

Introdução ao Geoprocessamento (SER-300)

Laboratório 5 – MÓDULO: GEOESTATÍSTICA LINEAR

Jefferson Fernandes Teixeira Júnior

INPE São José dos Campos 2015

Laboratório 5

Este laboratório tem como objetivo explorar através de procedimentos geoestatísticos a variabilidade espacial de propriedades naturais amostrados e distribuídos espacialmente. Resumidamente, os passos num estudo empregando técnicas geoestatísticas inclui: (a) análise exploratória dos dados, (b) análise estrutural (cálculo e modelagem do semivariograma) e (c) realização de inferências (Krigeagem ou Simulação).

INTRODUÇÃO

Os dados utilizados, de propriedade do Centro Nacional de Pesquisas de Solos (CNPS - RJ), foram obtidos no levantamento dos solos da Fazenda Canchim, em São Carlos - SP. Estes se referem a uma amostragem de 85 observações georreferenciadas coletadas no horizonte Bw (camada do solo com profundidade média de 1m). Dentre as variáveis disponíveis, selecionou-se para estudo o teor de argila.

Exercício 1. Carregar os dados no SPRING

Figura 1: Bando de dados

			Proj	etos				
Proj	etos							
Ca	nchim							
-	Nome:	Canchim						
	Draiasão	UTM/Ellin	soid->F	Havford				
Pr	ojeção de Referên	cia dia						
	Projeção							
Retá	ingulo Envolvente							
Co	oordenadas: (GMS				• P	anas	
X1:	204000.0000			X2: 21	1000.000	0		
Y1:	7565000.0000			Y2: 75	75000.00	00		
	Hemisfério	: O N (S		O N	● S		
	Criar A	tivar	Desa	ativar	Alter	rar	Suprim	ir
	Fe	char			Aju	da		

Figura 2: Projeto

Figura 3: Planos de Informação do projeto

Exercício 2. Executando estatísticas descritivas

Passo 1 - Análise Geostatística

	Relatório de Dados - 🗆 🗙
Análise Exploratória - Ge – 🔍 X Estatística Estatísticas Descritivas – Plano de Informação <u>A</u> tivo: argila Selecionar outro PI Executar Fechar Ajuda	E S T A T Í S T I C A S: argila => Número de Pontos
	<u>S</u> alvar
	Apagar Fechar Ajuda

Figura 4: Análise Exploratória

Figura 5: Histogramas para a) 10 e b) 15 classes

Passo 3 - Executando o gráfico da probabilidade normal

Figura 6: Gráfico de Probabilidade. Em azul: argila; em vermelho: distribuição normal

Exercício 3. Caso isotrópico: Análise da variabilidade espacial por semivariograma

A isotropia em fenômenos naturais é um caso pouco freqüente de ser observada. Neste caso, um único modelo é suficiente para descrever a variabilidade espacial do fenômeno em estudo. Na prática quando lidamos com semivariogramas, a primeira suposição é isotropia na tentativa de detectar uma estrutura de correlação espacial. Para tal, utiliza-se tolerância angular máxima (90 graus) assim a direção torna-se insignificante.

Figura 7: Semivariograma a partir das configurações padrão

Figura 8: Semivariograma a partir de ajuste para valores ideais

Exercício 4. Modelagem do semivariograma experimental

Passo 1 - Obter parâmetros do modelo esférico

Figura 9: Relatório de Dados

Figura 10: Semivariograma ajustado sob modelo esférico

Passo 2 - Definição dos parâmetros do modelo isotrópico

Parâmetros Número de Estrutur Efeito Pepita	as: 1 2 3 118.854			
Primeira Estrutura Tipo: Est Contribuição: 230.	érico ▼ 892 Ângulo Anis.: 0			
Alcance Máx.: 398 Segunda Estrutura Tipo: Est	9.20 Alcance Mín.: 3989.20	0		
Contribuição: Alcance Máx.:	Ângulo Anis.: Alcance Mín.:			
Terceira Estrutura	iérica a			_
Contribuição:	Ângulo Anis.:		SPRING Modelo de Semivariograma definido com suc	essc
Salvar Fe	echar Aiuda		OK	

Figura 11: Semivariograma criado a partir do modelo Gaussiano

Exercício 5. Validação do modelo de ajuste

O processo de validação do modelo de ajuste é uma etapa que precede as técnicas de krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais conhecidos.

