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Land remote-sensing images are the primary means of assessing land change.

There have been major land changes in the planet in the last decades, especially in

tropical forest areas. Identifying the agents of deforestation is important for

establishing public policies that can help preserve the environment. This paper

proposes a method for detecting the agents of land change in remote-sensing

image databases. We associate each land-change pattern, detected in a remote-

sensing image, to one of the agents of change. The proposed method uses a

decision-tree classifier to describe shapes found in land-use maps extracted from

remote-sensing images and then associates these shape descriptions to the

different types of social agents involved in land-use change. We support our

proposal with two case studies for detecting land-change agents in Amazonia,

using the remote-sensing image database of the Brazilian National Institute for

Space Research (INPE).

1. Introduction

Land remote-sensing images are the primary means of assessment of land change

worldwide. From these images, we know that the planet has experienced major land

changes in the last decades, especially in tropical forest areas (Lambin et al. 2003).

Since it is the world’s largest tropical forest, deforestation in the Amazonia

rainforest is important for global land change and a significant contributor to the

global carbon budget as well as having known impacts on climate (Shukla et al.

1990) and biodiversity (Fearnside 2002). The Brazilian National Institute for Space

Research (INPE) uses satellite images to provide yearly assessments of the

deforestation in Amazonia. According to INPE’s estimates, close to 200 000 km2

of forest was cut in Amazonia in the period from 1995 to 2005 (INPE 2005). Given

the extent of this deforestation, it is important to determine the agents of

deforestation for setting up public policies that can help preserve the environment.

There is a consensus that land change has multiple causes and that local agents

play a major role in controlling the extent of change (Lambin et al. 2003). Land-

change agents in Amazonia include rubber-tappers, cattle ranchers, large
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agricultural farmers, small-scale landowners, and government-induced settlements

(Alves et al. 2003). There is a dynamic interplay between these agents. Cattle

ranchers may expand into areas formerly occupied by rubber-tappers. Government

programmes may confiscate land from farmers and give it out to settlers. Thus, both

market forces and public policies influence land change in Amazonia (Andersen and

Reis 1997, Pfaff 1999, Perz and Skole 2003).

To gain a better understanding of land change in Amazonia, we need to assess the

role and the spatial organization of the different agents involved in land change. We

need to associate each land-change patch, detected in a remote-sensing image, to one

of the agents of change. Extensive fieldwork indicates that the different agents

involved in land-use change (small-scale farmers, large plantations, cattle ranchers)

can be distinguished by their different spatial patterns of land use (Lambin et al.

2003). These patterns evolve in time; new small settlements emerge, and large farms

increase their agricultural area at the expense of the forest. In these and similar

cases, patterns of land-use change will have similar spectral signatures (Mas 1999).

Therefore, we need techniques that are able to distinguish patterns of land-use

change based on their shapes and spatial arrangements.

Given this motivation, this paper proposes a method for detecting agents of

change in land remote-sensing image databases. The method starts by identifying

the different types of land-change agents in a selected area. Next, it builds a training

set of land-change patches, where each patch is associated with one type of local

agent. Then, it uses landscape ecology metrics to label the patches and a decision

tree to classify them. Our approach builds on earlier works by our research group

(Câmara et al. 2001), and this paper is an extended and revised version of earlier

results (Silva et al. 2005). Since the method uses landscape ecology metrics, we

discuss previous work on metrics for land-change modelling in §2. We describe our

method for mining land-use agents in remote-sensing image databases in §3. §4

presents two case studies for detecting land-use agents in Amazonia from INPE’s

remote-sensing image database.

2. Background

The Amazon deforestation surveys carried out by INPE use change-detection

techniques based on spectral mixture models of remote-sensing images

(Shimabukuro et al. 1998). INPE has built a large spatial database of yearly land

changes in the region since 1997. This database has proven to be useful for

researchers that study the causes and factors of Amazon deforestation (Alves 2002,

Alves et al. 2003, Escada et al. 2005b, Ewers and Laurence 2006). In the present

work, we use patch metrics from landscape ecology to classify the land-change

patches of INPE’s deforestation database.

