figura 12 - Rios em formato de linha.

Em seguinda importou-se rios em formato de polígonos, Figura 13.

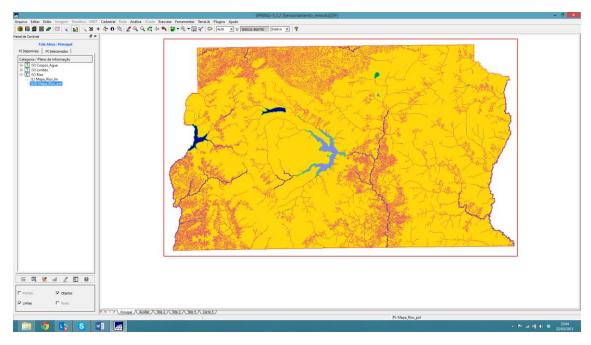


Figura 13 – Rios em formato de polígonos.

3.5.Importando Escolas de arquivos shape

Utilizou-se cadastral "Cad_Escolas" criada para importar dois arquivos SHAPE, um com a localização (em formato de pontos) das escolas, Figura 14.

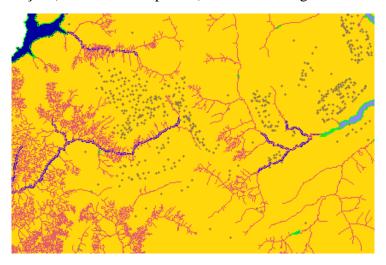


Figura 14 – Escolas (pontos).

3.6. Importando Regiões administrativas de arquivos ASCII - SPRING

Utilizou-se a categoria cadastral "Unidade_Politica" para importar os três arquivos ASCII-SPRING, ou seja, as linhas que definem polígonos (*_L2D.srp), os pontos internos aos polígonos como característica de identificação (*_LAB.spr) e a tabela com atributos descritivos (*_TAB.spr). As unidades políticas são apresentadas na Figura 15.

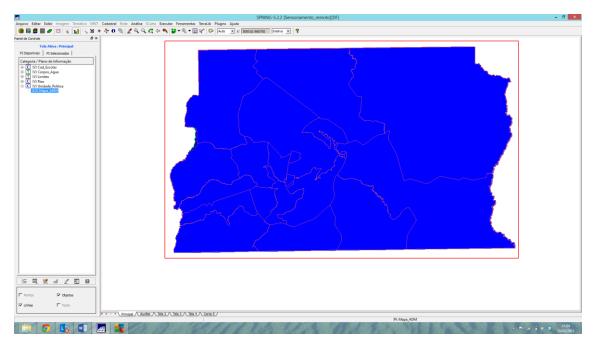


Figura 15 - Unidades Politicas

A partir disso, tornou-se necessário atualizar a tabela de atributos, conforme é apresentado na Figura 16.

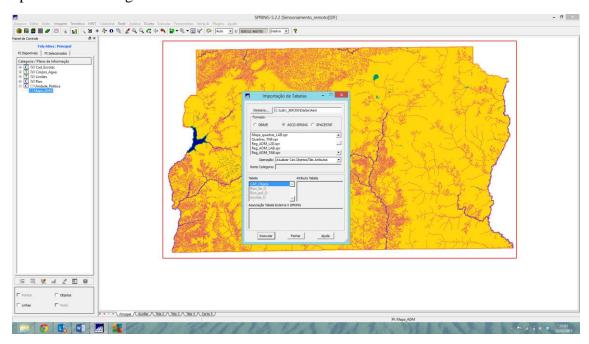


Figura 16 - Atualização de Tabela de atributos.

3.7. Importando Rodovias de Arquivos ASCII – SPRING

Para importação das rodovias, foi necessário utilizar a categoria cadastral "Vias_acesso" para importar os três arquivos ASCII-SPRING, que são: linhas do traçado das rodovias (*_NET.srp), pontos internos às linhas para identificá-las (*_NETOBJ.spr)

e a tabela com atributos descritivos (*_TAB.spr). Os objetos vias de acesso são apresentadas na Figura 17.

