

## LABORATÓRIO 4 – ÁLGEBRA DE MAPAS

João Bosco Coura dos Reis

Registro nº: 130.362

Exercícios para avaliação parcial na disciplina de Introdução ao Geoprocessamento (SER-300) do Curso de Pós-Graduação em Sensoriamento Remoto no Instituto Nacional de Pesquisas Espaciais.

INPE São José dos Campos 2015

## 1. INTRODUÇÂO

O laboratório 4 tem como objetivo a seleção de áreas potenciais a prospecção de cromo, a partir das técnicas *AHP* (Processo Analítico Hierárquico) e através da Lógica *Fuzzy*. Os dados foram obtidos através de campanhas de campo, realizadas na região de Pinheiros Altos, município de Piranga, Minas Gerais, entre abril e julho de 1996.

## 2. DESENVOLVIMENTO

A primeira etapa consiste na ativação do banco de dados, denominado "Piranga", do projeto e da configuração do modelo de dados. A etapa seguinte consiste na geração de grade regular para o plano de informação (denominados "*Teores\_Cromo*" e "*Teores\_Cobalto*").

| 👷 SPRING-4.2 [Piranga][Cromo] |                                                           |                  |            |          |         |                   |                    |                   |            |                    |                   |                    |                    |              |             |                 |                    |                     |                    |                   |                    |
|-------------------------------|-----------------------------------------------------------|------------------|------------|----------|---------|-------------------|--------------------|-------------------|------------|--------------------|-------------------|--------------------|--------------------|--------------|-------------|-----------------|--------------------|---------------------|--------------------|-------------------|--------------------|
| Arquivo                       | <u>E</u> ditar                                            | Exi <u>b</u> ir  | Imagem     | Temático | MNT     | <u>C</u> adastral | Red                | e Aj              | nálise     | Executar           | Eerr              | amentas            | Aj <u>u</u> d      | a            |             |                 |                    |                     |                    |                   |                    |
|                               | 3 💋 🥏                                                     | 82               | Auto 💌     | 1/ 38259 | Inativa | • •               | M                  | Ţ                 | +          | 0                  | <u>/</u>          | <b>Z</b>           | <b>⊈</b>  ¢        | • <u>\$</u>  | 8           | Ŧ               | Ŧ                  | Ŧ                   | т                  | Ŧ                 | Ŧ                  |
|                               |                                                           |                  |            |          |         | :                 | 8.4<br>+           | 61 <b>.2</b>      | 68.2<br>+  | 69.6               | 67.8<br>+         | 72.0<br>+          | 80, I              | 85.6<br>+    | 9 1.7<br>+  | 96.9<br>+       | 90.2<br>+          | 84.7<br>+           | 82.7               | 82.3              | 82.:<br>+          |
|                               | Painel de                                                 | e Cont           |            | 23       |         | ŧ                 | x1.8               | 49.5<br>+         | 63.6<br>+  | 69.8<br>+          | 70,6              | 7 <b>5.</b> 5<br>+ | 82.8<br>+          | <b>84.</b> 7 | 89.6<br>+   | 10 <u>2.8</u>   | 8 <u>9.</u> ‡      | 7 <b>8.9</b><br>+   | 80.4<br>+          | 81.2              | 810<br>+           |
|                               | Categorias V) Amostras () Drenagem () Geologia () Recorte |                  |            |          |         |                   | 47.3 -<br>+        | 9.2<br>+          | 60,3<br>+  | 6 <b>8.</b> 9<br>+ | 94,5              | 80.6 -             | <b>83.</b> 0       | 81.4<br>+    | 8.3.6<br>+  | 82.8            | 71,7               | 74,0<br>+           | 7 <b>8.</b> 7<br>+ | 80.3<br>+         | 81.J               |
|                               |                                                           |                  |            |          |         |                   | <b>8.8</b>         | 59.9<br>+         | 64.1<br>+  | 58.6               | 76,1              | 63.7<br>+          | 74,9               | B0.1         | 83.8<br>+   | 76.2            | 76.2               | 77.0                | 78.6<br>+          | 79.9<br>+         | 79.!<br>+          |
|                               | Planos de l                                               | nformaci         | ín         | -        |         | 6                 | 8.6<br>+           | 72.3<br>+         | 66.9<br>+  | - <sup>66,9</sup>  | 70,5<br>+         | 70 <u>,</u> I      | 7 <b>4.9</b><br>+  | 78.0         |             | <u>415</u><br>+ | 69.9<br>+          | 75,1                | 77.6<br>+          | 7 <b>8.7</b><br>+ | 7 <b>8</b> .<br>+  |