To put our work in context, in this section we discuss previous works that use

landscape-ecology metrics for land-change modelling, with an emphasis on

Amazonia. Mertens and Lambin (1997) identify three types of deforestation

patterns in Cameroon. The authors link landscape metrics to the frequency of

deforestation. Peralta and Mather (2000) use multitemporal Landsat satellite

imagery to analyse forest metrics (lacunarity, patchiness, and area–perimeter),

where each metric is associated with a specific type of land use. Imbernon and

Branthomme (2001) model the landscape dynamics on a Brazilian site, by measuring

the percentage of forest cover and the resulting fragmentation. Southworth et al.

(2002) used metrics of land-cover change to infer patterns of land-use change in

4804 M. P. dos Santos Silva et al.
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Honduras with Landsat TM imagery from 1987, 1991, and 1996. Oliveira Filho and
Metzger (2006) tested if abrupt changes (that is, thresholds) could be detected by

landscape structure indices in real and simulated landscapes. They compared three

different deforestation patterns in the Brazilian Amazon: small properties regularly

spread along roads (fishbone), irregularly scattered small properties (independent

settlements), and large properties. The focus of their work was in habitat loss and

conservation biology. Ewers and Laurence (2006) used fractal dimension as a

landscape index to examine the area–perimeter ratio of deforested areas in the

Brazilian Amazon. They tested scale invariance in deforestation patterns comparing
different maps obtained from AVHRR and Landsat images. The spatial pattern of

deforestation differed between small and large clearings. The authors found that

different deforestation processes leave distinctive footprint scales.

As an alternative to landscape ecology methods, previous papers (Kuhnert et al.

2006) propose that land-use patterns may be understood as a result of self-

organization principles. In particular, researchers have identified that land-use

patterns in the Amazonian region of Ecuador follow a power-law distribution

(Malanson et al. 2006). One of the important concerns in power-law distribution is
how to estimate its coefficients. One useful technique for such an estimation is the

detrended fluctuation analysis (DFA), which has already proved its usefulness in

several complex problems like the total ozone content (Varotsos 2005a, b).

The review indicates that many previous works have used landscape ecology

metrics to analyse land-change patches extracted from classified remote-sensing

images. These metrics were used either to describe landscape structure or to provide

as an overall assessment of factors associated with deforestation. Past authors have

not proposed a systematic method for associating the pattern shapes with the local
agents. We have not come across works where the landscape ecology metrics are

used by an automated classifier that associates land-change patches with local

agents, as we propose in this paper.

3. Methods

3.1 General perspective

To gain a better understanding of land-change using a remote-sensing image

database, researchers would like to explore the database with questions such as: What

are the different land-use agents present in the database? When did a certain land-use

agent emerge? What are the dominant land-use agents for each region? How do agents

emerge and change in time? To answer these and similar questions, we propose a

method that associates land-change patches with causative agents of change.

The starting point of the method is a sequence of medium-resolution

(LANDSAT-class) images. These images are then classified by a segmentation
procedure, which detects the changes that have occurred between two consecutive

images. The result is a set of land-change maps. The earliest map of the sequence

contains a set of polygons covering the whole study area. Each polygon is labelled to

a land-cover class. Each of the other maps contains only the areas that have changed

between two consecutive images. For example, INPE’s Amazonia deforestation

database starts at 1997 and has yearly updates. The 1997 map contains polygons of

one of four classes: ‘forest’, ‘non-forest’, ‘deforestation’, and ‘rivers’. The other

maps contain only the regions of change since the previous map. We refer to these
polygons as ‘land-change patches’. These land-change patches are the focus of

attention of our data-mining technique (figure 1).

Remote-sensing image mining 4805
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The proposed data-mining technique uses the idea of a land-change patch. A land-

change patch is a closed region detected in a remote-sensing image and associated

with a change in land cover. The first part (shown in the upper part) is the training

procedure. Based on established knowledge about the agents that cause land change,

the analyst defines a spatial pattern typology according to an application domain,

The analyst selects a training set of land-change patches and assigns a label to each

one, choosing among the different types of spatial patterns. Each patch then has a
set of attributes, using landscape-ecology metrics. The result is a training set of

patches, where each member has a label and a set of numerical characteristics. The

training set is used to build a decision-tree classifier, which distinguishes each type of

land-change patch based on its patch metrics.

The second part of the method (shown in the lower part of figure 1) is the data-

mining procedure. The analyst calculates a set of numerical attributes of all land-

change patches using landscape-ecology metrics. The decision-tree classifier (built in

the training procedure) maps each land-change patch to one of the user-defined
spatial patterns. Finally, the user analyses the spatio-temporal trends of the resulting

land-change patterns. For example, the results may indicate an increase in cattle

ranching during the last 5 years in a specific area. In what follows, we present each

of these steps in detail.

