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ABSTRACT: Basic meteorological data are essential for evaluating impacts of spatiotemporal variability in climate forcing
on hydrology and agroecosystems. The objective of this work was to develop high-resolution grids (0.25∘ × 0.25∘) of daily
precipitation, evapotranspiration, and the five climate variables generally required to estimate evapostranspiration for Brazil.
These five variables are maximum and minimum temperature, solar radiation, relative humidity, and wind speed. We tested six
different interpolation schemes to create the grids for these variables. The data were obtained from 3625 rain gauge and 735
weather stations for period of 1980–2013. We used a cross-validation approach that compares point observed data to point
interpolated estimates to select the best interpolation scheme for each climate variable. We also present the performance of
the best interpolation for each climate variable at daily timescales and for river basins. The inverse distance weighting and
angular distance weighting methods produced the best results. Performance of all methods was poorer prior to 1995 because
of fewer stations and available data. The performance of the interpolation varies for different seasons for almost all variables.
Forecasting capability was tested for precipitation only and performed adequately for the system state (wet or dry). Variations
in the interpolation schemes across river basins are primarily attributed to differences in gauge or station network density. This
freely available gridded meteorological data set significantly advances the availability of climate data in Brazil.
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1. Introduction

It is becoming increasingly important to have available
and reliable meteorological data to understand trends in
climate variables and climate extremes, as well as their
impacts on water resources and agriculture (Jones et al.,
2003; Steduto et al., 2009). The two dominant compo-
nents of water budgets in most regions are precipitation
and evapotranspiration (ET). There are a variety of global
products available for precipitation and ET. For example,
global precipitation products based solely on satellite data
include the US National Oceanic and Atmospheric Admin-
istration (NOAA) Climate Prediction Center (CPC) Mor-
phing Technique (CMORPH) and the Tropical Rainfall
Measuring Mission (TRMM) with daily precipitation data
since 1998 at a spatial resolution of 0.25∘ × 0.25∘ (Huffman
et al., 2007). Other products based solely on ground-based
station data include those from the NOAA Global Precip-
itation Climatology Centre (GPCC) and the East Anglia
University Climatic Research Unit (CRU). Some mete-
orological and climate products combine satellite and
ground-based data. The Global Precipitation Climatology
Project (GPCP) is one such product with daily precipita-
tion data at 1∘ of resolution from 1996 to present (Huffman
et al., 2001).
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The US PRISM (Parameter-elevation Regressions on
Independent Slopes Model) incorporates point data,
a digital elevation model, and other information to
provide digital grid estimates of daily, monthly, and
annual precipitation (Daly et al., 2008). There are also
a number of global satellite-based ET products, includ-
ing MOD16 based on MODIS (Moderate Resolution
Imaging Spectroradiometer) satellite data (Mu et al.,
2011), NOAA AVHRR (Advanced Very High Resolution
Radiometer) product (Zhang et al., 2010) and others using
ground-based eddy covariance station data (FLUXNET)
(Jung et al., 2009), and a gridded monthly data set gener-
ated from meteorological stations by CRU (Harris et al.,
2014). Global land surface models also include precip-
itation forcing data and simulated ET products (Global
Land Data Assimilation System, Rodell et al., 2004).
While these products are available at variable spatial and
temporal resolutions, it is important to compare satellite
and model-based products with station data. For example,
GPCP and TRMM measurements generally require val-
idation, and this validation is performed by comparing
to ground-based rain gauges (Karaseva et al., 2012; Li
et al., 2012). Thus, ground-based station records provide
a fundamental building block on which to evaluate other
meteorological products.

The objective of this study was to develop a gridded data
set of precipitation and reference ET (ETo) based on the
most comprehensive ground-based station data available
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for Brazil. Because many applications of meteorological
data require a uniform gridded data set (e.g. to compare
with satellite observations or climate model calculations),
it is important to process ground-based station data to
develop such a product. We present the data at 0.25∘

(approximately 28 km at the equator) spatial resolution and
at both daily and monthly temporal resolutions. In order to
compare the interpolation methods used to estimate values
for each grid cell, we used a cross-validation procedure
that compares point observed data to point interpolated
estimates. That is to say, while our goal is to produce a
value for a grid cell that inherently provides a metric of
a given meteorological variable (e.g. precipitation) that is
assumed to be representative of the entire grid cell, our
only procedure for assessing accuracy of our interpolation
methods is to compare a point interpolation estimate to a
point measurement (Haylock et al. (2008) also discuss this
concept).

The main sources of weather data are those measured
directly from rain gauges and weather stations. In Brazil,
there are large areas without any rain gauges or weather
stations. Furthermore, the data quality is sometimes poor
with a large number of missing data. However, these are
common problems for creating gridded data sets. One
existing product, for precipitation only, is a daily gridded
(1∘ and 2.5∘) data set from Earth System Research Lab-
oratory (http://www.esrl.noaa.gov/psd/data/gridded/data.
south_america_precip.html) for South America using rain
gauge data for 1940–2012 (Liebmann and Allured, 2005).
The ESRL (Earth System Research Laboratory) gridded
data sets include large areas of missing values, because
they do not include interpolation beyond the local area
of each grid point. This contrasts with the added value of
interpolation in the new gridded product.

Many projections indicate that Brazil may be one of
the few areas where food production can be substantially
increased to meet rising global food demand (Bruinsma,
2003). In 2012 for worldwide crop production, Brazil
ranked first globally in production of sugar cane, green
coffee, and oranges; second in production of soybeans,
dry beans, and papaya; and third in production of maize
(FAOSTAT, 2014). In addition, Brazil is a model area for
biofuel production using sugarcane which has also been
expanding in the past decade (ICONE, 2012). Calculating
the water footprint of agriculture requires basic meteo-
rological parameters, such as precipitation and reference
evapotranspipration (ETo). Developing a reliable meteoro-
logical product helps in addressing whether ET in existing
and expanding agricultural regions exceeds precipitation.
Thus, we then have requisite data to understand water
demand versus availability in regions across Brazil, and
to assess the need and availability of water for irrigation,
municipal supply, and other demands.

