

Introdução ao Geoprocessamento (SER-300)

Laboratório 5 – Geoestatística Linear

Carolyne Bueno Machado

INPE São José dos Campos 2015

SUMÁRIO

1 INTRODUÇÃO	. 2
2 DESENVOLVIMENTO	. 3
2.1 EXECÍCIO 1 – VISUALIZAÇÃO DOS DADOS	. 3
2.2 EXECÍCIO 2 – ANÁLISE EXPLORATÓRIA	. 3
2.3 EXECÍCIO 3 – SEMIVARIOGRAMA	4
2.4 EXECÍCIO 4 – AJUSTE DO SEMIVARIOGRAMA	4
2.5 EXECÍCIO 5 – VALIDAÇÃO DO MODELO	5
2.6 EXECÍCIO 6 – KRIGEAGEM ORDINÁRIA	6
2.7 EXECÍCIO 7 – DETECÇÃO DE ANISOTROPIA	7
2.8 EXECÍCIO 8 – SEMIVARIOGRAMAS DIRECIONAIS	8
2.9 EXECÍCIO 9 – KRIGEAGEM ORDINÁRIA COM ANISOTROPIA	. 9

1 INTRODUÇÃO

No presente laboratório foram abordadas técnicas de geoprocessamento voltadas à geoestatística, de forma a estudar a variabilidade espacial dos fenômenos naturais.

Foram utilizados dados referentes ao teor de argila de 85 amostragens de solo, da Fazenda Canchim, em São Carlos - SP.

Para estudar a variabilidade do teor de argila na área de estudo foram realizadas as seguintes etapas principais:

- Análise exploratória dos dados.
- Análise da variabilidade espacial da argila através do semivariograma.
- Modelagem e ajuste do semivariograma.
- Validação do Modelo ajustado.
- Krigeagem Ordinária.

Após estas etapas concluídas obtêm-se um cenário com a espacialização do teor de argila na área de estudo, estimando os valores em locais não amostrados.

2 DESENVOLVIMENTO

SPRING-5.2.7[SER300_BD_SaoCarlos][C	anchim]
rquivo Editar Exibir Imagem Ter	nático MNT Cadastral Rede Análise SCarta Executar Ferramentas TerraLib
in 💭 💭 🖉 🔜 🖉 🔚	+ 🕂 🖲 🖏 🖉 🔍 🤍 🕰 🖙 🥎 🖥 🕶 🖏 🕶 💹 🕅 🕬 Auto 🔹 1/ 51464.242188
nel de Controle 🗗 🗗	x <u>\</u>
Tela Ativa : Principal	
PI Disponíveis PI Selecionados	
Categoria / Plano de Informação	
V M (V) Amostras_Campo	
T () Classes_Solo	· · · · · · · · · · · · · · · · · · ·
) Imagem	0 0 0 0 0
▲ I (V) Limites) • • • • • • • • • • • • • • • • • • •
L) recorte	
C () Mapa_Solos	
▷ T () Mapa_drenagem	
T () Mapa_vias	
🔍 💥 🖬 🖉 🔲 😮	
Duratura di	
Classes	
Matriz	
	□ + - = Principal / Auxiliar / Tela 2 / Tela 3 / Tela 4 /
	PI: recorte

2.1 EXECÍCIO 1 – VISUALIZAÇÃO DOS DADOS

Figura 1 - Visualização do PI com os teores de argila amostrados.

2.2 EXECÍCIO 2 – ANÁLISE EXPLORATÓRIA

Neste exercício foi realizada a análise exploratória, gerando estatísticas descritivas dos dados, além de histogramas com as frequências e o ajuste da normalidade das amostras, através de um gráfico de probabilidade (Figura 2).

Figura 2 - Análise exploratória.

2.3 EXECÍCIO 3 – SEMIVARIOGRAMA

Foi realizada a análise de variabilidade espacial por meio do semivariograma. Para adequar a curva foi alterado os valores de configuração, de forma que o valor pepita fosse mínimo possível.

Figura 3 – Geração do semivariograma para isotropia.

2.4 EXECÍCIO 4 – AJUSTE DO SEMIVARIOGRAMA

Em seguida foi realizado o ajuste do semivariograma com os parâmetros de modelo isotrópico.

Figura 4 – Ajuste do Semivariograma.

Em seguida o modelo do semivariograma foi definido com base no relatório de dados gerado no ajuste.

2.5 EXECÍCIO 5 - VALIDAÇÃO DO MODELO

Foi realizada a validação do modelo de ajuste, etapa que precede as técnicas de krigagem, que apresenta as estatísticas de erro do modelo ajustado.

Figura 5- Distribuição de erro no espaço, histograma de erro, estatísticas do erro e diagrama dos valores observados versus estimados.

2.6 EXECÍCIO 6 – KRIGEAGEM ORDINÁRIA

Após o ajuste do modelo procedeu-se com a krigeagem ordinária dos teores de argila.

Figura 6 - Interpolação por Krigeagem ordinária dos teores de argila.

A grade gerada foi então recortada com os limites.

Figura 7 – Recorte da grade de interpolação.

Posteriormente, foi realizado o fatiamento da grade.

Figura 8 - Fatiamento da grade.

2.7 EXECÍCIO 7 – DETECÇÃO DE ANISOTROPIA

Foi detectada a presença de eixos de anisotropia nos teores de argila, assim procedeu-se com a análise do semivariograma de superfície.

Figura 9 – Semivariograma de superfície da argila.

2.8 EXECÍCIO 8 – SEMIVARIOGRAMAS DIRECIONAIS

Foi gerado o semivariograma para os ângulos de menor e maior anisotropia (17° e 107°).

Figura 10 – Semivariogramas direcionais.

Assim, foi ajustado o modelo de semivariograma com a anisotropia combinada, seguindo os seguintes parâmetros e definido o modelo:

Número de Estruturas		3			
Efeito Pepita		28			
Primeira Estrutura – Tipo: Esférica					
Contribuição	63	Ângulo de anisotropia	17°		
Alcance Mínimo	ε = 0,00001	Alcance Máximo	1677		
Segunda Estrutura – Tipo: Esférica					
Contribuição	140	Ângulo de anisotropia	17°		
Alcance Mínimo	1677	Alcance Máximo	2962		
Terceira Estrutura – Tipo: Esférica					
Contribuição	71	Ângulo de anisotropia	17°		
Alcance Mínimo	2962	Alcance Máximo	∞ = 100000		

2.9 EXECÍCIO 9 - KRIGEAGEM ORDINÁRIA COM ANISOTROPIA

Foi realizada a krigeagem para o modelo anisotrópico e em seguida o fatiamento.

Figura 11 – Krigeagem ordinária com anisotropia.

Figura 12 - Fatiamento para o modelo anisotrópico.