3.2 Defining a spatial pattern typology

The first phase of the method calls for defining a spatial pattern typology for the study

area. Each of these patterns matches a specific real-world action. Once the user fixes a

typology of spatial patterns, they select prototypical examples in the images. These

prototypes will be the training set of the patch classifier. For example, Mertens and

Lambin (1997) propose a typology of the land-use pattern associated with

deforestation in tropical forests, extracted from remote-sensing images (figure 2).
Their typology includes corridor (commonly associated with riverside and roadside

colonization), diffuse (related to smallholder subsistence agriculture), fishbone (typical

Figure 1. Proposed method for remote sensing image mining.

4806 M. P. dos Santos Silva et al.
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of planned settlement schemes), and geometric (linked to large-scale clearings).

Figure 2 shows an example of this typology for a region in Amazonia. There are four

prototypes for each pattern, extracted from a LANDSAT TM image.

The spatial patterns typology proposed by Mertens and Lambin (1997) aim to

determine the agents involved in tropical deforestation in Cameroon. This typology

may not be satisfactory to describe deforestation in other regions. Associating land-

change patterns with social agents in a specific region needs an understanding of

occupation history, economic, social, and environmental constraints. In the

Brazilian Amazonia, there are many fishbone patterns associated with planned

settlements, similar to the patterns proposed by Mertens and Lambin (1997).

However, there are other spatial patterns associated with settlements, since the

Brazilian government used different spatial arrangements to organize colonist land

parcels in planned settlement schemes. Colonist land parcels use different spatial

arrangements, including fishbone, radial, corridors, and dendritic patterns

(Batistella et al. 2003, Escada et al. 2005a).

3.3 Image segmentation

To extract patterns from remote-sensing images, we use a segmentation algorithm to

partition the image into regions that are spatially continuous, disjoint, and

homogenous. In our examples, we have adopted the region-growing algorithm

developed by INPE (Bins et al. 1996) and included in the SPRING software

(Câmara et al. 1996), which is change patches in tropical forests (Shimabukuro et al.

1998). INPE uses it to produce its estimates of deforestation in Amazonia (INPE,

2005). A recent survey of segmentation algorithms gave the method a favourable

assessment (Meinel and Neubert 2004). However, the proposed method is not

limited by this particular code. Our method can use any suitable region-growing

algorithm that guarantees creating closed regions for remote-sensing images.

The SPRING algorithm uses two parameters: a similarity threshold and an area

threshold. It starts by comparing neighbouring pixels and merging them into regions

if they are similar. The algorithm then tries iteratively to merge the resulting regions.

Figure 2. Examples of patterns of tropical deforestation proposed by Mertens and Lambin
(1997) in the Brazilian Amazonia: corridor, diffuse, fishbone, and geometric.

Remote-sensing image mining 4807
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Two neighbouring regions, Ri and Rj, are merged if they satisfy the following

conditions:

1. threshold condition: d(Ri, Rj)(T;

2. neighbourhood condition 1: Rj g N(Ri) and d(Ri, Rj)(d(Rk, Ri), Rk g N(Ri);

3. neighbourhood condition 2: Ri g N(Rj) and d(Ri, Rj)(d(Rk, Rj), Rk g N(Rj).

In these conditions, T is the similarity threshold, d(Ri, Rj) is the Euclidean distance

between the mean grey levels of the regions, and N(R) is the set of neighbouring

regions of region R. Regions smaller than the chosen area threshold are merged with

its most similar neighbour. The results of the segmentation are sensitive to the choice

of similarity and area thresholds. Low values of area threshold result in excessive

partitioning, producing a confusing visual picture of the regions. High values of

similarity threshold force the union of spectrally distinct regions, resulting in

undersegmentation. In addition, the right thresholds vary depending on the spectral
range of the image.

3.4 Definition of patch metrics for land-change patches

We use patch metrics from landscape ecology (Turner 1989) to select the attributes

that distinguish the different types of land-change patches. Landscape-ecology

theory defines a landscape as an area of land containing a mosaic of patches. It

considers that land patterns strongly influence ecological processes and proposes

metrics for the geometrical and spatial properties of patches (McGarigal 2002).