The organization of this article is as follows. Section
2 describes data sources, equations used to calculate
ETo, and interpolation methods for creating the gridded
data. Section 3 then compares each of the interpolation
methods for each meteorological variable using several
statistical measurements for comparison. We selected the

Table 1. Total number of rain gauges collected per basin and
source.

Basin name INMET INMET ANA DAEE Total
Conventional Automatic

Amazon river 33 61 446 0 540
Tocantins river 18 42 179 0 239
North Atlantic
region

57 78 311 0 446

Sao Francisco
river

41 43 322 0 406

Central Atlantic
region

40 78 393 31 542

Parana river 49 120 466 386 1021
Uruguay river 11 25 154 0 190
South Atlantic
region

11 28 165 37 241

Total 260 475 2436 454 3625

best interpolation method for each variable over the entire
time span of our data.

2. Data and methods

2.1. Data sources

Generally, the required variables to calculate ETo are max-
imum and minimum temperature (Tmax and Tmin), solar
radiation (Rs), wind speed at 2 m height (u2), and relative
humidity (RH). Individually, some of these variables can
be used to estimate crop productivity (Tao et al., 2014).

Our data set includes daily observed data collected from
rain gauges as well as conventional and automatic weather
stations from the period of 1 January 1980 to 31 Decem-
ber 2013. The meteorological data types are maximum
temperature (Tmax, ∘C), minimum temperature (Tmin, ∘C),
mean RH (%), wind speed at 2 m height (u2, m s−1), precip-
itation (pr, mm), and either the daily duration of sunshine
(n, hours) from conventional weather stations or daily solar
radiation (Rs, MJ m− 2) from automatic stations. We also
include two indicators of the quality of each grid cell: the
number of included stations with data, and the geodesic
distance of the nearest reporting station with data.

The sources of the data are the ‘Instituto Nacional de
Meteorologia’ (INMET), the ‘Agência Nacional de Águas’
(ANA), and ‘Departamento de Águas e Energia Elétrica de
São Paulo’ (DAEE). Table 1 shows the number of weather
stations per major water basin in Brazil. INMET data are
from weather stations that collect all of the aforementioned
weather variables. The data from ANA and DAEE are
limited to precipitation pr. ANA provides the major source
of pr data via 2436 rain gauge stations (67% of all the
rain gauges). We checked if there were any duplicate rain
gauge or weather station data provided by more than one
agency. We observed six pairs of rain gauges with the same
coordinates, but in each case, the data were not duplicated.
We did not observe any weather station data with duplicate
coordinates. Thus, we did not remove any rain gauge or
weather station data from our data set.

© 2015 Royal Meteorological Society Int. J. Climatol. 36: 2644–2659 (2016)
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Table 2. Tests applied on the observed data to validate them.

Variable Test References Number of data
points removed

pr (mm) 0≤ pr< 450 Liebmann and Allured (2005) 92
Tmax, Tmin (∘C) − 30≤Tmax, Tmin < 50 Shafer et al. (2000) 0
RH (%) 0≤RH< 100 0
Rs (MJ m− 2) 0.03Ra ≤Rs <Ra Moradi (2009) 70
u2 (m s− 1) 0≤ u< 100 Shafer et al. (2000) 0

2.1.1. Data quality and homogeneity

We performed a simple quality control check for the raw
data by discarding all data that failed any of the screening
tests listed in Table 2. For example, for pr, 94 of the
approximately 32 million days with observed data have
values exceeding 450 mm. Because the targeted use of our
gridded data is for crop ET and growth analysis, our main
goal is to remove ‘obvious’ outliers, or extreme values. A
more complete analysis would require confirmation of the
discarded data per Table 2 to confirm whether the data are
valid. While there could be worthwhile benefits to assess
all of our discarded data, it is beyond the scope of this work
(Wijngaard et al., 2003; You et al., 2007).

We also applied a qualitative test for homogeneity of
each type of data, except for the precipitation data. We did
not apply an objective quantitative test for homogeneity of
the data, but instead used only a simple visual compari-
son of data with those from surrounding stations. Several
methodologies for analysis of homogeneity are described
in Peterson et al. (1998), where one of the primary tools is
checking historical metadata files, but the metadata are not
available to us for this study.

Application of an objective homogeneity test requires
construction of a reference against which to test the can-
didate station. As mentioned previously, Brazil has a low
density of weather stations in most areas, and several sta-
tions have a great number of missing data. Difficulties in
testing homogeneity for South America data are discussed
in Haylock et al. (2006) for daily precipitation. Haylock
et al. (2006) did not perform statistical homogeneity tests
due to a lack of nearby surrounding stations and interan-
nual variability in precipitation due to El Niño Southern
Oscillation. Vincent et al. (2005) tested the homogeneity
of 68 stations with maximum and minimum daily temper-
ature data where 19 and 22 stations, respectively, presented
potential inhomogeneity. However, they did not remove
the potentially inhomogeneous data because of the limited
data availability. Therefore, for our data set, we did not
perform homogeneity analysis for pr.

For the variables Tmax, Tmin, Rs, RH, and u2, we
performed a visual homogeneity check. This visual
homogeneity test plots the time series of data from the
candidate station along with the average of data from
several surrounding stations. This average approximates
data as if from a validated reference station. The number
of surrounding stations was selected such that we had at
least five surrounding data to calculate the average. For
example, if we are checking homogeneity of Tmax, and the

five nearest surrounding weather stations have no missing
data, then we only need to use these five stations. How-
ever, if for 1 day only two of the stations have observed
Tmax, the next three closest stations with observed Tmax on
that day must be selected. In general, less than 20 weather
stations were used to calculate an average time series for
our homogeneity test for any candidate station.