|                               | (AG) Teore<br>(A) Teores                                  | s_Cobal<br>Cromo | 0          | <u> </u> |         | ;                 | 71.4<br>+          | 75.4              | 72.3       | 69.8<br>+          | 70.4<br>+         | 70,4               | 75.0<br>+          | 72.6         | 76.7        | 75.9<br>+       | 80.9<br>+          | 82.9<br>+           | 79.6<br>+          | 79.4<br>+         | 7 <b>9.</b> /      |
|                               |                                                           |                  |            |          |         | ;                 | 70.8<br>+          | 72.2              | 71.3       | 70.4<br>+          | <b>70.</b> 0<br>+ | 7 <b>3.7</b>       | 82.0<br>+          | 84,1<br>+    | 74,0        | 86.0            | 86.0<br>+          | 84.0<br>+           | 87,4<br>+          | 87.5              | 83.)<br>+          |
|                               | Prioridade:                                               | 300              | CR De      | senhar   |         | e                 | 9.4<br>+           | 69.6<br>+         | 67.4<br>+  | 69.2<br>+          | <b>70,7</b><br>+  | 77,7<br>+          | 87.4<br>+          | 91.6<br>+    | 90.5        | 95.4            | 91,1<br>+          | 89.9<br>+           | 89.9<br>+          | 93,1<br>+         | 93.I<br>+          |
| ĥ                             | 🗸 Amostra                                                 | is 🗔 TII         | 4 🗖 1      | exto     |         | 6                 | 56.4<br>+          | 67.5<br>+         | 65.2<br>+  | 66.5<br>+          | 72.9<br>+         | B1.3<br>+          | 91.B<br>+          | 95.9         | 91.5<br>+   | -82.2           | 90 <b>.</b> 9      | 87.9<br>+           | 91.2<br>+          | 94.2<br>+         | 95<br>+            |
|                               | Grade                                                     |                  | linhas 🥅 I | magem    |         | 6                 | 56.5<br>+          | 65.3<br>+         | 63.6-<br>+ | 64.2<br>+          | 71.8<br>+         | 8 <b>5.</b> 2      | 91,1<br>+          | 92,1<br>+    | 95.6<br>+   | 95.4<br>+       | 99.8 -<br>+        | -84, I<br>+         | 93.1<br>+          | 95.6<br>+         | 97.!<br>+          |
| ſ                             | Selecior                                                  | nar              | Consult    | ar       |         | 6                 | 6.2<br>+           | 65.J              | 66.1<br>+  | 69.4<br>+          | <b>75.7</b><br>+  | 81.3<br>+          | 90.6<br>+          | 94.7<br>+    | 100.4       | 104.2<br>+      | 111.2              | 100.2               | 98.4<br>+          | 104.0<br>+        | 10 <u>3</u><br>+   |
|                               | COI<br>Ativar: (                                          | DNTROLE DE TELAS |            | 4 C 5    |         | 6                 | 9.8<br>+           | 67.0<br>+         | 67.9<br>+  | 69.6<br>+          | 74.5<br>+         | B0.7               | 85.0               | 94.7<br>+    | 103.2       | 104.9           | 106.5              | 107.1<br>+          | 106.6              | 106.B<br>+        | 107<br>+           |
|                               | Exibir:<br>Acoplar:                                       |                  |            |          |         | 6                 | \$ <b>7.3</b><br>+ | 67.7<br>+         | 65.9<br>+  | 63.7<br>+          | 65.B<br>+         | B0.1               | 91.0               | 104.6        | 108.0       | 107.9           | 11].9              | 112.6<br>+          | 106.6              | 107.5             | 10 <u>9</u> .<br>+ |
|                               | Ampliar: (                                                | • 1C             | 2040       | 3        |         | 6                 | 9.2<br>+           | 67.0<br>+         | 64,2<br>+  | <u>61</u> 0_       | 45.6<br>+         | 72.5               | 10 <del>3</del> 8- | 107.0        | 1 10.4<br>+ | 116.4<br>+      | 1 <b>30.9</b><br>+ | 12 <b>8.</b> 8<br>+ | 113.0              | 1 10.6<br>+       | н <u>і</u> .       |
|                               | Fec                                                       | har              | Ajuda      |          |         | ť                 | 9.5<br>+           | 6 <del>8</del> .6 | 65.5<br>+  | 62.1<br>+          | 58 <u>.</u> 1     | 7 <u>3.6</u><br>+  | 9 <u>3.9</u><br>+  | 102.8        | 108.6       | 126.1           | 152.4              | _149.9              | 127.1<br>+         | 117.3             | 11 <u>4</u><br>+   |
|                               |                                                           |                  |            |          |         | ;                 | 71.8<br>+          | 70.3              | 68.6<br>+  | 67.4<br>+          | 68.9<br>+         | B0, 1              | 90.9<br>+          | 98.9<br>+    | 109.4       | 125.6           | 142.2<br>+         | 1 <b>42.</b> 2      | 130.2<br>+         | 121.9<br>+        | 118                |

