

### INTRODUÇÃO AO GEOPROCESSAMENTO: LABORATÓRIO 4A ÁLGEBRA DE MAPAS - LEGAL

Bruno Menini Matosak

Tarefa componente das atividades avaliativas da disciplina Introdução ao Geoprocessamento do Curso de Pós-Graduação em Sensoriamento Remoto do Instituto Nacional de Pesquisas Espaciais (INPE), ministrada pelo Dr. Antônio Miguel Vieira Monteiro.

INPE São José dos Campos

2019

### Exercício 1 e 2 – Geração de Grade Regular de Teor de Cromo e Cobalto

A partir das amostras, gerou-se as grades regulares de teor de cobalto e cromo, como visto na Figura 1.



Figura 1 – Grades regulares geradas para os teores de cromo e cobalto.

### Exercício 3 – Gerar Mapa Ponderado de Geologia

Com auxílio do *script* em LEGAL, gerou-se as ponderações nas classes geológicas existente. Em que a escala de peso utilizada foi mv1 > Arvm = Asap > mb > Arvs = Granito. O resultado pode ser visto na Figura 2.



Figura 2 - Ponderação realizada para os dados geológicos.

Exercício 4 – Mapear a grade (representação) do PI Teores\_Cromo utilizando Fuzzy Logic.

Com auxílio de um script escrito em LEGAL, gerou o mapa ponderado de Cromo com base em logica Fuzzy. O resultado pode ser conferido na Figura 3.



Figura 3 – Mapa de teores de cromo ponderados utilizando logica Fuzzy.

# Exercício 5 – Mapear a grade (representação) do PI Teores\_Cobalto utilizando Fuzzy Logic.

Com auxílio de um script escrito em LEGAL, gerou o mapa ponderado de Cobalto com base em logica Fuzzy. O resultado é exemplificado pela Figura 4.



Figura 4 – Mapa de teores de cromo ponderados utilizando lógica Fuzzy.

## Exercício 6 – Cruzar os Pl's Cromo\_Fuzzy e Cobalto\_Fuzzy utilizando a função Fuzzy Gama.

Foi utilizado outro script em LEGAL para gerar o cruzamento entre os dados ponderados de Cromo, Cobalto e Geologia. O resultado é elucidado pela Figura 5.



Figura 5 – Mapa do cruzamento entre Cromo, Cobalto e a Geologia.

### Exercício 7 – Criar o PI Cromo\_AHP utilizando a técnica de suporte à decisão AHP

Para a realização deste passo, foram empregados diferentes parâmetros para a técnica de suporte à decisão. Tais parâmetros se encontram melhor descritos na Figura 6.

| Gama_Fuzzy           |       |                       | <ul> <li>Evibir</li> </ul> |     |
|----------------------|-------|-----------------------|----------------------------|-----|
| Gama_Fuzzy_Lito      | logia |                       |                            |     |
| Geologia             |       |                       |                            |     |
| Geologia_Ponder<br>_ | ada   |                       | •                          |     |
| Critério             |       | Peso                  | Critério                   |     |
| Cromo_Fuzzy          | 5     | Melhor                | Cobalto_Fuzzy              | <=> |
| Cobalto_Fuzzy        | 4     | Moderadamente Melhor  | ▼ Geologia_Pondera         | <=> |
| Cromo_Fuzzy          | 8     | Criticamente Melhor   | ▼ Geologia_Pondera         | <=> |
|                      |       | Igual                 | •                          | <=> |
|                      |       | Igual                 |                            | <=> |
|                      |       | Igual                 | •                          | <=> |
|                      |       | Igual                 | •                          | <=> |
|                      |       | Igual                 | •                          | <=> |
|                      |       | Igual                 | -                          | <=> |
|                      |       | Igual                 |                            | <=> |
|                      | Razão | de Consistência 0.081 |                            |     |
|                      | _     | 1                     |                            | 1   |

Figura 6 – Parâmetros utilizados na análise AHP.

Definidos os parâmetros, foi feita a análise em si. O resultado da análise se encontra na Figura 7.



Figura 7 – Mapa gerado pela análise AHP.

### Exercício 8 – Realizar o fatiamento no Geo-campo gama fuzzy

Realizou-se o fatiamento utilizando um script em LEGAL, obtendo o mapa de classes de potencial de Cromo obtido pela lógica Fuzzy. O resultado pode ser visto na Figura 8.



Figura 8 – Mapa com as classes de potencial de Cromo gerado pela logica Fuzzy.

### Exercício 9 - Realizar o fatiamento no Geo-Campo Cromo-AHP

Foi realizado o fatiamento utilizando um script em LEGAL, para a obtenção do mapa de classes de potencial de Cromo gerado pela técnica AHP. O resultado pode ser visto na Figura 9.



Figura 9 – Mapa com as classes de potencial de Cromo gerado pela técnica AHP.