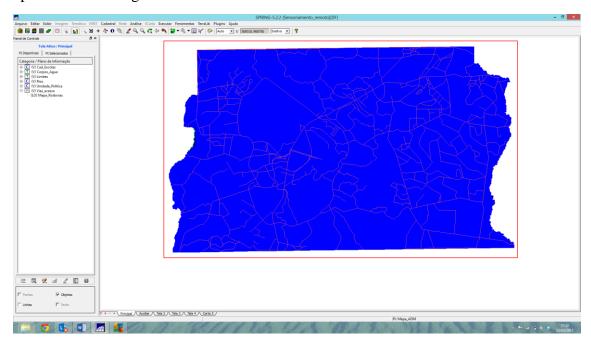


Figura 17 – Objetos vias de acesso.

Posteriormente, importou-se as linhas de vias de acesso, conforme é apresentado na Figura 18.

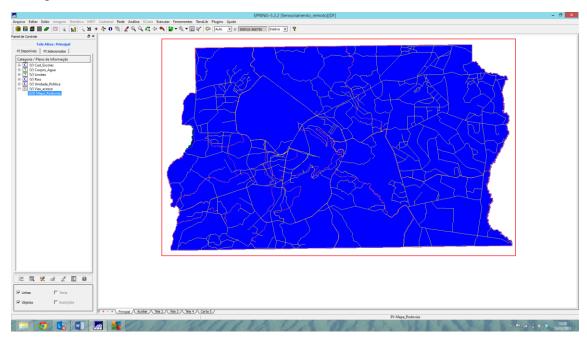


Figura 18 – Linhas e Objetos de Vias de Acesso.

3.7.1. Visualização de PI criado

Após a importação, pode-se visualizar cada plano de informação, como é demonstrado na Figura 19.

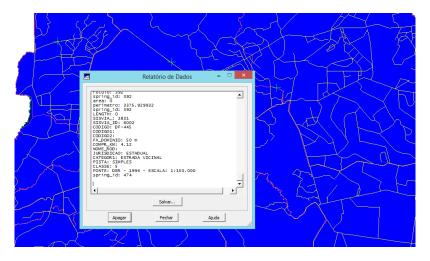


Figura 19 – Relatório de dados de uma via de acesso.

3.8.Importando Altimetria de arquivos DXF

Utilizou-se a categoria numérica "Altimetria" para importar os dois arquivos DXF, inseridos num único plano de informação, de acordo com os respectivos procedimentos:

- 1. Importou-se o arquivo DXF com isolinhas em um PI numérico;
- 2. Importou-se o arquivo DXF com pontos cotados no mesmo PI das isolinhas;
- 3. Gerou-se a toponímia para amostras.

A altimetria é apresentada na Figura 20.

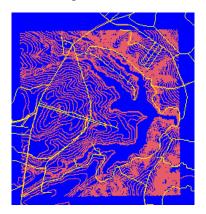


Figura 20 - Altimetria.

Para melhor visualização da altimetria, pôde-se modificar a colocaração das mesmas, como apresentado na Figura 21.

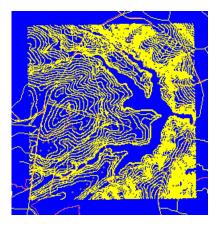


Figura 21 – Mudança na coloração da altimetria.

3.8.1. Gerar Tiponomia de amostras

Como cada isolinha e ponto cotado possui um valor Z associado, utilizou-se este valor para criar a representação de texto ao longo de isolinhas mestras, espaçadas de 50m, e de todos os pontos. Dessa forma, a geração de textos para as amostras dos planos de informação numérico é apresentada na Figura 22.



Figura 22 - Apresentação gráfica.

