Instituto Nacional de Pesquisas Espaciais – INPE Curso de Pós-graduação em Sensoriamento Remoto Disciplina Introdução ao Geoprocessamento – SER 300

LABORATÓRIO 05 Geoestatística Linear

Banco de dados São Carlos

Discente: Aline Pontes Lopes Matrícula: 127582

Maio/2017 São José dos Campos - SP

LABORATÓRIO 05 Geoestatística Linear

Os exercícios apresentados a seguir têm como objetivo analisar, segundo os conceitos e as técnicas de geoestatística apresentados no roteiro, a variação espacial do teor de argila sobre a área da Fazenda Canchim, em São Carlos - SP. Tais exercícios são relativos às seguintes etapas da análise geoestatística:

Ativação do banco de dados/projeto e verificação dos modelos de dados

O banco de dados, intitulado 'BD_SaoCarlos', e o projeto 'Canchim', previamente fornecidos, foram ativados conforme a Figura 01. Além disso, todos os modelos de dados (categorias, classes, modelos e visualizações) a serem usados foram checados.

Figura 01. Banco de dados 'BD_SaoCarlos' e o projeto 'Canchim' ativados e visualização do geo-campo Amostras de solo

Exercício 1 – Análise exploratória

Antes da análise geoestatística, como a finalidade de conhecer melhor os dados a serem trabalhados, foi feita uma análise exploratória dos dados, gerando estatísticas, histograma e gráfico de probabilidade nominal (Figura 02). No caso do histograma (Figura 2b), a curva contínua em vermelho é uma distribuição Gaussiana e serve de referência para efeito de comparação. Neste caso, como apresentado no roteiro, observa-se que a distribuição da argila é pouca assimétrica com coeficiente de assimetria igual a 0,214.

Figura 02. Estatísticas (a), histograma (b) e gráfico de probabilidade nominal (c)

Exercício 2 – CASO ISOTRÓPICO – Análise da variabilidade espacial por semivariograma

No caso isotrópico assumimos que um único modelo é suficiente para descrever a variabilidade espacial do fenômeno em estudo. Como explicado no roteiro, quando lidamos com semivariogramas na prática, a primeira suposição é a isotropia para tentar detectar uma estrutura de correlação espacial.

Figura 03. Primeiro semivariograma gerado (a) e semivariograma melhorado (b)

Exercício 3 – Modelagem do semivariograma experimental

Neste exercício foi modelado o semivariograma e seus coeficientes de ajuste foram definidos segundo o menor valor de Akaike.

Figura 04. Ajuste do semivariograma (a, b) e inserção dos parâmetros para a modelagem (b)

Exercício 4 – VALIDAÇÃO DO MODELO DE AJUSTE

Nesta etapa foi avaliada a adequação do modelo ajustado nos passos anteriores.

Figura 05. Diagrama espacial de erro (a), histograma de erro (b), estatísticas do erro (c) e diagrama de observação (d)

Exercício 5 – Interpolação por krigeagem ordinária

Finalizando o processo de análise geoestatística, a interpolação por krigeagem ordinária é realizada segundo o modelo já validado. O resultado é uma grade regular de valores.

🖉 🖉 🚮 Auto 🔸 🗤 (1858)		
Panel	دقه هغه على عقه عقه عله عله عنه عليه عليه عليه وعه	
Categorias UTMana Gardonia	197 Med 124 247 244 240 274 254 254 144 144 144	
() Mape_Soles	and all the terrate the low and all the de-	
() Mapa_ros	and are applying the the max are been and one	
Planos de Informação <u>V</u>	and my off my min with my my my my my my	
(10%) and a	* * 7 * * * * * * * * *	
Second Markey	als ale fa ale als cas als de dis al Ale als	
	the site site site and site of a site of site site	
Prevediadae (300 <u>(58)</u>	tele une mer pre alle alle der der une une sich sich sie	
Conde C'icco	wir wie wir an zie mie wir nie an iele zie ein.	
Selectors Consider	197 See and ford was up and the welling man the	
Controle de Talas	the section of the section was not been and the	
tabe F2F3F4F5		
Acopter 「2「3「4「5		
Amplan # 1 / 2 / 4 / 5	air aile aire sin ain ein ide ain ain ain ain ein ein	
CALLER MADE	where the state of the state of the state of the state	
	1869 361, 1873 286° 169 250 1876 450 450 450 450 450	
	સંચ સરે છે. સંગ્ સંગ્ સ્ટ્ર સંગ સંગ નગે નગે નગે નગે નગે	
	und and also also also allo alto alto alto alto alto alto alt	
	set with the set and set with with which we will deter	
	NUT 2012 2014 2019 4027 4113 4044 4114 4144 4114 4113 4113	
	* * * * * * * * * * * * * *	

Figura 06. Grade gerada pelo processo de krigagem

Exercício 6 – Visualização da superfície de argila

Finalmente, a grade regular de valores foi convertida em imagem para melhor visualização e, então, recortada e fatiada de acordo com quatro classes temáticas.