Passo 1 - Validação

🔄 🛛 Validação do Modelo 😑 🗖 🗙
PI Ativo
Nome: argila Verificar Modelo
Parâmetros de Interpolação
Número de Pontos no Elipsóide de Busca
Mínimo: 4 Máximo: 16
Elipsóide de Busca (Raio e Orientação)
R.Min.: 12206.6 R.Máx.: 12206.6 Ângulo: 0
Resultados
Diagrama Espacial do Erro 🛛 👻
Executar Fechar Ajuda

Figura 12: Validação do erro

Figura 13: a) Distribuição espacial do erro; b) Histograma do erro; c) Estatística do erro e d) Diagrama observado x estimado

Exercício 6. Interpolação por krigeagem ordinária

Uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem. Esta etapa é realizada conforme segue.

Figura 14: Plano de Informação gerado pelo método de Krigeagem

Exercício 7. Visualização da Superfície de Argila

Figura 15: Visualização da superfície

Passo 2 - Executando recorte da imagem gerada utilizando LEGAL:

Figura 16: Código de recorte em LEGAL

Figura 17: Resultado do recorte

Passo 3 - Executando fatiamento e recorte da grade de teor de argila

Programs LEGAL Editar Executar	
Fat_RecordE.go.alg	~
	•
III II// Katiamento da Grada da Krigaagem da Argila	
// ratiamento da biale de Arigeagem da Argila // oriunda do modelo Isotropico.	
3	
4 // Recorte da Imagem temática oriunda	
5 // do fatiamento acima.	
6	
9 Numerico krig ("Superficie"):	
10 Tematico tem ("Fatiamento Argila");	
11 Tematico tem1 ("Fatiamento Argila");	
12 Tematico limite ("Limites");	
13 Tabela tab (Fatiamento);	
14	
15 //INSTANCIAÇÕES	
17 krig = Begmere (News = "KDG ISO arcila").	
18	
<pre>19 limite = Recupere (Nome = "recorte");</pre>	
20	
21 //Cwia a mahala da Mamiawaama	-
Erros de Sintaxe do Programa	8

Figura 18: Código de Fatiamento em LEGAL

Figura 19: Resultado do Fatiamento

Exercício 8. Caso Anisotrópico: detecção da anisotropia

A anisotropia em propriedades naturais é um caso muito freqüente de ser observado. Neste caso, a anisotropia, pode ser facilmente constatada através da observação da superfície de semivariograma, conforme descrito a seguir.

A superfície de semivariograma é um gráfico, 2D, que fornece uma visão geral da variabilidade espacial do fenômeno em estudo. É utilizado para detectar os eixos de Anisotropia, isto é, as direções de maior e menor continuidade espacial da propriedade em análise. Também conhecido como Mapa de Semivariograma.

PI Ativo: ar	gila		
Análise: Superfície	▼ Amostragem: Irregular ▼		
Opções: Semi	variograma 🔻		
PI de Cruzamento	Corte:		
Parâmetr	os da Amostra Regular	Superfície de Semivariograma	
No Coluna.:	No. Linhas:	N Ó°	
Res. X:	Res. Y:		
Parâmetro	s do Mapa de Superfície		
No. LagX: 50 + No. L	agY: 50 + No.Pares: 5 +	5. 5.19	
Tol. LagX: 140	+ Tol. LagY: 200 +	90°	
Categoria			
Gerar PI Saida:		and the second second	
Padronizar	Resultado Numérico		
Executar	Fechar Aiuda		