3.9.Gerar malha triangular

O objetivo foi criar uma grade triangular, utilizando a drenagem como linha de quebra. Os procedimentos foram:

- 1. Importar a drenagem de arquivo DXF para PI temático;
- 2. Gerar grade triangular utilizando o PI drenagem como linha de quebra.

Ao utilizar o PI de drenagem importado acima, juntamente com as isolinhas / pontos cotados do "Mapa_altimetrico", foi gerado uma grade TIN com linha de quebra, Figura 23.

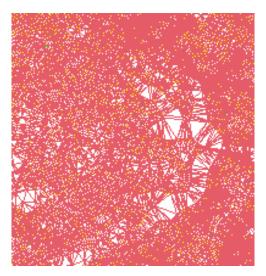


Figura 23 – Grade TIN com linha de quebra.

3.10. Gerar grades retangulares a partir do TIN

O objetivo deste exercício consistiu na criação de uma grade retangular do TIN criado acima, para tanto, a Figura 24 expressa o procedimento de geração dessa grade retangular, e a Figura 25, a malha retangular.

Figura 24 - Geração de grade retangular.

Figura 25 - Malha retangular.

3.11. Geração de Grade de Declividade e Fatiamento

Além disso, criou-se uma grade de declividade (em graus) que para ser posteriormente fatiada e criar um mapa temático com classes de declividade. Neste caso, para distinguir mapas de altimetria dos de declividade, foi utilizada a categoria "Grades Numéricas". A grade é apresentada na Figura 26.

Figura 26 - Grades numéricas.

Em seguida foi feito o fatiamento de grade regular em classes de declividade, cujos intervalos equivaleram a: 0 a 2; 2 a 4; 4 a 8; 8 a 90. As faixas de declividades são expressas na Figura 27.

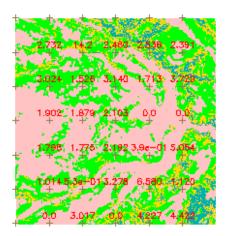


Figura 27 - Mapa de declividade.

No entanto, algumas classes definem áreas muito pequenas que poderiam ser substituídas pela classe ao seu redor. A Figura 28 mostra o mapa de declividade depois da utilização dessa ferramenta.

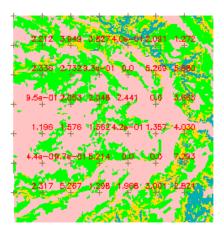


Figura 28 - Mapa declividade corrigido.

3.12. Criar Mapa Quadras de Brasília

O objetivo deste exercício foi criar um mapa cadastral com limites das quadras de Brasília, juntamente com alguns atributos descritivos associados (mapa e tabela).

Para criar as linhas foi importado um arquivo no formato ASCII-SPRING com seus respectivos limites (tipo LINES). Para a identificação de algumas quadras como objetos foram fornecidos rótulos e nomes para cada polígono, e ainda alguns atributos (TABLE).

Os procedimentos foram:

3.12.1. Importar arquivo de linhas para criar mapa cadastral

As linhas importadas para geração do mapa cadastral é expressa na Figura 29.

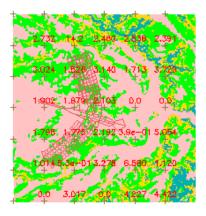


Figura 29 – Linhas importadas para confecção do mapa cadastral.

3.12.2. Associação automática de objetos e importação de tabela ASCII

Após a importação da linha, importou-se o objeto, cuja associação da linha e do objeto é apresentada na Figura 31.

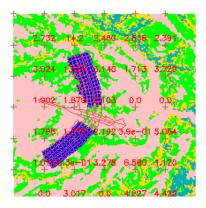


Figura 30 – Associação linha e objeto.