When we observed a clear inhomogeneity in trend in
some part of the time series of the candidate station, we
removed those data. In Figure 1, we show examples of
data that were removed, and Table 3 indicates the number
of stations with inhomogeneous data and the quantity of
data removed. The variables Tmin and u2 have more days
with inhomogeneous data, although they are few compared
to the total amount of data (for each variable, < 0.4 % of
the raw data were removed). We can only speculate on the
causes of the inhomogeneities. For example, in Figure 1(a),
(b), and (d) (Tmax, RH, and u2), the instruments seem to be
temporally defective, while Figure 1(c) (Rs) indicates that
the problem could be the temporary use of different units.
This type of units problem could be fixed if we had access
to the station metadata.

2.2. Reference ET

We calculated daily reference ET using the Food and
Agriculture Organization of the United Nations (FAO)
Penman–Monteith method (ETo, Allen et al. (1998); Raes
(2012)) shown in Equation (1) for both the conventional
and automatic weather stations. The variables used to
calculate ETo are the observed daily Tmax, Tmin, RH, u2,
and Rs or n. We calculated ETo at weather stations only
for days in which all required data are available and remain
after the screening process per Table 2. For example, if for
1 day and station all variables are present except for u2,
then we did not calculate ETo.

ETo =
0.408Δ

(
Rn − G

)
+ 𝛾

900
T+273

u2

(
es − ea

)
Δ + 𝛾

(
1 + 0.34u2

) (1)

In Equation (1), ETo is reference ET (mm day− 1), Rn is
net radiation (MJ m− 2 day− 1), G is soil heat flux density
(MJ m− 2 day− 1), T is air temperature at 2 m height (∘C),
u2 is wind speed at 2 m height (m s− 1), es is saturation
vapour pressure (kPa), ea is actual vapour pressure (kPa),
es − ea is the saturation vapour pressure deficit (kPa), Δ is
the slope vapour pressure curve (kPa ∘C− 1), and 𝛾 is the
psychrometric constant (kPa ∘C− 1).
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Figure 1. Examples of using a visual analysis method for testing homogeneity of data time series. The red dots indicate data from the candidate
station. The black dots indicate the arithmetic average of the nearest surrounding stations. Any data that visually fall outside of the average range

and average trend were removed as indicated by the dashed ovals.

Table 3. A summary of the homogeneity check showing that we
discarded less than 0.4% of data for each variable required to

estimate ETo.

Variable Number of
stations with
homogeneity

problem

Number of
data points
removed

% of total
data

removed

Tmax 3 1186 0.02
Tmin 13 21 108 0.36
Rs 24 8484 0.14
RH 5 2116 0.03
u2 7 12 008 0.20

In our case, G was considered zero; T was the average of
Tmax and Tmin; ea was estimated with the aid of RH, Tmax,
and Tmin as follows:

ea = RH
100

(
e∘

(
Tmax

)
+ e∘

(
Tmin

)
2

)
(2)

where e∘(Tmax) and e∘(Tmin) are saturation vapour pressure
at the air maximum and minimum temperatures, respec-
tively. Rn was calculated as follows:

Rn = Rns − Rnl (3)
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where Rns is incoming net shortwave radiation that is a
function of albedo (assumed as 0.23 for hypothetical grass
reference crop), and Rnl is the outgoing net longwave
radiation that is a function of Tmax, Tmin, ea, Rs, and Rso,
where Rso is clear-sky radiation (MJ m− 2 day− 1) that
is calculated. Rs is directly measured in the automatic
weather stations. For the conventional weather stations,
Rs is estimated with the aid of n, the maximum possible
duration of sunshine (N, hour), and the extraterrestrial
radiation (Ra, MJ m− 2 day− 1) as:

Rs =
(

0.25 + 0.50
n
N

)
Ra (4)

where Ra and N are calculated as in Allen et al. (1998).

2.3. Interpolation methods

Developing a gridded meteorological product from station
data is challenging because stations represent points with
varying densities in a region, stations come online at
different times, and many stations have periods of missing
records. A variety of approaches have been developed to
interpolate station data, and we compare these methods for
each of our weather variables.

We tested six interpolation methodologies and selected
the best one for precipitation and each variable needed to
estimate ETo: (1) average inside the area of 0.25∘ × 0.25∘

(AVERAGE), (2) natural interpolation (NATURAL),
(3) thin plate spline (THINPLATE), (4) inverse dis-
tance weighting (IDW), (5) angular distance weighting
(ADW), and (6) ordinary point kriging (OPK). During
cross-validation analysis for each of the interpolation
methods, we used the five nearest available stations with
data in the neighbourhood of the query position. For
comparison, New et al. (2000) used eight nearest stations
in monthly interpolation of weather data. When the query
position was outside the convex hull (e.g. on the border
of Brazil), the nearest data were used. We did not use
elevation data as input for interpolation.

For all variables except pr, within each 0.25∘ × 0.25∘ grid
square, we considered the centroid as the single interpola-
tion location. For pr, we used a different approach because
of the higher density of precipitation data (e.g. there
are often many observed data within each grid square).
Because of the higher density of precipitation gauges, we
calculated a single value for a grid point from the aver-
age of 25 individual interpolations within that grid taken
at 0.05∘ spacing, similar to the approach used in Haylock
et al. (2008).

2.3.1. Arithmetic average

We calculated the arithmetic average (AVERAGE) equal
to the sum of the data divided by the number of data. For
each 0.25∘ × 0.25∘ grid square, we considered the centroid
as the interpolation location and included a maximum of
five nearest data. Our approach differs from that used by
Liebmann and Allured (2005) for the South American
gridded precipitation product. They used the average in a
corresponding geographic ellipse, with no explicit limit on

the number of stations, and while Liebmann and Allured
(2005) did not assign any value to grid cells that did not
have any station data, we assigned a data point that was
nearest to the centroid, but lies outside, the grid cell of
interest.