Patch metrics refers to the spatial character and arrangement, position, or
orientation of patches within the landscape. Our method uses the patch metrics

proposed by the FRAGSTATS software (Spatial Pattern Analysis Program for

Categorical Maps) (McGarigal and Marks 1995), which include the following

metrics, where pij is the perimeter (m), and aij is the area (m2) of region ij:

N Perimeter (m):

PERIM~pij : ð1Þ

N Area (ha):

AREA~ aij

�
10 000

� �
: ð2Þ

N PARA, perimeter–area ratio, a measure of shape complexity:

PARA~
pij

aij

: ð3Þ

N Shape, shape compactness index, calculated by the patch perimeter pij divided

by pij min, which is the minimum perimeter possible for a maximally compact

patch of the matching patch area. It is equal to 1 when the region is a square

and grows according to the region’s irregularity.

SHAPE~
pij

pij min

: ð4Þ

4808 M. P. dos Santos Silva et al.
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N Frac, fractal dimension index for measuring shape complexity, which
approaches 1 for shapes with simple perimeters such as squares, and

approaches 2 for complex shapes:

FRAC~
2 ln 0:25pij

� �

ln aij

: ð5Þ

N Circle (circumscribing circle), equal to 0 for circular patches and closer to 1 for

elongated ones, which is calculated based on the patch area aij and is the area

aij
s of the smallest circumscribing circle for region ij:

CIRCLE~1{
aij

as
ij

" #

: ð6Þ

N Contig assesses the spatial contiguity of a patch. It is quantified by convolving

an image in which the pixels of the patch are assigned a value of 1 and all other

pixels are set to 0 with a 363 mask with the following values:

1

2

1

2

1

2

1

2

1

2

64

3

75:

This combination of integer values weights orthogonally contiguous pixels

more heavily than diagonally contiguous pixels. For each pixel r in the patch ij,

the value cijr is calculated by multiplying the 363 mask by a 363 window of

the binary image centred on the pixel. All values are added and divided by n,
the total number of pixels in the patch. The result is then normalized by the

sum v of the values of the mask (equal to 13). A value of 1 is subtracted from

both the numerator and denominator for the index to vary from 0 to 1.The

CONTIG index equals 0 for a one-pixel patch and increases towards 1 as patch

contiguity increases:

CONTIG~

Pn

r~1

cijr

n
{1

v{1
: ð7Þ

N Gyrate (radius of gyration) is a measure of patch extent, influenced by

both patch size and patch compaction. For each pixel r in the patch ij,

it computes the distance dijr from the pixel to the centroid (average location)

of patch. This distance is then divided by the total number of pixels n in
the patch:

GYRATE~

Pn

r~1

dijr

n
: ð8Þ

The metrics for the prototype patches trains the decision-tree classifier, which

selects the best combination of metrics that produces an efficient classification.

Remote-sensing image mining 4809
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3.5 Building a decision-tree classifier

The role of the decision-tree classifier is to label each land-change patch to one of

the spatial patterns associated with the land-change agents in the study area.

Consider, for example, that we are using the spatial pattern typology proposed by

Mertens and Lambin (1997). Then, each land-change patch will be either one of a

corridor, diffuse, fishbone, or geometric pattern (figure 2).

The classifier maps the land-change patches to the spatial patterns typology. Its

training set is a set of patches where each patch has a descriptive label and a set of

numerical attributes. This problem can be expressed as a classification based on a

decision tree that predicts correctly the value of a categorical attribute, based on

numerical attributes (Witten and Frank 1999). The categorical value is the patch

type, and the numerical values are the patch metrics. Our method can use any such

algorithm. For the case studies, we used the C4.5 decision-tree classifier (Quinlan

1993), which builds a decision tree where:

N Each node matches a numerical attribute, and each arc is one of its possible

values. A leaf of the tree specifies the expected value of the categorical attribute

for the records described by the path from the root to that leaf.

N Each node is associated the numerical attribute which is most informative

among the attributes not yet considered in the path from the root. Node

information is obtained from an entropy measure.

The landscape-ecology metrics of the training set of land-change patches (as in

figure 2) are fed into the C4.5 classification algorithm. The algorithm builds a

decision tree that uses these metrics to distinguish the different types of patches.

After the classifier has been properly trained, it labels the land-change patches

obtained from remote-sensing images (figure 1). Figure 3 shows the decision tree for

the prototype patches from figure 2.