Figura 1 - Ativação do banco de dados.

A próxima etapa é a geração do mapa ponderado da geologia, que será construído através da ferramenta *Análise > Legal...*. Segue abaixo a sintaxe utilizada, para a criação do mapa, enquanto a Figura 2 apresenta o mapa de geologia ponderada:

//Declaração Tematico geo ("Geologia"); Numerico geoP ("Geologia\_Ponderada"); Tabela geoT (Ponderacao); //Instanciação geo = Recupere (Nome="Mapa\_Geologico"); geoP = Novo (Nome ="Geologia\_Ponderada", ResX = 30, ResY = 30, Escala = 50000, Min = 0, Max = 1);geoT = Novo (CategoriaIni = "Geologia", "Granito-Granodiorito": 0, "Arvs - Unidade Superior" : 0, "Arvm - Unidade Media" : 0.7, "mv1 - Sto Antonio Pirapetinga" : 1, "mb - Sto Antonio Pirapetinga": 0.5, "Asap - Sto Antonio Pirapetinga" : 0.7); //Operacao geoP = Pondere (geo, geoT);}



Figura 2 - Mapa de geologia ponderada.

O próximo passo trata-se do mapeamento da grade (representação) do plano de informação "*Teores\_Cromo*", utilizando a lógica *Fuzzy*. Para tanto, será utilizada a ferramenta Análise > Legal.... Segue abaixo a sintaxe utilizada:

```
{
// Fuzzy cromo (ponto ideal com um teor de 1.855 % e ponto de cruzamento em 0.32)
//Declaração
Numerico cromo ("Amostras");
Numerico cromofuzzy ("Cromo_Fuzzy");
//Instanciação
cromo = Recupere ( Nome = "Teores_Cromo" );
cromofuzzy = Novo (Nome = "Cromo_Fuzzy", ResX=30, ResY=30, Escala=50000,
Min=0, Max=1);
//Operação
cromofuzzy = (cromo < 0.20)? 0 : (cromo > 1.855)? 1 : 1/(1 + (0.424 * ((cromo -
1.855)^2)));
}
```



Figura 3 - Grade do PI Teores\_Cromo, gerada por meio de lógica Fuzzy.

A próxima etapa é o mapeamento da grade (representação) do plano de informação "*Teores\_Cobalto*", utilizando a lógica *Fuzzy*. Para tanto, será utilizada a ferramenta Análise > Legal... . Segue abaixo a sintaxe utilizada, enquanto a figura 3 mostra a grade de "*Teores\_Cobalto*", gerada a partir da lógica *Fuzzy*:

{ // Fuzzy cobalto ( ponto ideal com um teor de 150.92 ppm e ponto de cruzamento em // 80ppm) //Declaração Numerico cobal ("Amostras"); Numerico cobalfuzzy ("Cobalto\_Fuzzy"); //Instanciação cobal = Recupere ( Nome= "Teores\_Cobalto" );

```
cobalfuzzy = Novo( Nome = "Cobalto_Fuzzy", ResX = 30, ResY = 30, Escala = 50000,

Min = 0, Max = 1 );

//Operação

cobalfuzzy= (cobal <60) ? 0 : (cobal>150.92)? 1 : 1/( 1 +(0.000198*((cobal - 150.92

)^2 ) ) );

}
```



Figura 4 - Grade do PI Teores\_Cobalto, gerada por meio de lógica Fuzzy.