2.3.2. Thin plate spline

The THINPLATE is a common interpolation technique
used for weather data (Xia et al., 2001; Wu et al., 2014),
particularly for regions with sparse station data (New et al.,
2002). Our calculations were performed in Matlab using
the internal function TPAPS.

2.3.3. Natural neighbour

We included natural neighbour interpolation (NATURAL)
as part of the normal suite of methods (Sibson, 1981; Hof-
stra et al., 2008). NATURAL uses Thiessen polygons and
triangulation to select which nearby data points to use,
while weighting each of them based upon its associated
area. The interpolation surface is constructed to reproduce
the observation data at the surrounding weather stations.
Our calculations were performed in Matlab using the inter-
nal function GRIDDATA with the ‘natural’ method.

2.3.4. Inverse distance weighting

In the IDW method, the interpolated quantity at a location
is based upon a weighting (Equation (5), Wk) that is
inversely proportional to the distance between the point
and the data from the kth nearby weather station.

Wk =
1
dp

k

(5)

Here, d is the geodesic distance of station k and the
specified point, and p is the power parameter that we set
equal to 2, as suggested by Ly et al. (2011). The number
of weather stations to consider for interpolating at a chosen
point were the nearest five, selected after cross validation.

2.3.5. Angular distance weighting

In the ADW method, the weighting for the data from the
surrounding stations is calculated using both the distance
and the angles (or orientation) between weather stations.
The distance weight is calculated using a correlation decay
function with the empirically derived correlation decay
distance (CDD) (see Equation (6)).

r = e−x∕CDD (6)

In Equation (6), x is the distance from the gridded point
of interest and a nearby weather station. For each station,
we calculated the correlation (r) with all other stations.
Then, we solved for the CDD that minimizes the least
squares error between the values of rk corresponding to the
xk calculated using observed data and r(x) using Equation
(6). On average, our CDD values are around 200 km for
pr (similar to those of Hofstra and New (2009), Europe)
and 800 km for the other weather variables (similar to

© 2015 Royal Meteorological Society Int. J. Climatol. 36: 2644–2659 (2016)
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those of New et al. (2000), temperature global). The dis-
tance weighting for each station (k) is calculated using
Equation (7):

wk = rm (7)

where we selected the exponent m for each meteorological
variable during cross validation (see Section 2.4), testing
for each variable the integer values 1–8. We selected the
following exponents: m= 1 for pr and u2; m= 6 for ETo,
Tmax, and Rs; and m= 4 for Tmin and RH.

The second part of the distance weight is the angular
weight (ak, Equation (8)) for each of the nj = 5 (for our
study) selected stations used for interpolation:

ak =

nj∑
l=1

wl

(
1 − cos 𝜃j (k, l)

)
nj∑

l=1

wl

, l ≠ k (8)

where 𝜃j(k, l) is the angle formed by stations l and k with
the vertex at the interpolating point of interest. To weight
the values of the surrounding stations for interpolating at
the point of interest, the distance and angle weightings are
combined for each kth station (Wk):

Wk = wk

(
1 + ak

)
(9)

2.3.6. Ordinary point kriging

The OPK methodology has an expected average error of
zero. To weight the spatial dependency of the observed
data, OPK uses the variogram estimator (Webster and
Oliver, 2007). We used monthly variogram estimators as
the average of the daily semivariances for each month.
During our cross-validation process for comparing inter-
polation methods, we decided to use the spherical model
to model the semivariance.

2.4. Cross validation

We used a cross-validation procedure for comparing the
accuracy of the interpolation methods. The process is as
follows. For each observed data point at a test weather sta-
tion (i.e. for each observed variable at each station and
each day), we ‘remove’ it from the data set. We then use
each of the interpolation methods to estimate the weather
variable at this test station. This procedure is similar to
that used by Daly et al. (2008) and Hofstra et al. (2008).
For precipitation, for example, we have approximately 32
million observed daily data. Thus, the total number of
cross-validation calculations was approximately 192 mil-
lion (32 million of data times six interpolation methods).

We used the following statistics to compare the accu-
racy of the observed data (X) with our interpolated esti-
mates (Y): the coefficient of correlation (R), the bias, the
root mean square error (RMSE), the mean absolute error
(MAE), the compound relative error (CRE), the critical

success index (CSI), and the percent correct (PC).

R =

n∑
i=1

(
Xi − X

)(
Yi − Y

)
n∑

i=1

√(
Xi − X

)2
√(

Yi − Y
)2

(10)

Bias = Y − X (11)

RMSE =

√√√√√√
n∑

i=1

(
Xi − Yi

)2

n
(12)

MAE = 1
n

n∑
i=1

|Xi − Yi| (13)

CRE =

n∑
i=1

(
Xi − Yi

)2

n∑
i=1

(
Xi − X

)2
(14)

CSI = a
a + b + c

(15)

PC = a + d
a + b + c + d

(16)

In Equations 10–16, X and Y are the mean of X and Y ,
and n is the number of observed data available. CSI and
PC are forecast quality measurements where a is number
of hits (correct forecast), b is number of false alarms (event
was forecast but not observed), c is number of missed
forecasts (event occurred but was not forecast), and d is
number of correct rejections (event did not occur and was
not forecast) (Hofstra et al., 2008; Wilks, 2011).

CRE and R are measurements of similarity, where CRE
is zero when X equals Y . R measures the degree of linear
dependence of the variables, varying from −1 to 1. Bias
indicates whether the interpolated estimates tend to be
lower or higher than the observed data (a bias of zero
is ideal). RMSE and MAE measure accuracy, such that
when observed and estimated data are similar, RMSE
and MAE are close to zero, indicating a more accurate
interpolation. RMSE calculates the square of deviation
between observed and estimated values, and is thus more
sensitive to larger errors. Bias, RMSE, and MAE have the
same units as the variable.