Figura 07. Imagem da superfície gerada (a) e superfície recortada (b)

Figura 08. Fatiamento da superfície gerada pela krigagem

Exercício 7 – CASO ANISOTRÓPICO – Detecção da anisotropia e geração dos semivariogramas direcionais

A partir deste exercício, os passos anteriores foram repetidos para o caso de uma superfície anisotrópica. A anisotropia, detectada no *scatter plot* abaixo, é a propriedade mais comum de ser observada na natureza.

Figura 09. Detecção do eixo de anisotropia (~17º, a) e geração do semivariograma segundo três diferentes modelos (0º, 17º e 107º)

Exercício 8 – Modelagem dos semivariogramas direcionais

Neste passo, o semivariograma foi modelado para a direção de maior continuidade (17º) e para a de menor (107º).

Figura 10. Modelagem do semivariograma para 17º e para 107º

Exercício 9 – Modelagem da anisotropia e validação do modelo de ajuste

Nesta etapa foi avaliada a adequação do modelo ajustado nos passos anteriores.

Figura 11. Diagrama espacial de erro (a), histograma de erro (b), estatísticas do erro (c) e diagrama de observação (d)

Exercício 10 – Interpolação por krigagem ordinária e visualização da superfície de argila oriunda do modelo anisotrópico

Finalizando o processo de análise geoestatística, a interpolação por krigagem ordinária é realizada segundo o modelo validado. O resultado é uma grade regular de valores, que foi convertida em imagem para melhor visualização e, então, recortada e fatiada de acordo com quatro classes temáticas.