Figura 20: Geração da superfície de semivariograma

Figura 21: Detecção dos eixos de anistotropia

Geração de Semivariograma 🗧 🗆 📫	
PI Ativo: argila	
Análise: Unidirecional 🔻 Amostragem: Irregular 🔻	
Opções: Semivariograma 🗸	
PI de Cruzamento	
Breferetes de Las	- 🗆 🗙
	🕘 🗭 🛄 👜 📰
1 * 816 * 576 * Somiyariogram	na: argila
Parametros de Direção	
Dir 1: 0 Tol 1: 90 Bw 1: MAX Dir 200	
✓ ■ Dir2: 17	
✓ 3 Dir3: 107 + Tol3: 35 + Bw3: MAX + ▶ 100	
4 Dir4: 135 + Tol4: 35 + Bw4: MAX +	
Padronizar Resultado Numérico	
Executar Fechar Ajuda 0 250 500 750 Dista	1000 1250 1586 ncia
Variância argila=288.03	

Figura 22: Semivariogramas direcionais

Exercício 10 – Modelagem dos semivariogramas direcionais

Passo 1 - Direção de maior continuidade 17 graus.

Figura 23: Ajuste esférico para 17 graus

Figura 24: Ajuste esférico para 107 graus

Exercício 11. Modelagem da anisotropia

Resumidamente, consiste em unir os dois modelos anteriormente definidos num único modelo consistente, o qual descreva a variabilidade espacial do fenômeno em qualquer direção.

Não existe uma forma direta e automática de lidar com a modelagem da anisotropia. Este é um passo importante, e que exige conhecimento e prática com semivariogramas.

Neste caso tem-se uma anisotropia combinada. Então, a idéia básica para modelar este tipo de anisotropia é dividir em faixas convenientes o gráfico de semivariogramas, de maneira que, em cada faixa reste somente a anisotropia geométrica (Almeida e Bettini, 1994).

Passo 1 - Ajuste dos parâmetros estruturais

🔚 Parâmetros Estruturais 🗕 🗆 🗙												
Parâmetros												
Número de Estruturas: 🔘 1 🔘 2 🖲 3												
Efeito Pepita: 28												
Primeira Estrutura												
Tipo: Esférico 🔻												
Contribuição: 63 Ângulo Anis.: 17												
Alcance Máx.: 1677 Alcance Mín.: ,000001												
Segunda Estrutura												
Tipo: Esférico 🔻												
Contribuição: 140 Ângulo Anis.: 17												
Alcance Máx.: 2962 Alcance Mín.: 1677												
Terceira Estrutura												
Tipo: Esférico 🔻												
Contribuição: 71 Ângulo Anis.: 17												
Alcance Máx.: 100000 Alcance Mín.: 2962												
Salvar Fechar Ajuda												

Figura 25: Definição dos parâmetros

Exercício 12. Validação do modelo de ajuste

Figura 26: Resultados: a) Distribuição espacial do erro; b) Histograma do erro; c) Relatório de Dados; e d) Diagrama de observado x estimado

Exercício 13. Interpolação por krigeagem ordinária

Figura 27: Plano de informação com grade resultante da Krigeagem

Exercício 14. Visualização da superfície de argila oriunda do modelo anisotrópico

Passo 1 - Aplicação do método de Krigeagem

	🖬 G	eração de Image	em MNT 🛛 🗖 🗖	×
	Imagen	n: Nível de Cinza	🔿 Sombreada	
	VMin: 9.662684440612	2793 VMax:	55.636199951171875	
	Categoria de Saída	Imagem		
	PI de Saída:	IMA_KRIG_ANIS_arg	ila	
	8 bits sem sinal (025	5)		▼
	Parâmetros de Iluminaçã	ăo		
	Azimute (graus): 45.	Elevaç	ão (graus): 45.	
	Exagero	de Relevo: 36.25		
	Executar	Fechar	Ajuda]
	Figura 28: 0	Geração de	e Imagem MN	JT
Arquivo Editar Egib	ir Imagem Jemático M NT <u>C</u> ao	Auxiliar dastral <u>R</u> ede A <u>n</u> álise SCar	ta Exec <u>u</u> tar <u>F</u> erramentas TerraLib	– 🗖 🗙 Plugins Aju <u>d</u> a
🗧 🖩 🥒 🗔 🦷	. 🚺 🤍 비 + 🂠 O 🗞 🖉	? @, @, @ & ^ 🐌 '	Ô ₂ ▼ []] k [*] ∞ Auto ▼ 1/ 7671	7.523438 Inativa 🔻 💡
Tela Alb PI Deponive M 25 Categoria / Plano de l M - Manstrag (I I) Amantrag (I) II () Lasses, Solution B (I) I - I - I - I - I - I - I - I - I - I	va : Auxiliar liconadas Informação ampo o Argila SO, argila BO(200 argil	K SZ		
-			PI: recorte	