PC was calculated only for pr to verify whether the
interpolated methods were able to forecast the state of pr.
The state of pr was defined as ‘wet’ or ‘dry’, where a wet
state is defined as pr> 0.5 mm day−1, and dry otherwise.
With CSI, we test whether the interpolation methods are
able to forecast extreme values. Extreme values are those
that fall below the 5th (CSI low, CSIL) percentile or above
the 95th percentile (CSI high, CSIH) in the observed and
estimated data (see Hofstra et al. (2008)). Because of a
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Figure 2. Major river basins of Brazil and spatial distribution of all rain gauges in the data set (a); the historical count of rain gauges in Brazil (b)
and for each major river basin (c).

very high number of low and zero rainfall data, we tested
pr only for CSI and CSIH (as per Hofstra et al. (2008)).

For each statistic used to determine the accuracy of
the interpolation methods, we determine a ‘skill score’,
that is the ranking of the interpolation method (1= best,
2= second best, etc.). The overall skill score for a given
interpolation method is the average of the individual
skill scores. For each meteorological variable, the best
interpolation method is the one with the lowest (best) over-
all skill score.

Once we determined the best interpolation methodology
for each variable (Section 3.2.1.), we show the results
of cross validation: (1) at a daily timescale, considering
Brazil (Section 3.2.3.); and (2) in the major river basins
in Brazil, considering all time series (Section 3.2.4.). In
Section 3.2.5., we show the results of gridded data sets that
we generated.

3. Results

3.1. Spatial and temporal distribution of rain gauges
and weather stations

The spatial distribution of all rain gauges in our data set and
temporal variability in the average number of rain gauges
available during the years analysed are shown throughout

Brazil and within the river basins (Figure 2(a), (b), and
(c)). In 2012, the year with the highest number of available
stations and data, the Amazon river basin has the lowest
density of rain gauges, approximately 0.1 station per 1000
km2, while the Atlantic (east and north/northeast basins),
Parana, and Uruguay river basins have the highest density
of gauges, approximately 1.0 per 1000 km2. The average
density of rain gauges for Brazil overall in 2012 was 0.4
stations per 1000 km2. For comparison, the United States
has approximately 1.1 stations per 1000 km2 (NOAA,
2010). There is also a wide range in distribution of rain
gauges within river basins. In the Amazon river basin,
large areas have no weather stations, and subsequently
our interpolations for pr are the least accurate and precise
within the Amazon basin.

Throughout Brazil and within our data set, the total
number of rain gauges with data generally increases from
1854 in 1980 to 3358 in 2012 before decreasing in 2013
(Figure 2(b) and (c)). We attribute the decline in 2013 to
a time delay for government agencies to organize the data
and make them available. We observe this same time delay
for data from weather stations (see Figure 3(b)).

Similar to the spatial and temporal distribution of rain
gauges, the Amazon river basin has the lowest density
of weather stations (Figure 3(a)). The average number
of available weather stations has generally increased at
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Figure 3. Major river basins of Brazil and spatial distribution of weather stations (a); annual average of the number of weather stations in Brazil (b)
and for each major river basin (c).

a constant linear rate since 1980, with some downward
fluctuations in the early 1990s (Figure 3(b) and (c)). For
two river basins, the South Atlantic region and Uruguay
river, there were no available weather station data for the
years 1986, 1987, and 1990. Most of the weather stations
installed before 2000 were of the ‘conventional’ variety
and are mostly still functioning. After 2000, most installed
stations are automatic.

3.2. Evaluating interpolation methods

3.2.1. Skill scores for all observed data

In interpolating each meteorological variable at a given
rain gauge (for pr) or weather station, the most accurate
interpolation method might differ for each variable. The
gridded data sets (in multiple individual files grouped by
variable type and time span) are available for download
via a file sharing system of the University of Texas.
Table 4 shows the statistics and their skill scores of
the relationship between all daily observed and esti-
mated data for pr and ETo (see Table S1, Supporting
Information, for the other variables; direct link to data:
https://utexas.box.com/Xavier-etal-IJOC-DATA. Supple-
mental and README file: https://utexas.box.com/Xavier-
etal-IJOC-SUPPLEMENTAL. Author website with link
to data and supplemental material: http://careyking.com/
data-downloads/). For pr, the statistics were calculated

from approximately 32 million pairs of observed and
estimated data per interpolation method. For the other
meteorological variables and ETo, there are approximately
3.5 million pairs of data.

The best overall skill scores were generally obtained
using ADW and IDW, where ADW was best for the vari-
ables ETo, Rs, RH, and u2 and IDW for pr, Tmin, and Tmax.
THINPLATE is almost as accurate as IDW and ADW in
interpolating temperatures and solar radiation, Rs, as these
variables change more smoothly over short distances. For
pr, IDW and ADW are clearly superior to the other meth-
ods. THINPLATE, OPK, and NATURAL methods result
in intermediate skill scores, and the AVERAGE interpo-
lation method always has the worst skill score. We found
a high correlation in the cross validation for ETo, Tmax,
Tmin, Rs ,, and RH (R approximately 0.8–0.9) while much
lower correlations exist for pr and u2 (R approximately
0.4–0.6). All R values are statistically significant at
p - value< 0.05.

Biases are generally small for all variables and methods
when we consider the magnitude of the variables. RMSE,
CRE, and MAE are quite similar for all interpolation
methods for a given variable, but ADW and IDW usually
show better results (lower error statistics).

The ability of the interpolation methods to ‘forecast’
the state of pr, wet or dry, is moderately high (see PC
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Table 4. Statistics and their respective skill score for pr and ETo.