The decision tree in figure 3 uses two metrics. The first metric is AREA (area in

km2) which distinguishes the smaller types of patches (diffuse and corridor) from the

larger patches (geometric and fishbone). All patches greater than 386 km2 belong to

one of the two latter types. The remaining distinction uses the SHAPE metric, a

compactness index which is equal to 1 for a square patch. It distinguishes the diffuse

Figure 3. Decision tree for patterns in figure 3 (GEOM: geometric; FISH: fishbone; DIFF:
diffuse; CORR: corridor). Metrics: area in km2 (AREA) and shape compactness index
(SHAPE).

4810 M. P. dos Santos Silva et al.
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patches (more compact) from the corridor patches (less compact). It also separates

the geometric patches (more compact) from the fishbone patches (less compact).

This decision tree was validated using the different set of test patterns. The classifier

had an 81% correctness rate with the test set.

3.6 Mining the database using segmentation and a decision-tree classifier

In this section, we describe the image data-mining procedure shown in the lower

part of figure 1. The decision-tree classifier associates each land-change patch with

one of the pattern types defined by the user. The data-mining procedure has five

steps:

1. Selecting a sequence of images from the database.

2. Segmenting and classifying the sequence of images to find land-change

patches.

3. Labelling the land-change patches using the metrics described in §3.4.

4. Assigning each land-change patch to one of the user-defined patterns.

5. Analysing the temporal evolution of the patterns to evaluate the impact and

influence of each land-change agent on the study area.

By identifying the spatial patterns on a time series of images, the user will be able

to evaluate the emergence and evolution of different types of change. Each spatial

pattern is associated with a specific land-change agent. Therefore, the comparison

between spatial patterns of images at the same location in different times allows new

insights into the agents that bring about change.

4. Case studies: results and discussion

We used the method described in the previous section to gain a better understanding

of land change in Amazonia. We selected two case studies. The first study case is the

Xingu-Iriri region in the Pará state. There, deforestation has increased in the last 5

years, associated with unplanned occupation and cattle ranching. The second study

case is a planned rural settlement in the Vale do Anari municipality in the state of

Rondônia. In both cases, our work used LANDSAT imagery at 30-m spatial

resolution, acquired from INPE’s archives.

4.1 Xingu-Iriri case study

The Xingu-Iriri region is a large area in the state of Pará, where squatters seized a

considerable area of public land by illegal procedures in recent years (Becker 2004,

Escada et al. 2005b). The area covers around 150 000 km2, or 10% of the state of

Pará. This region includes parts of São Félix do Xingu and Altamira municipalities.

It stands between two important rivers of Pará: the Xingu river, one of the largest

tributaries of the Amazonas river, and the Iriri river. São Félix do Xingu is a region

with many violent deaths due to land conflicts. This city has one of the largest

annual rates of deforestation in Amazonia and has 10% of the cattle of Pará state.

Cattle raising in São Félix grew by 780% from 1997 to 2004. Deforestation in the

region has two important agents: migrants that have settled in small areas, and large

cattle ranchers, many of whom have occupied land illegally. Although partly illegal,

cattle ranching is an organized business, and farmers have access to regional and

national markets. Figure 4 shows the study area.

Remote-sensing image mining 4811



D
ow

nl
oa

de
d 

B
y:

 [C
am

ar
a,

 G
ilb

er
to

] A
t: 

22
:0

0 
23

 J
ul

y 
20

08
 

We wanted to assess the behaviour of different types of farmers from 1997 to 2004

and the spatial organization of the farms. To this end, we identified five types of

agents in the Xingu-Iriri region:

N Small households associated with migrant families, who live on subsistence

agriculture or work for the farmers. Their land-use pattern is associated with

earlier roadside colonization and shows up as linear patterns in the classified

maps. These households appear as small linear patches.

N Very small farmers and family households that live out near the main roads or

close to population settlements. We associate these ranchers with irregular

land-use patterns of size less than 35 ha. These households appear as very small

irregular patches.

N Small cattle ranchers that live near to roads or to settlements. We associate

these ranchers with irregular land-use patterns of size between 35 and 190 ha.

Their land-use patterns show up in the maps as small irregular near-road

patches.

N Farmers with medium-sized land-use patterns (190–900 ha) that are isolated or

close to secondary roads. We associate these households with medium irregular

near-road patches.

N Farmers with large-sized properties (more than 900 ha) that are usually isolated

and located close to rivers and secondary roads, and that show up in the maps

as large geometric patches.