Para identificação de todas as quadras foi utilizado a importação do arquivo "Mapa_quadras_LAB.spr" (tipo POINTS), que contém as coordenadas X/Y dos pontos internos a cada polígono de quadras. Em cada linha do arquivo, além das coordenadas, estão os Rótulos, Nomes e a tabela de objeto a qual pertence o polígono. Estes pontos são chamados de identificadores.

A Figura 32 apresenta como ocorre esse *link* entre a tabela de atributos e um determinado polígono, de forma que, ao se clicar em um desses, pode-se observar seus respectivos atributos.

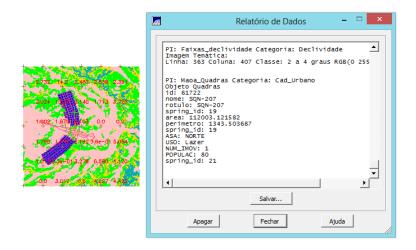


Figura 31 - Atributos.

3.12.3. Geração de toponímia dentro de cada polígono

Todas as quadras do mapa cadastral tem rótulos e nomes, além de outros atributos, porém estas informações não aparecem na visualização dos polígonos. O SPRING permite que estas informações sejam inseridas automaticamente para cada entidade

(ponto, linha ou polígono), como é apresentado na Figura 32, onde se é verificado os rótulos para cada polígono.

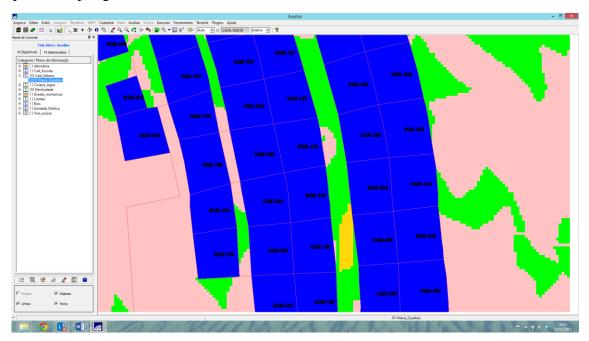


Figura 32 – Rótulo de cada polígono.

3.12.4. Carregar módulo de consulta e verificar tabela

Utilizou-se o módulo de consulta para verificar a tabela de objeto, como é apresentado na Figura 33.

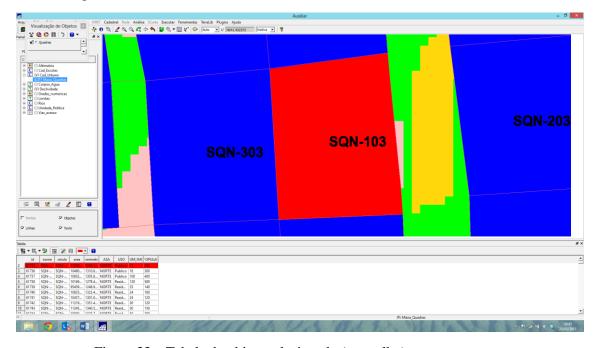


Figura 33 – Tabela do objeto selecionado (vermelho).

Além disso, dentre as diversas funções contidas na software SPRING, existe aquela que calcula as estatísticas básicas para os atributos numéricos, tomando-se como

exemplo a Figura 34, em que se é possível observar as diversas estatísticas para o atributo "população".

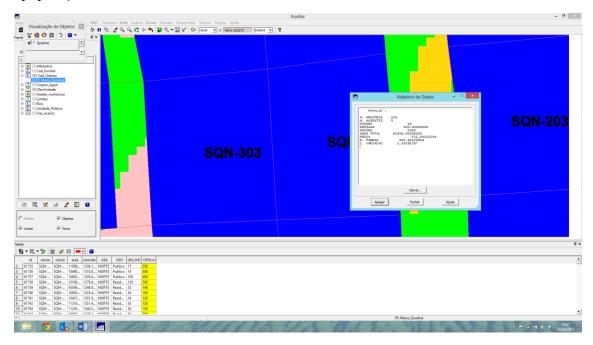


Figura 34 – Estatísticas da população.