Variables Method AV rank R # Bias # RMSE # CRE # MAE # PC # CSI # CSIL # CSIH #

pr IDW 2.250 0.609 2 0.004 3 9.141 2 0.666 2 3.709 1 0.783 5 0.534 1 n/a n/a 0.290 2
ADW 2.375 0.621 1 0.003 2 8.889 1 0.630 1 3.713 2 0.771 6 0.525 5 n/a n/a 0.292 1
OPK 3.125 0.584 3 0.038 5 9.542 3 0.726 3 3.822 3 0.792 3 0.533 2 n/a n/a 0.278 3
NATURAL 3.875 0.563 5 0.001 1 9.871 5 0.777 5 3.891 4 0.797 2 0.528 4 n/a n/a 0.270 5
THINPLATE 4.250 0.577 4 0.145 6 9.656 4 0.743 4 3.911 5 0.788 4 0.529 3 n/a n/a 0.272 4
AVERAGE 5.125 0.511 6 −0.008 4 10.985 6 0.962 6 4.161 6 0.813 1 0.510 6 n/a n/a 0.246 6

ETo ADW 1.571 0.876 1 −0.004 5 0.775 1 0.234 1 0.575 1 n/a n/a n/a n/a 0.548 1 0.389 1
IDW 2.143 0.873 2 0.001 3 0.785 2 0.241 2 0.581 2 n/a n/a n/a n/a 0.545 2 0.382 2
OPK 2.714 0.869 3 0.001 1 0.800 3 0.249 3 0.589 3 n/a n/a n/a n/a 0.542 3 0.377 3
THINPLATE 3.714 0.863 4 0.001 2 0.817 4 0.261 4 0.601 4 n/a n/a n/a n/a 0.534 4 0.369 4
NATURAL 4.857 0.855 5 −0.001 4 0.844 5 0.278 5 0.619 5 n/a n/a n/a n/a 0.518 5 0.359 5
AVERAGE 6.000 0.824 6 −0.013 6 0.949 6 0.351 6 0.695 6 n/a n/a n/a n/a 0.489 6 0.326 6

n/a, not applicable.

and CSI, Table 4). In the case of PC (the fraction of cor-
rectly interpolated days as ‘wet’ = pr> 0.5 mm day−1 and
‘dry’ otherwise), the AVERAGE method is most accurate
at 81%, whereas ADW is the least accurate at 77%. We
attribute AVERAGE providing the highest PC to the fact
that it best represents the true spatial variability in precip-
itation. All of the other methods perform more smoothing
of the data, effectively overestimating rainfall when there
is none (e.g. 0 mm day−1) and underestimating high precip-
itation events. This smoothing and underestimation of high
precipitation days explains why CSIH is low (< 0.3) for
all interpolation methods, with the better results obtained
using ADW and IDW.

The interpolation results for u2 are the least accu-
rate overall as compared to the other meteorological
variables. This finding is expected, as local geography
can highly influence wind speed and gusts. CSIL and
CSIH (observed and estimated values fall below/above the
5th/95th percentiles) are particularly low for u2, indicating
similar difficulties for interpolating low wind speeds as for
low precipitation. For the other variables, only low values
are shown to be forecast with reasonable accuracy, slightly
lower than those found in Hofstra et al. (2008).

The statistical values for our most accurate interpolation
methods are generally slightly lower than those obtained
by Hofstra et al. (2008) who interpolate weather over
Europe, based on a much higher geographical density
of weather stations. For example, Hofstra et al. (2008)
obtain the following R values: 0.75 (global kriging), 0.98
(THINPLATE three dimension), and 0.96 (global kriging),
for pr, Tmax, and Tmin, respectively. The highest R values
for those same variables in our Brazil study are 0.62 (ADW
for pr), 0.91 (IDW for Tmax), and 0.91 (IDW for Tmin).

3.2.2. Spatial distribution of the best models

The spatial distribution of the best interpolation method
(best average skill score) for the rain gauges/weather sta-
tions for each meteorological variable is shown in Figure 4
for pr and ETo (see Figure S1 for the other variables).
The two interpolation methods with the highest frequency
(number of stations) of being the most accurate are ADW
and IDW, where IDW is accurate most frequently for the

variables pr, Tmax, and Tmin, and ADW for ETo, RH, Rs
, and u2. OPK, THINPLATE, and NATURAL methods
show intermediate frequency of being the most accurate,
and the AVERAGE interpolation is usually the least accu-
rate. Interestingly, there does not appear to be any spatial
or geographic pattern that explains why a given interpola-
tion method is most accurate. Hofstra et al. (2008) found,
for example, for the European stations that OPK method
was the best for the pr, while NATURAL was the best for
Tmax and Tmin. They also observed that in regions with
dense station network and with less topographical com-
plexity the local kriging (similar to OPK method, but with
different variograms at each interpolation point) showed
better results for pr.

3.2.3. Analysis of daily data

The daily statistical results of our cross-validation proce-
dure are based on interpolating weather variables at the
location of each station at daily time resolution. Figure 5
shows an example of calculating the statistical metrics for
a single day, 1 January 1980. We show two variables: pr
and ETo. If the interpolation estimate is perfect, then all
data points would lie on the line with a slope 1 (1 : 1 line).
Across Brazil for this single day, there are 1854 rain gauges
and 135 weather stations with available data. Thus, there
are 1854 and 135 pairs of observed and estimated data for
pr and ETo, respectively, for the cross-validation proce-
dure. We estimated pr and ETo using IDW and ADW inter-
polations, respectively, as described previously (Table 4).
For pr on 1 January 1980, for example, R is 0.71, RMSE
is 11.0 mm, and bias is −0.05 mm (Figure 5(a)). Other
statistics for that day can be observed in the Figure 5(a)
and (b).

We repeated this cross-validation procedure for every
day, and we summarize the results for pr and ETo in
Figures 6 and 7, and for the other variables, Figures
S2–S6. The results in Table 4 are the summarized skill
scores averaged from all days. Both Figures 6 and 7 follow
the same format for displaying the individual daily calcu-
lations. For the upper scatter plot for each skill score, rows
indicate the years (1980–2013) and columns indicate the
days (1 January to 31 December) for the calculation. The
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Figure 4. The most precise interpolation method, as measured by highest average skill score, is indicated for Brazil overall (relative frequency
histogram in lower left of each plot) and for each station (coloured dots on the map) for both pr (a) and ETo (b). Each interpolation method from top

to bottom in the legend is represented from right to left in the histograms.
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shows the individual skill scores for that single day.

colour bar indicates the skill score for each daily calcula-
tion. Below each coloured scatter plot is a line plot indicat-
ing the average skill score across each year for a given day.
The value of this line plot is to assess whether certain times
of the year are more accurately estimated than others. For
example, Figure 6 shows that for RMSE is much lower,
and PC is much higher, when interpolating precipitation
during the winter months (July and August).