Table 1 presents the typology for land-use agents, and figure 5 shows examples of

the five spatial patterns (linear, very small irregular, small irregular, medium

irregular, and large geometric).

Figure 4. Location of the study area. The Brazilian Amazonia is on the left, and the Xingi-
Iriri watershed in the state of Pará is on the right. Light-coloured areas indicate deforestation.

4812 M. P. dos Santos Silva et al.
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We produced deforestation maps by segmentation and classification of

LANDSAT imagery (INPE 2005) for the period 1997–2004, with 30-m spatial

resolution. We extracted prototypical land-change patches from the deforestation

maps (some examples appear in figure 5). We used one image for the 3-year period

1997–2000, and one image a year from 2000 to 2004. We used 85 instances of land-

change patches to train the decision-tree classifier. The C4.5 algorithm (Quinlan

1993) built a decision tree with four metrics and four levels (figure 6).

The decision tree in figure 6 uses the radius of gyration metric (GYRATE) to

distinguish the very small patches from the rest. Very small patches have a small

extent, which results in a smaller radius of gyration. Then, it uses the AREA metric

(area in km2) which separates the other small patches (all small irregular patches and

some linear patches) from the larger ones. The SHAPE metric (compactness index)

then distinguishes small irregular patches from the linear ones. To distinguish the

larger patches, the tree uses two measures. First, the radius of gyration metric

(GYRATE) is used again to identify the medium-sized patches. The large geometric

patches and the large linear patches are split using the PARA (perimeter-to-area

ratio). Geometric patches have a lower ratio than linear patches. We tested the

classifier’s behaviour using leave-one-out cross-validation. This method takes a

single observation from the original sample as the validation data, and the

remaining observations as the training data. Each observation in the sample is used

once as the validation data. The cross-validation showed a 94% accuracy rate.

Table 1. Typology of land-change actors in the Xingu-Iriri region.

Land-use
patterns

Spatial
distribution

Clearing
size Actors

Main land
use Description

Linear (LIN) Roadside Variable Small
households

Subsistence
agriculture

Roadside
clearings,
following main
roads

Small isolated
irregular (SMA)

Near main
settlements and
main roads

Very small
(,35 ha)

Small
farmers

Family
labour and
cattle
ranching

Near main roads
and settlements
up to 10 km

Irregular
near-road
small (IRR)

Near main
settlements and
main roads

Small
(35–190 ha)

Small
farmers

Cattle
ranching

Associated with
small family
households

Irregular
near-road
medium (MED)

Isolated or near
secondary roads

190–900 ha Medium
farmers

Cattle
ranching

Associated with
medium to large
farms

Large geometric
(LAR)

Isolated or at the
end of secondary
roads

Large
(.900 ha)

Large
farmers

Cattle
ranching

Isolated; may
have airstrips

Figure 5. Spatial patterns in the Xingu-Iriri region: (from left to right) linear, very small
irregular, small irregular, medium irregular, large geometric.
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Using the decision tree, we built a distribution of types of clearing patterns on the

Xingu-Iriri region from 1997 to 2004 (figure 7). It shows how human occupation

evolved in this region. The deforestation rate started to increase after 2001 and

reached a peak of 40,000 ha in the period 2001–2002. In 1997, linear patterns

dominated, associated with road construction and roadside farm clearings. The

most important contribution to deforestation rates from 2001 to 2004 came from

large and medium geometric patterns, associated with large and medium farms. The

deforestation patterns show a trend towards land concentration, where large farms

Figure 6. Decision tree for Xingu-Iriri spatial patterns. The metrics are: radius of gyration
(GYRATE), perimeter/area ratio (PARA), area (AREA), and shape compactness index
(SHAPE).

Figure 7. Distribution of deforestation in the Xingu-Iriri region (1997–2004) by patch types:
linear (LIN), very small irregular (SMALL), small irregular (IRR), medium irregular (MED),
and large geometric (LARGE).
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dominate over small settlements. We present the cumulative clearing patterns for a

part of Xingu-Iriri region in figure 8. It shows that the resulting spatial arrangement

has small farms and family households concentrated along main roads, and large

and medium farms arranged near secondary roads and in remote places.

To validate these results, we carried out two field trips in the region in 2004

(Escada et al. 2005b) and in 2006 (Amaral et al. 2007). Due to the large size of the

region, it is unfeasible to do a detailed ground survey. The Xingu-Iriri region is

similar in size to Uruguay, and is greater than Austria and Switzerland put together.