A etapa seguinte é o cruzamento entre os planos de informação "Cromo\_Fuzzy" e "Cobalto\_Fuzzy", utilizando a função Fuzzy Gama. Será utilizada a ferramenta Análise > Legal... . Segue abaixo a sintaxe utilizada:

<sup>//</sup>Declaração Numerico cobal("Cobalto\_Fuzzy"), cromo("Cromo\_Fuzzy"), geol ("Geologia\_Ponderada");

```
Numerico gama ("Gama_Fuzzy");

//Instanciação

cobal = Recupere (Nome= "Cobalto_Fuzzy");

cromo = Recupere (Nome= "Cromo_Fuzzy");

geol = Recupere (Nome= "Geologia_Ponderada");

gama=Novo (Nome="Gama_Fuzzy", ResX=30, ResY= 30, Escala=50000, Min=0,

Max=1);

//Operação

g=0.70;

gama = (cobal*cromo*geol)^(1 - g) * (1 - ( (1 - cobal) * (1 - cromo) * (1 - geol) )^g);

}
```

A figura 5 mostra a fusão dos dois planos de informação referidos, a partir da função fuzzy gama:



**Figura 5**- Cruzamento entre os PI's "Cromo\_Fuzzy" e "Cobalto\_Fuzzy", utilizando a função Fuzzy Gama.

O exercício seguinte pede para criar o plano de informação "*Cromo\_AHP*", utilizando a técnica de suporte à decisão AHP (Processo Analítico Hierárquico), que se encontra na sequência de abas do SPRING: Menu > Análise > Suporte à Decisão (AHP)... .Segue a sintaxe abaixo:

{ // Pesos a ser aplicados // Cobalto\_Fuzzy = 0.733 // Cromo\_Fuzzy = 0.199 // Geologia\_Ponderada = 0.068 // Razao de consistencia // CR = 0.081// Programa em LEGAL // Este programa deve ser completado // pelo usuario para incluir os dados // apresentados entre os sinais de <> // Definicao dos dados de entrada Numerico var1 ("Cobalto\_Fuzzy"); Numerico var2 ("Cromo\_Fuzzy"); Numerico var3 ("Geologia\_Ponderada"); // Definicao do dado de saida Numerico var4 ("<Cromo\_AHP >"); // Recuperacao dos dados de entrada var1 = Recupere (Nome="<Cromo\_Fuzzy >"); var2 = Recupere (Nome="<Cobalto\_Fuzzy >""); var3 = Recupere (Nome="<Geologia\_Ponderada >"); // Criacao do dado de saida var4 = Novo (Nome="<Cromo\_AHP>", ResX=<30>, ResY=<30>, Escala=<50000>, Min=0, Max=1);// Geracao da media ponderada var4 = 0.733\*var1 + 0.199\*var2 + 0.068\*var3;

O próximo passo é o fatiamento no Geo-campo "Gama\_Fuzzy":

```
{
//Declarações
Numerico num ("Gama_Fuzzy");
Tematico tem ("Fatiamento");
Tabela tab(Fatiamento);
//Instanciações
num = Recupere (Nome = "Gama_Fuzzy");
tab = Novo (CategoriaFim = "Fatiamento",
[0.0, 0.2] : "Background",
[0.2, 0.5] : "Baixo Potencial",
[0.5, 0.7] : "Medio Potencial",
[0.7, 1.0] : "Alto Po
```



Figura 6 - Fatiamento Gama\_Fuzzy.

Agora deve-se realizar o fatiamento no Geo-Campo "Cromo\_AHP":

```
{
//Declarações
Numerico num ("Cromo_AHP");
Tematico tem ("Fatiamento");
Tabela tab(Fatiamento);
//Instanciações
num = Recupere (Nome = "Cromo_AHP");
tab = Novo (CategoriaFim = "Fatiamento",
[0.0, 0.2] : "Background",
[0.2, 0.5] : "Baixo Potencial",
[0.5, 0.7] : "Medio Potencial",
[0.7, 1.0] : "Alto Potencial",
[0.7, 1.0] : "Alto Potencial");
tem = Novo (Nome = "FAT_Cromo_AHP", ResX=30, ResY=30, Escala=50000);
//Operações
tem = Fatie (num, tab);
}
```



Figura 7 - Fatiamento Cromo\_AHP.

Por fim, deve-se apresentar e analisar os mapas de Potencialidade de Cromo gerados pelas técnicas AHP e *Fuzzy* Gama:



Figura 8 - Mapa de potencialidade Cromo\_AHP e Fuzzy Gama.