Uma outro método que facilita a organização e análise dos dados é o ordenamento do mesmo. Neste sentido, pode-se tomar como exemplo a Figura 35, onde foi feito o ordenamento da população conforme o uso.

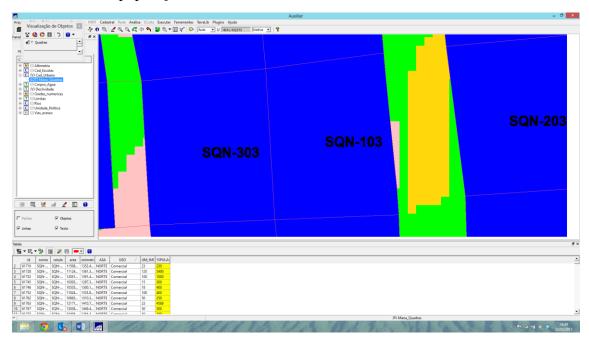


Figura 35 - Ordenamento de acordo com o uso.

Em termos de organização, caso se trabalhe com muitas variáveis, ou seja, muitas colunas na tabela, pode-se ocultá-las de forma que contribua para essa organização dos

dados. Para tanto, a Figura 36 exemplifica o processo de ocultar determinada coluna, nessa caso, a coluna "nome".

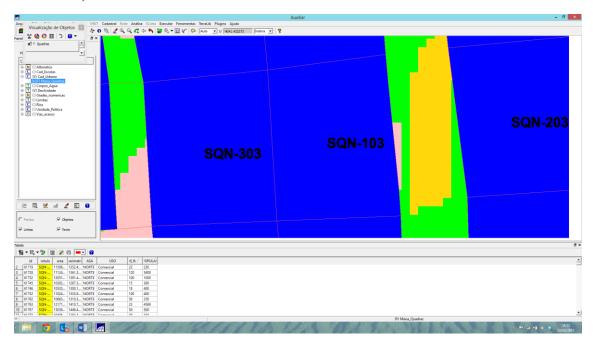


Figura 36 - Coluna nome oculta.

3.12.5. Recursos de análises gráficas

Além desses recursos, existe ainda o recurso que permite fazer análises gráficas das linhas e colunas da tabela, como é o caso do histograma. A Figura 37 exemplifica esse recurso, em que se verificou o histograma do número de imóveis e a frequência dos mesmos.

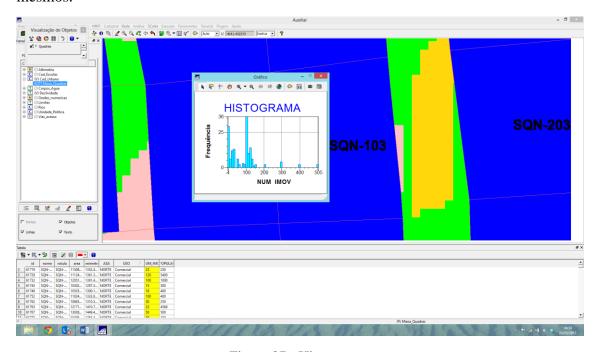


Figura 37 - Histograma.

Outro método próximo a este, é a análise de dispersão. Para se obter tal gráfico, é necessário selecionar dois atributos, tomando como exemplo a população e o número de imóveis, apresentado na Figura 38.

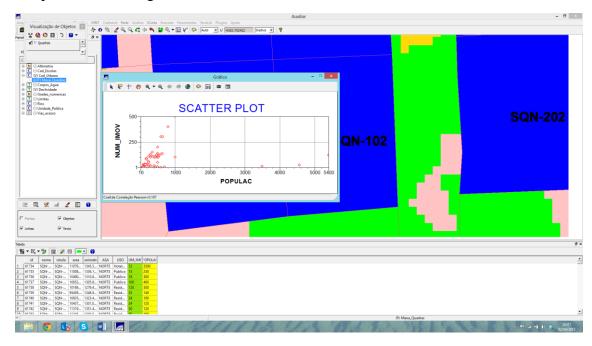


Figura 38 – Scatter plot: população x número de imóveis.