Also, researchers and surveyors are undesirable visitors in the area, and they cannot

count on effective police protection. Therefore, our fieldwork focused on the area

close to the main road that connects São Felix do Xingú to the Iriri river, called

Canopus road, shown in figure 8. We interviewed local settlers and authorities,

whenever possible.

The field trips allowed us to determine how the region was occupied. The

Canopus Mining Company opened the so-called ‘Canopus road’ in the beginning of

the 1980s to support cassiterite mining. Migrant families and mahogany loggers then

Figure 8. Cumulative clearing patterns for the Xingu-Iriri region (1997–2004) by patch type:
linear (LIN), very small irregular (SMA), small irregular (IRR), medium irregular (MED),
and large geometric isolated (LAR).
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used the road to invade the region. The Land Institute of Pará State encouraged the

occupation by giving out land parcels of 100 ha to colonists, up to 10 km from the

Canopus road. In the early 1990s, some villages started to emerge along this road.

Mahogany logging lasted until the end of 1990s, when all suppllies had been

exploited. Then, farmers and cattle ranchers entered the area using the dense road

network opened by loggers (Amaral et al. 2007). These farmers set up large and

medium farms near vicinal roads or in isolated areas, close to rivers. Large farms are

located far from the main road and often have small airports.

We compared our field data with the results from the data mining. Data-mining

results indicate that 61%, 68%, and 49% of the linear, small irregular, and irregular

patches, respectively, lie within 10 km of the Canopus road. Also, 70% of medium

irregular patches and 93% of large geometric patches are farther than 10 km from

the road. These results are consistent with our fieldwork. Thus, land-occupation

patterns detected by data mining are a reliable guide for describing the history of

occupation in the Xingu-Iriri region.

4.2 Vale do Anari case study

The second case study used a government planned rural settlement in Vale do Anari

municipality in the state of Rondônia (shown in figure 9). This settlement started in

1982, with land parcels sized around 50 ha. The study area comprises about

4000 km2. We wanted to examine land concentration in Vale do Anari. Land

concentration results from merging of many land parcels in a rural settlement, where

one farmer buys the parcels from the original settlers. This results in farms with a

medium to large size. Many studies in the literature indicate that land concentration

Figure 9. Location of the study area. The Brazilian Amazonia is on the left, and the Vale do
Anari area in the state of Rondônia is on the right. Light-coloured areas indicate
deforestation.
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occurs in government settlement areas in Amazônia (Schimink and Wood 1992,

Dale et al. 1994, Almeida and Campari 1996, Escada et al. 2005a). Although selling

parcels in government settlements is mostly illegal, it is an established business.

Settlers who are successful in using the land for farming or cattle raising buy land

from those who migrate to other areas, a practice known as ‘turnover’ (Campari

2005).

We considered two types of social agents in the Vale do Anari area, associated

with three spatial pattern types (summarized in table 2 and figure 10):

N Small settlement household colonists living on subsistence agriculture or small

cattle ranching. Their spatial patterns show up as linear patterns following

planned roads built during earlier stages of colonization.

N Small household colonists associated with settlement schemes living on

subsistence agriculture or small cattle ranching. Their spatial patterns show

up as irregular clearings near roads, following parcels defined by the planned

settlement.

N Medium to large farmers, associated with cattle ranches larger than 50 ha.

Their spatial patterns are regular ones, close to roads and population nucleii.

In this study, we wanted to understand how land concentration comes about on a

typical rural settlement. We extracted the prototypical land-change patches from

deforestation maps (Escada et al. 2005a) for the period from 1985 to 2000, with 30 m

of spatial resolution and 3-year intervals. We trained the decision-tree classifier with

46 instances of land-change patches (figure 11).

The decision tree in figure 11 uses two metrics. The first metric is CIRCLE

(circumscribing circle), which distinguishes the linear patches from the others

Table 2. Typology of land-change agents in the Vale Do Anari region.

Land-use
patterns

Spatial
distribution

Clearing
size Actors

Main land
use Description

Linear
(LIN)

Roadside Variable Small
households

Subsistence
agriculture

Settlement parcels less than
50 ha; deforestation uses
linear patterns following
government planning.