3.2.3.1. Precipitation: Figure 6 presents our interpola-
tion results and skill scores using the IDW interpolation
method. Daily R and bias (Figure 6(a) and (b)) do not
indicate a clear seasonal trend between them, except for
perhaps higher R in the winter season. The daily averages
are approximately constant at R= 0.50 and bias approxi-
mately 0.00 mm. RMSE is much lower, and PC is much
higher during the winter months (July and August) indi-
cating that precipitation is more easily predictable in the
winter due to lower precipitation as compared to spring
and summer (see Figure 6(d)). In the dry seasons (fall and
winter), the forecast of the state of precipitation (PC) and
the 95th percentile (CSIH) are both more accurate. CRE
seems to show higher accuracy in fall and early winter, but
with greater uncertainty.

3.2.3.2. Evapotranspiration: The skill scores for ETo,
Figure 7, are based on comparing ETo calculated using
observed input from the weather station to ETo calculated
using interpolated data for that same weather station. Most
of the skill scores are relatively uniform for all days
throughout the year. RMSE is lowest during the fall (April
and May) and highest during the spring. A few of the
skill scores are poor for 1990 because of a relatively high
quantity of missing data from weather stations.

3.2.3.3. Temperature: The behaviour of Tmax and Tmin is
similar (Figures S2 and S3) except for one metric. Tmin
shows a clear increase in RMSE in the winter months that
is not present in Tmax. For Tmax and Tmin, between 1980
and 2005, the daily R, mainly in summer is lower than
during the fall and winter. After 2005, R is much higher
throughout the year. We attribute this anomalous trend to
the higher number of missing data in the data set during
that period (1980–2005) and less variation in temperature
over all Brazil in that season. The autumn and winter
seasons have high temperature variations in Brazil, with
low temperature in the south region and high in the north
of Brazil. Thus, there is an increased possibility of higher
R in the cross validation across all of Brazil for autumn
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Figure 6. Daily skill scores of the relationship between observed and estimated pr when interpolating using IDW.

and winter. The forecast (CSI low, CSIL, and high, CSIH)
is greater in the recent years (2005–2013). This trend is
due to the increase in number of weather stations such that
there is increased power for interpolating the data.

3.2.3.4. Solar radiation: As with precipitation, Rs has
higher interpolation accuracy (e.g. lower RMSE, higher
CSI low, see Figure S4) during the winter than summer

months, likely due to less variability in cloud cover and
lower radiation magnitude. A few of the skill scores (R and
CRE) are poor from 1990 to 1995 due to a relatively high
quantity of missing data from weather stations.

3.2.3.5. Relative humidity: For interpolating RH (Figure
S5), there is both highest R and RMSE in the late winter
and early spring. During that time of the year, many regions
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Figure 7. Daily skill scores of the relationship between ETo calculated using observed data versus estimated data when interpolating using ADW.

in Brazil are dry, but the Amazon region still has high
RH. Thus, there are some places with consistently low RH
and some with consistently high RH, and both situations
promote a high R metric for RH during late winter and
early spring. This increased RMSE during this time is
mostly present in the data before 2005, and correlation,
R, is highest after 2005 during the spring. These trends
for R and RMSE might be driven by peculiar aspects
related to data collection via conventional weather stations

dominating pre-2005 data and automatic stations after
2005. It is also possible that the increased accuracy of
measurement post-2005 is due to simply having a higher
number of active weather stations. A few of the skill scores
(R, bias, and CRE) are poor before 1995 due to a relatively
high quantity of missing data from weather stations.

3.2.3.6. Wind speed: Generally, the skill scores are poor
for interpolating u2 (Figure S6). Correlation is less than
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Table 5. Cross-validation results for interpolation methods per variable and per basin.

Variables
(methods)

Basin R Bias RMSE CRE MAE PC CSI CSIL CSIH

pr (IDW) Amazon river 0.362 −0.007 13.069 0.982 6.794 0.636 0.481 n/a 0.132
Tocantins river 0.503 −0.013 10.544 0.803 4.639 0.750 0.498 n/a 0.200
North Atlantic region 0.577 0.020 9.242 0.715 3.725 0.776 0.524 n/a 0.262
Sao Francisco river 0.699 0.013 6.832 0.532 2.322 0.858 0.562 n/a 0.376
Central Atlantic region 0.669 0.040 7.410 0.575 2.803 0.797 0.540 n/a 0.352
Parana river 0.655 0.000 8.401 0.597 3.287 0.812 0.554 n/a 0.328
Uruguay river 0.724 0.017 9.087 0.490 3.532 0.807 0.546 n/a 0.407
South Atlantic region 0.720 −0.094 8.488 0.497 3.286 0.804 0.591 n/a 0.395

ETo (ADW) Amazon river 0.703 0.014 0.804 0.528 0.609 n/a n/a 0.289 0.164
Tocantins river 0.776 −0.003 0.764 0.404 0.578 n/a n/a 0.370 0.303
North Atlantic region 0.840 0.034 0.893 0.296 0.672 n/a n/a 0.383 0.316
Sao Francisco river 0.868 −0.092 0.804 0.250 0.606 n/a n/a 0.408 0.346
Central Atlantic region 0.872 0.035 0.738 0.241 0.548 n/a n/a 0.389 0.312
Parana river 0.873 −0.006 0.709 0.238 0.524 n/a n/a 0.536 0.349
Uruguay river 0.937 −0.012 0.625 0.122 0.453 n/a n/a 0.506 0.445
South Atlantic region 0.931 0.023 0.603 0.133 0.438 n/a n/a 0.480 0.429

n/a, not applicable.