Pode-se utilizar de gráficos, como é o caso do exemplo na Figura 39, que foi feito um gráfico de pizza exemplificando em ver a população da ASA sul (verde) e a população da ASA norte (azul). Dessa maneira, o gráfico de pizza/torta, apresenta que a população da ASA sul corresponde a 51,760%, acima do valor da população da ASA norte, 48,240%.

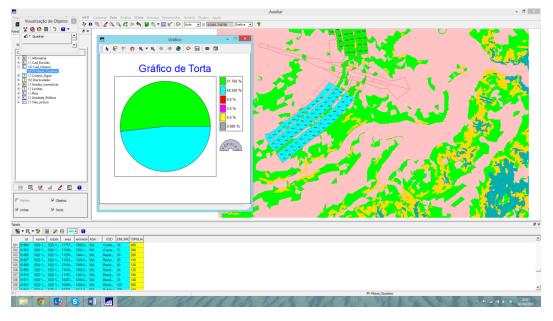


Figura 39 – Gráfico de pizza: população x ASA (norte ou sul).

3.13. Atualização de Atributos utilizando o LEGAL

Essa etapa consiste na utilização de um operador zonal com as quadras de Brasília, portanto, foi necessário a criação de um novo atributo para o objeto "quadras, para tanto, definiu-se o atributo MDECLIV (tipo real). Para atualizar os valores do atributo MDECLIV, foi utilizado o operador zonal MediaZonal (ou MedZ), implementado na linguagem LEGAL. Isso permite que esse atributo seja atualizado a partir da grade numérica de declividade.

A operação permite calcular o valor médio utilizando como restrição (zona) os polígonos do mapa cadastral de quadras.

3.13.1. Criar um novo atributo para o objeto "quadras"

De antemão, foi necessário inserir um atributo ao objeto no banco, conforme apresentado na Figura 40.

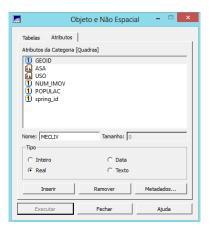


Figura 40 – Inserindo um atributo ao objeto no banco.

3.13.2. Criar atributo pelo operador de média zonal

Ao se analisar o programa escrito em Legal, observou-se que era necessário atualizar alguns campos para que fosse possível calcular o atributo a declividade média da variável "MDECLIV", apresentado na Figura 41.

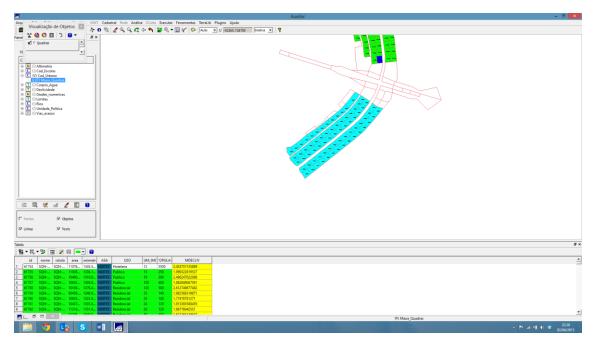


Figura 41 – Média do atributo MEDCDLIV.

3.14. Importação de imagens LANDSAT e QUICKBIRD

3.14.1. Importando as bandas de uma cena Landsat ETM como referência

Foram importadas uma cena do sensor ETM+ (satélite Landsat 7) com 3 bandas, a banda 3 é apresentada na Figura 42.