		SPRI	NG-4	1.3.3 ((20/1	2/20	07) -[SER3	00_B	D_Sa	ioCar	los][0	Cancl	him]					- 1	
quivo Editar Exibir Imagem Ten	nático	MNT	Cadas	tral R	ede 🗚	nálise	Exec	utar F	Ferram	entas	Ajud	а								
🛍 🚍 🜌 🚺 Auto 💌 1/	53057			nativa	- 1	- 12	Ы	+ -	1 0	۰.	29	9	2 🗢	2	2					
			+	+		+	+	+	+	+			+	+	+	+			+	
🖪 Painel 🗕 🗆 🛛 🗡	32,2	28.5	30,5	25.6	245	9 0,2	015.8	۔ فر	4	-124	~	منبلا	15.1	ليد	17.2	18.7	21.7	22,6	24.7	
Categorias	28,3	31.6	29.3	25.8	£	20.3 +	13.8	9.501	11.8	12.1	14.2	18.5	18.1 +	19	¥72	153	20.5	24.9 +	24.5	
() Classes_Solo	29,6	30.1	33.5	30.0	25.2	20,6	13.8	11.0	14.5	19.8	18,1	22,1	110	150	12	18,5	23,3	25.7	24.9	
() Fatamento_Argia () Imagem	31,4	32,3	272	34.4	28.7	22,8	16.7	16.6	20.6	20 A	23.9	24.6	67.2	14,9	1	18-4	21.9	26.7	32.0	
(V) Limites () Mapa_Geologia	33.9	33.7	39.3	1	33.0	25.9	22.2	23.4	27.5	28,7	0 32.0	27.7	19.4	12.9	0.2.0	18.7	24.2	30.6	32.6	
() Mapa_Solos () Mapa_depagem	36.7	37.2	39.0	(a)	34.3	29.2	28.4	0 34.2	38.1	38.6	41.1	•	20.1	14.0	13.3	1	127.0	33.4	36.4	
() Mapa_vias	+		+	7	**	+	+	-+-	+	-+-			+	+	+1	-	(***	
(V) Superficie	340	3.4	34.0	41	200	340	24.1		at c	а£,	.	0	ð;,*	·	0	240	\	34.5	aça	
Planos de Informação V	34.7	28.6	35'1	403	T.	34.2	34.2	457	e ^{40,7}	42	4 \$2	270	23.5	RL D	17.3	23.4	324	37.0	39.2	
()KRG_argia_KV	38_1	38,5	38.8	38.4	30	35.0 0 ⁺	39.8	45.1	47.3	43.5	44.0	34.7	27.5	0 23.0	22.2	27.3	10.0	36.0	35.6	
() KRIG_ANIS_argia_KV	37,2	3#2	38.4	37.7	¥*	373	40.9	45.0	4 <u>5</u> 5	e ra	44,1	38.0	346	32.0	^{27,5}	31,2	*	37.4	37,3	
	40.2	40,2	32.4	36.0	34.8	at a	41,5	45,5	47.8 ⁰	47.3	46.1	41.9	41.8	41,80	33.0	مبد	- <u>+</u> ,	37.9	37.8	
	42.5	42,0	40.8	aç a	ye	0 3§.4	44.0	40,9	4 <u>9</u> .2	4 <u>1</u> .3	48,2	45.7	42,0	°4	aža	3 1.7	3 <u>4</u> .1	37,0	3 <u>4</u> .7	
	41,0	41,8	37.5	31.0	34.4	0 _{34,2} 0	45.1 + 0	50,8	49,4	47,2	82 0	42,4	54.0	las	42.8	40.0	37.8	37,8	87.5	
and the second second	38.0	38.5	-	35.7	35.3	33,0	40.0	51,8	47,5	45.1	۰ <u>۴</u> ۹	0 051,5	"J	48.2	42.8	40,4	30.1	37.5	37.0	
Prioridade: 300 CR Z	37.5	38.0	37.0	35.7	30.5	40.2	46.Z	49.7	41.9	42,3	43.0	e 50.9	1.5.	40.4	42.8	35.3	36.9	38.0	37.8	
F Grade F Texto	38.6	38.6	37.3	25.3	35.2	40.0	44.0	4.94	0 35.29	37.9	39.7	Jas	47.8	44.9	43.1	38.5	33.6	36.3	36.1	
Selecionar. Consultar.	40.0	45.1	6	+	e	-	41.5	0	+ 0 30.0	1	38.7	45.0	+	+	42.7	+	-	*	32.8	
Controle de Telas	+	+	Ľ.	+	÷.					1	÷.		+	÷.	+	+-	÷	.÷.		
Exbir: T 2 T 3 T 4 T 5	343	+	1	р р	0121	362	2010	+	1	34.1	24.9	42.4	40.1	÷.	+24	414	20.0	2010	323	
Acoplar:	38.1	38.3	37.5	-	\ <u>\$</u> \$	380	0 37,8	31.8	r a1.1	34.4	41.5	47,3	45	39.4	363	42.6	41.9	40,0	38.5	
Ampliar @ 1 C 2 C 4 C 8	28.4	38.5	37.3	30,4	367	34,30	37.2	7	32.7	34'8	424	47.0	số72	421	26'8	41.9	42,5	40,7	39.8	
Auda	38.9	38,8	37.6	*	36.3	34.0	\sim	*	34.4	34.3	42.4	47.2	47.6 +	49.7	4 <u>4</u> .1	39_3	4 <u>2</u> ,D	450	40.8 +	
	40.2	40,5	381	39.5	37.9	× [₽]	34.5	36.0	34.0	41.1	42.1	45.5	4 <u>8</u> .7	47.1	48.Z	400	4 <u>2</u> ,D	450	42.2	
	40.6	40.9	to	34,5	34.0	3 <u>8</u> 7	34.0	3 <u>5</u> .8	37,3	41.4	***	42,0	45.4	462	467	47.4	38.0	480	42.2	
	41,3	41.4	0 <u>2</u> .1	0 336	sął	363	37.6	36.7	36.1	41.9	43.5	42,5	40,0	44,9	41.0	47.2	41.0	30.4	42.2	
															PI:	KRIG		argila		

Figura 12. Grade gerada pelo processo de krigagem

Exercício 10 – Visualização da superfície de argila oriunda do modelo anisotrópico

Finalmente, a grade regular de valores foi convertida em imagem para melhor visualização e,

então, recortada e fatiada de acordo com quatro classes temáticas.

Figura 13. Imagem da superfície gerada (a) e superfície recortada (b)

Figura 14. Fatiamento da superfície gerada pela krigagem

Exercício 10 – Análise dos resultados

Finalmente, um *scatter plot* foi realizado para verificar a correlação entre os teores de argila estimados segundo o modelo isotrópico e anisotrópico. O *scatter plot* indicou que os métodos chegaram a resultados semelhantes.

Figura 15. Valores de ambos os métodos atribuídos à tabela do mapa temático de solo (a) e scatter plot destes valores (b)