R= 0.6 over the course of the year, and the interpolation
method has a slight downward bias. A few of the skill
scores (R, bias, and CRE) are exceptionally poor before
1995 due to a relatively high quantity of missing data from
weather stations. For some stations, we calculated negative
R because of so much missing data. Overall, estimation
of wind speed is expected to be poor because of localized
effects, including elevation factors that were not included
in our analysis.

3.2.4. Interpolation results for river basins

To evaluate spatial variations in meteorological parameters
across Brazil, we calculated cross-validation skill score
statistics for major river basins in Brazil (see Table 5). We
used the interpolation method with the best overall skill
score for each variable as discussed in Section 3.2. Skill
score statistics are poorest for the Amazon River basin for
all variables because of the low number and density of
available weather stations. Basins with a greater number
of stations and station density provide much better results.
Basins with high station density are the Parana, Uruguay,
South Atlantic region, and São Francisco basins.

It is useful to compare results in Table 5 to those in
Table 4. For example, for pr, we use IDW that has R= 0.61
and PC= 0.78 for Brazil overall (Table 4). Comparing
results from the river basins with those for Brazil overall
shows that five river basins have higher R and PC, one
is equal to and two (Amazon and Tocantins) are less
than each metric for Brazil overall. As another example,
consider ETo using ADW which results in R= 0.88 and
RMSE= 0.78 for Brazil overall (Table 4). Two of the river
basins have R greater than, three approximately equal,
and three lower than R for overall Brazil. For RMSE of
interpolating ETo, one river basin (North Atlantic region)
has greater, six have approximately equal, and two have
less than the RMSE for overall Brazil.

3.2.5. Gridded data sets

Using the interpolation method with the best skill score
for each weather variable, we created gridded daily
and monthly weather data across Brazil at 0.25∘ × 0.25∘

spatial resolution. The data are in Network Common
Data Form (NetCDF) that includes grid coordinates,
dates, and other relevant information. They are available
online see: http://careyking.com/data-downloads.

Our grid coordinates coincide with those in the TRMM
data set. Thus, our data complement TRMM data that are
available since 1998. For instance, it is possible to com-
pare our gridded station-based precipitation to estimated
precipitation in TRMM. We also include two indicators
of the quality of each grid cell: the number of included
stations with data, and the geodesic distance of the nearest
reporting station with data.

Figure 8 compares observed pr (left) at each station
with our interpolated gridded data (right) for two days, 1
December 1980 and 1 December 2010. These two days
have 1869 and 3390 rain gauges, respectively. In this
example, we observe that large areas, for example in the
Amazon river basin, with few rain gauges cause large
areas to have similar pr estimates in the gridded data. As
the number of rain gauges increased through 2010, the
gridded data in turn were able to provide higher resolution.
This same pattern toward higher resolution is observed for
the other weather variables (e.g. see Figure 9 displaying
ETo calculated at weather stations versus calculated using
interpolated gridded data). To generate gridded ETo data,
we calculate ETo only at weather stations that have all the
necessary data at the weather station for a particular day,
and then interpolate these ETo from the weather stations
to the grid. We do not first interpolate the underlying
individual weather data for ETo to a grid and then estimate
ETo from those gridded interpolations.

Oftentimes researchers and planners use models with
monthly data instead of daily data. Thus, we provide data
at both daily and monthly time steps to facilitate different
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Figure 8. Scatter diagram of observed pr and its respective gridded map in two dates, 1 December 1980 and 1 December 2010. Grey dots points are
rain gauges or weather stations with pr = 0 mm on the respective day.
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Figure 9. Scatter diagram of calculated ETo using observed data and its respective gridded map on two dates, 1 December 1980 and 1 December
2010.

models. For example, the decision support systems for
agrotechnology transfer (Jones et al., 2003, DSSAT) mod-
els use daily inputs, and CROPWAT (Smith, 1992) can
use monthly or daily inputs. Figures S7 and S8 show
the monthly average pr and ETo, respectively, for the
period of 1980–2013 in Brazil. One can see the low pr
in the São Francisco river basin as half of the year has

monthly precipitation of less than 20 mm. Further, this
basin has relatively large values of ETo, suggesting that,
without irrigation, water could be a limiting factor for crop
yields. These monthly data can be used for broad plan-
ning purposes such as agroecological and crop zoning and
drought analysis (e.g. Rubel and Kottek, 2010; Jabot et al.,
2012; Assad et al., 2013; Cook et al., 2014).
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4. Conclusions

We studied the potential of six different interpolation
methods to estimate six weather variables (Tmin, Tmax,
RH, Rs, u2, and pr) and reference ET, ETo. We obtained
the weather data from 3625 rain gauges and 735 weather
stations that recorded data any time from 1980 through
2013. Using cross-validation analysis, we determined that
IDW or ADW were the best interpolation methods for all
variables.

We found that performance depends on both the amount
of data available and the season. For example, generally,
the performance of the interpolations is better in recent
years due to the increased number of weather stations.
Because of lower precipitation levels during autumn and
winter, the interpolations for precipitation are more accu-
rate during those seasons. The forecast of extreme high or
low values for weather variables is always weak (< 65 %),
and wind speed (u2) has the lowest interpolation accuracy
of all weather variables.

Skill scores for meteorological variables are lower (with
more accurate interpolation) for river basins with higher
gauge or station densities (e.g. Uruguay River, Central and
South Atlantic regions). In contrast, the Amazon River,
with the lowest data density, has the worst skill scores for
all variables studied.

Daily and monthly gridded data were generated for the
variables, at a resolution of 0.25∘ × 0.25∘. Development of
daily and monthly gridded weather data for Brazil will
significantly advance our ability to assess the reliability
of satellite-based products and to evaluate the impacts of
climate variability on water resources and crop production.
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