Figura 29: Plano de informação com imagem MTN resultante da Krigeagem

Passo 2 - Recorte utilizando LEGAL

LEGAL – 🗆	x
Programa LEGAL Editar Executar	
□ ₀ ☆ ♥ ♥ ◎ ☆ ☆ ☆ ☆ ♥ ♥ ◎ ♡ ☆ ☆	
Recorte_imagem_anis.alg	
1 // Recorte de imagem 2 {	^
3 //Declarações	
4 Imagem ima, ima1("Imagem");	
5 // "Imagem" refere-se ao nome da categoria (tipo:Imagem), a qual possui a imagem a ser 6	
7 Tematico limite ("Limites");	
8 //"Limites" refere-se ao nome da categoria (tipo:Temática), a qual possui o PI de recor 9	
10 ima= Recupere (Nome = "IMA_KRIG_ANIS_argila");	
<pre>11 //"Ima_Krig_ANIS_argila" refere-se ao nome do PI ou da imagem a ser recortada. 12</pre>	
13 ima1= Novo (Nome = "REC IMA KRIG ANIS argila", ResX=30, ResY=30);	
14 //"REC_Ima_Krig_ANIS_argila" refere-se ao nome do PI ou da imagem a ser gerada (é o res	
15	
16 Immite = Recupere (Nome = "recorte"); 17 ////recorter reference on promo de Di de recorte (recto everple pertence à categoria Limi	
18 // posuir um representação do tipo Matriz. Nota: após classificá-lo fazer conversão V	
19	
	Ť
	-
Erros de Sintaxe do Programa	<u>.</u>

Figura 30 - Código em LEGAL para aplicação de recorte

Figura 31: resultado do recorte para modelo anisotrópico

Passo 3 - Executando o fatiamento e o recorte na grade de Krigeagem oriunda do modelo anisotrópico

Figura 32: Código em LEGAL para aplicação de fatiamento

Figura 33: Fatiamento e recorte na grade de Krigeagem para o modelo anisotrópico

Exercício 15. Análise dos Resultados

Figura 34: Comparação entre os resultados oriundos dos modelos a) isotrópico e b) anisotrópico

Passo 1 - Mapa Geológico

Figura 35: Mapa geológico

Passo 2 - Computando o teor médio de argila para cada classe de solo, a partir das superfícies isotrópicas e anisotrópicas, e atualizar a tabela de atributos