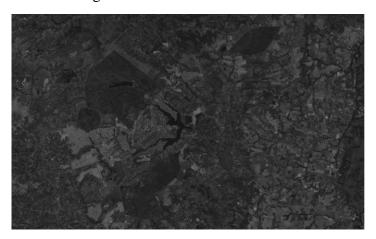


Figura 42 – Importação Imagem LANDSAT.

3.14.2. Importando as bandas de uma cena Quick Bird como referência

Importou-se uma cena do sensor Quick Bird, a banda 3 é apresentada na Figura 43.

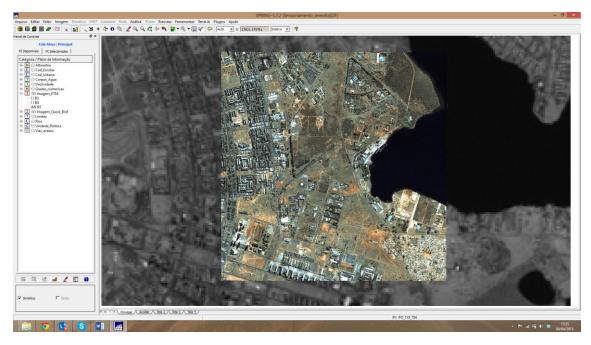


Figura 43 – Importação imagem Quick Bird.

3.15. Classificação supervisionada por pixel

Criou-se o mapa de Uso da Terra a partir da classificação das bandas do Landsat para toda área do projeto DF.

3.15.1. Criar uma imagem sintética de fundo

Neste primeiro momento, criou-se uma composição colorida B3-R4-G5, como apresentado na Figura 44.

Figura 44 – Composição colorida.

Em seguida, alterou-se o contraste da imagem para cada banda, como é apresentado na Figura 45.

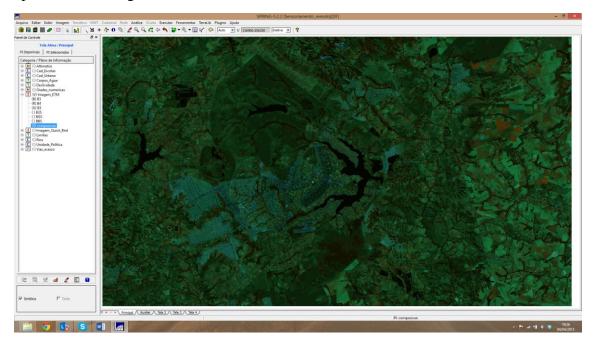


Figura 45 – Mudança no contraste.

3.15.2. Criação de um arquivo de contexto

Criou-se o contexto denominado "contx1", apresentado na Figura 46.

Figura 46 – Criação de contexto.

3.15.3. Definição de amostras de treinamento

As amostras de treinamentos foram tomadas de acordo com as feições de interesse do usuário, tomando como exemplo as feições: água, floresta, área urbana, etc, apresentadas na Figura 47.

Figura 47 – Amostras de treinamento.

3.15.4. Análise das amostras

Após se criar as amostras, estas são analisadas através da matriz confusão. Essa matriz permite compreender o quanto determinada feição está bem representada. Nesse caso, se houver alguma amostra de determinada feição com um valor de confusão muito alto, é recomendado que se refaçam essas amostras.

3.15.5. Classificação da Imagem

Após a análise de amostras, é feito a classificação da imagem, como é apresentado na Figura 48.

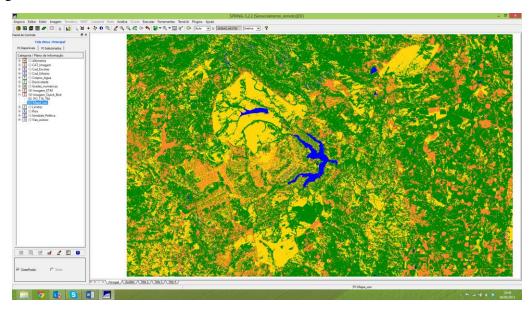


Figura 48 – Classificação da imagem.