Irregular
(IRR)

Near main
settlements
and main
roads

Small
(,50 ha)

Small
farmers

Cattle
ranching and
subsistence
agriculture

Settlement parcels less than
50 ha; irregular clearings
near roads following
settlement parcels

Regular
(REG)

Near main
settlements
and main
roads

Medium
and large
(.50 ha)

Midsized
and large
farms

Cattle
ranching

Patterns produced by land
concentration

Figure 10. Spatial patterns in the Vale do Anari region: (from left to right) irregular, linear,
regular.

Remote-sensing image mining 4817



D
ow

nl
oa

de
d 

B
y:

 [C
am

ar
a,

 G
ilb

er
to

] A
t: 

22
:0

0 
23

 J
ul

y 
20

08
 

(regular and irregular). Linear patches have a CIRCLE measure close to 1 (one).

The PARA metric (perimeter-to-area ratio) distinguishes the regular patches from

the irregular ones. Regular patches have a lower ratio than irregular patches. A

leave-one-out cross-validation procedure showed a 98% accuracy rate.

Using the decision-tree classifier, we classified each map and then created a map

showing the cumulative clearing patterns in Vale do Anari from 1985 to 2000

(figure 12). This map contains all new patches created by deforestation in the period,

classified into one of the three types. We also created a temporal distribution, where

we show the area for each patch type in a 3-year period (figure 13).

The cumulative map of clearings (figure 12) and the temporal distribution of

patterns (figure 13) indicate a concentration of land ownership. In the earlier stages

of the rural settlement, the dominant clearing patterns are linear and irregular.

Linear patterns appear first, resulting from roadside clearings of household

colonists. Then, as small-scale settlers deforest their parcels, we obtain irregular

patterns. Linear and irregular clearing patterns match the land-use strategies of

colonists in different occupation stages. Finally, as cattle ranchers buy the parcels

from colonists, regular patterns start to appear on the fringes of irregular patterns.

Figure 11. Decision tree for Vale do Anari spatial patterns. The metrics are: perimeter/area
ratio (PARA) and circumscribing circle (CIRCLE).

Figure 12. Cumulative deforestation patterns in Vale do Anari (1985–2000).
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From 1988 onwards, regular patterns grow progressively. They reach almost 30% of

the deforestation in the period 1987–2000. This shows a marked land concentration,

indicating that the government plan for settling many colonists in the area has been

largely frustrated. The occurrence of land concentration in Vale do Anari was

confirmed by fieldwork (Escada et al. 2005a). We identified and located 23

farmscreated by land concentration. We found that 87% of the classified land-

change patches agreed with fieldwork data, showing that the data-mining method

performs well.

5. Conclusions

This paper proposes a method for classifying land-change patches obtained from

remote-sensing image databases, and as such the method addresses the problem of

describing agents of land-use change. The method combines techniques from data

mining, digital image processing, and landscape ecology. Pattern classification in

maps extracted from classified images of distinct dates enables land-change patches

to be associated with causative agents. The results from the case studies show that

pattern-classification techniques associated with remote-sensing image interpreta-

tion are a step forward in understanding and modelling land-use change. The

proposed method also enables a more effective use of the large land remote-sensing

image databases available in agencies such as USGS, ESA, and INPE.

The proposed method points out that patch metrics can be used to identify agents

of land-use change. Further experiments are necessary to improve the method, to

test alternatives for image-segmentation algorithms and for patch classifiers. The

limits of the current method include the two-dimensional nature of land-use maps.

An extension of the method would be to combine spatial information (patch

metrics) with spectral information (pixel and region trajectories in multitemporal

images).

Future research directions in remote-sensing image mining include tracking

individual trajectories of change. Patterns found in one map are linked to those in

earlier and later maps, thus enabling a description of the trajectory of change in each

land-change patch. The current method aggregates land-change patches of the same

type. A more sophisticated approach would be to describe how each land-change

patch evolves, including operations such as merging of adjacent regions. This

description would allow the data mining to describe when two irregular areas of

Figure 13. Distribution of deforestation patterns in Vale do Anari (1985–2000): irregular
(IRR), linear (LIN), regular (REG).
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land use (associated with small settlers) were merged. It would also show when the

merged region was extended with a regular pattern (suggesting that a large cattle

ranch had been established). This description could increase even more the ability to

understand the land-use changes that are detectable in our remote-sensing image

databases.
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and CÂMARA, G., 2005b, Padrões e processos de ocupação nas novas fronteiras da
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