Figura 36: Código em LEGAL para cômputo do teor médio de argila

Passo 3 - Realizar um Agrupamento por Quartil para os atributos

#								SI	PRING-	-5.2	2.7[S	ER	300	BD	_Sa	oCa	rlos][Car	nchin	ן]							-	. 🗆		×
Ar	Visua	lização	de Obj	etos ×	iáti	co	<u>M</u> N	T j	<u>C</u> adastra	al	Rede	e	A <u>n</u> á	lise	SCa	arta	Exe	c <u>u</u> tar	<u>F</u> err	ament	as	TerraLib	Plu	gins	A	ju <u>d</u> a				
	* 6) 🜔 🗉	5	<mark>?</mark> -	2	Ы	+	÷	0 🗞		🥖 E		Q	q.	¢	5	2	• ®	-	k ⁺⁺	،	Auto	• 1	/ 15	5216	5.1406	52! In	ativa	•	?
Pain	171	ino Solos		^	-	a >	×		-		_	-	-				_			-					_					
		pc											0	~/	_	-														
				~								1	K-			6														
												Ę	ġ>-	<u></u>		h	4													
	Categoria	/ Plano d	e Informa	ição		^							5		ñď	V-7	SN C													
	Þ 📕 ()	Amostra	s_Campo										10	Ă	33	12	j)													
	⊿ 🔳 ()	Classes_	Solo									a	9	an a		S.														
	0	solos				•						Y	H	i/		7														
		1 😢	ď.	e 🔳	?						- 1	K	29	V																
Lг							1					$\overline{}$	es!	y.																
	Pontos		√ 0	bietos									$\boldsymbol{\checkmark}$	Y																
				2							- 4	ų	7																	
Ŀ	Li <u>n</u> has		Te	exto								1																		
								+	1	Prin	cipal (Λ	Auxili	ar /\	Tela	a 2 /	\ Tel	a 3 /\	Tela	4 J										
Tabe	la								_					_		_	_	_		_									ć	7 X
i e	5 _ 00	_ 87			_	Ø																								
1 8	1 · • •	· 🖉				•		_				_	_																	_
	ID	NOME	ROTULO	AREA	PER	IMET	TRO		TEOR_	AR	GILA_	ISO	1		TEC	DR_A	RGIL	A_AN	IS											^
1	26	A	A	80370	1395.	3940	43	30	.769552					33.72	29672	2														
2	19	AQd	AQd	32/22	1/4/	/.394 5305	531	15	.2055/3					15.42	2773	1														
3	3			71082	1448.	20202	224	40	001211					49.20	57845 52204	9 5														
5	18	HO	HO	36619	5723.	8837	234 89	21	.037690					24.32	834	B														
6	23	LEa1	LEa1	35487	4247.	0942	38	34	.028785					32.85	5913 ⁻	- 1														
7	20	LEa2	LEa2	12856	7550.	5800	78	26	378099					26.96	698	B														
8	25	LEa3	LEa3	70971	7029.	3168	95	22	.859449					23.06	54916	6														
9	8	LEd1	LEd1	95586	8742.	6855	47	36	.378203					36.69	8889	9														
10	12	LEd2	LEd2	19525	1737	8 082	031	42	975520	_	_	_	_	42 50	15370	9					-				_					~
																				PI: Ma	pa_So	olos								

Figura 37 - Tabela de atributos com valores de teor de argila

			А	grupar Objeto	os: Tipo_Solos	- 🗆 🗙
Agrupa	ar Objetos: Tipo_Solos 🛛 🗕 🗆 💌	Modo: Pass	io Igual 🔻		Número de <u>P</u> artes: 4	•
Modo: Passo Igual Atbutos D0000056-31D GA00017-> PERMETRO GA00017-> PERMETRO GA00017-> PERMETRO GG000056-> TEOR_ARGILA_ISO CG000056-> TEOR_ARGILA_ANIS	Número de Bartes: 5 NONE NONE NONE NONE NON NONE NON NON NO	Agributos OJ000056- GA000017 GA000017 CG000056 CG000056	>ID -> AREA -> PERIMETRO -> TEOR_ARGILA_ISO -> TEOR_ARGILA_ANIS		NONE 0100056->1D 0400056->1D 0400017-> AREA 0400017-> PEIMETRO C0000056->TEOR_ARGILA_ISO C0000056->TEOR_ARGILA_ANIS	
Graduação de Cores Vermeho Inverter Cores Usual		Gr Vermelho Inverter	aduação de Cores	GROUP: CG000	065->TEOR_ARGILA_ISO /NONE + [15.2056 ~ 24,3503] + 224,3503 ~ 33.4951] + 324,3504 ~ 24,2599] + >42,6399 ~ 51,7847]	
Carrggar Şəlvər. Executar	. Agrupar Qesagrupar Fechar Ajuda	C	arregar	Salvar Fed	Agrupar Desag	rupar

Figura 38 - Agrupamento

Figura 39 - Agrupamento para o caso isotrópico e anisotrópico