3.15.6. Pós-classificação

Foi realizada a pós-classificação, pois essa permite eliminar os ruídos de classificação, como apresentada na Figura 49.

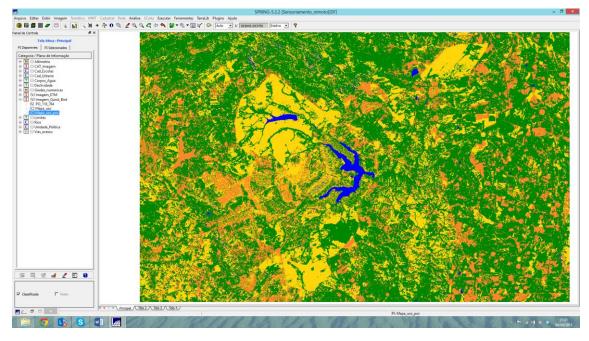


Figura 49 – Imagem pós-classificada.

3.15.7. Mapeamento para o modelo temático

Mapeando de temas da imagem classificada para classes de uso da Terra.

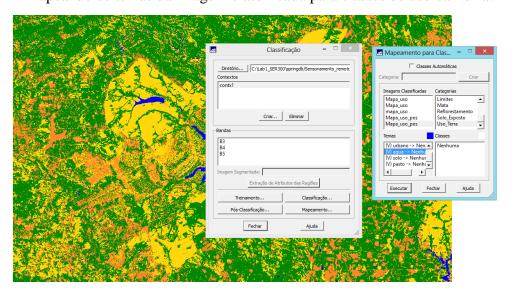


Figura 50 – Modelo temático.

4. CONCLUSÕES

Este laboratório permitiu a criação de um banco de dados e a aplicação de modelagem do mesmo de maneira eficaz.

Além disso, foi possível a familiarização do estudante de mestrado com o software de processamento Spring, que trata-se de um software gratuito e com grande potencial na área de geoinformação.

5. BIBLIOGRAFIA

ABDEL-KADER, A.F.; NASR, S.M.; EL-GAMILY, H.I.; EL-RAEY, M. Environmental sensitivity analysis of potential oil spill for Ras-Mohammed coastal zone. Journal of Coastal Research, v. 14, n. 2, p. 502-511, 1998.

CÂMARA NETO, G.; Modelos, linguagens e arquiteturas para banco de dados geográficos. Tese de Doutorado . Instituto Nacional de Pesquisas Espaciais, 1995.

GOODCHILD, M. F.; PARKS, B. O.; STEYAERT, L. T.; Environmental Modeling with

GIS. New York: Oxford University Press, 1993.

MOE, K.A.; SKEIE, G.M.; BRUDE, O.W.; LOWAS, C.M.; NEDREBO, M.; WESLAWSKI, J.M. The Svalbard intertidal zone: a concept for the use of GIS in applied oil sensitivity, vulnerability and impact analyses. Spill Science & Technology Bulletin, v. 6, n. 2, p. 187-206, 2000.

STAR, J.; ESTES J.; - Introduction and Background and History. Chaps. 1 and 2 in Geographic Information Systems: An Introduction. Englewood Cliffs, NJ: Prentice-Hall.1990.

STOORVOGEL, J.J.; ANTLE, J.M. Regional land use analysis: the development of operational tools. Agricultural Systemsn, v. 70, n. 2/2, p. 623-640, 2001.

TEMESGEN, B.; MOHAMMED, M.U.; KORME, T. Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslide in the Wondogenet area, Ethiopia. Phisics and Chemistry of the Earth. Part C – Solar, Terretrial and Planetary Science, v. 26, n. 9, p. 665-675, 2001.

VERÍSSIMO, A.; SOUZA JÚNIOR, C.; STONE, S.; UHL, C. Zoning of timber extraction in the Brazilian Amazon. Conservation Biology, v. 12, n. 1, p. 128-136, 1998.