

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS PROGRAMA DE PÓS-GRADUAÇÃO EM SENSORIAMENTO REMOTO

Detecção de cicatrizes de áreas queimadas no oeste do estado de Rondônia por diferentes produtos globais e regionais e suas implicações para as estimativas de emissões de carbono

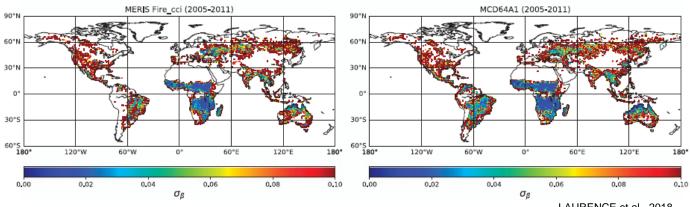
Disciplina: SER 300 – Introdução ao Geoprocessamento

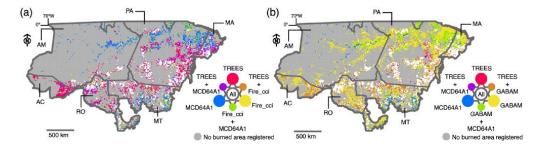
Docente: Dr. Antônio Miguel V. Monteiro

Doutoranda: Poliana Domingos Ferro **Orientadora:** Dr. Liana O. Anderson

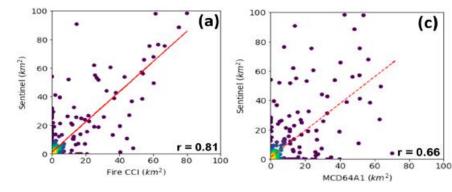
CONTEXTUALIZAÇÃO

Queimadas na Amazônia e emissão de Carbono


- Contribuição para alterações climáticas globais;
- Fogo + extração de madeira superaram o desmatamento (1992-2014);
- Desestabilização dos estoques de C, conservação da biodiversidade, degradação do solo; mortalidade de árvores; perdas econômicas, qualidade do ar.
- Associado ao manejo agrícola e desmatamento; escape de áreas adjacentes.
- Fogo não faz parte do sistema afeta áreas sensíveis.
- Total de área queimada: variável para estimar emissão de C.


CONTEXTUALIZAÇÃO

Produtos de área queimada


LAURENCE et al., 2018.

apresentam limitações e discrepâncias Produtos Globais regionalmente.

PESSOA et al., 2020

- recuperação do sinal espectral da vegetação, Rápida persistente cobertura de nuvens.
- Aliar alta resolução temporal e espacial mais fina, com técnicas robustas, produtos regionais e representação de campo.

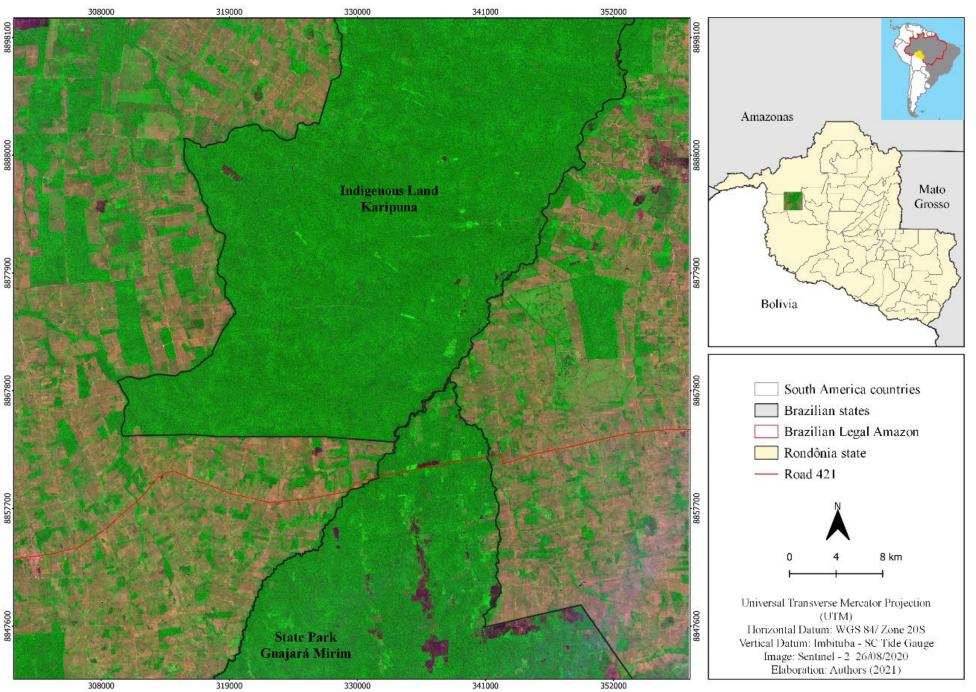
Objetivo

Avaliar o desempenho dos produtos de área queimadas globais e regionais em uma região no oeste do estado de Rondônia em 2020, e compará-los com um mapeamento de referência local, visando entender as potencialidades e limitações de cada produto para estudos regionais de estimativas de emissão de carbono pelo fogo.

Objetivos Específicos

Mensurar as diferenças entre os produtos de área queimada operacionais globais (MCD64A1,GABAM, Fire cci) e os regionais (MapBiomas Fogo e CBERS), em relação ao total de área queimada detectada sobre coberturas florestais e não florestais.

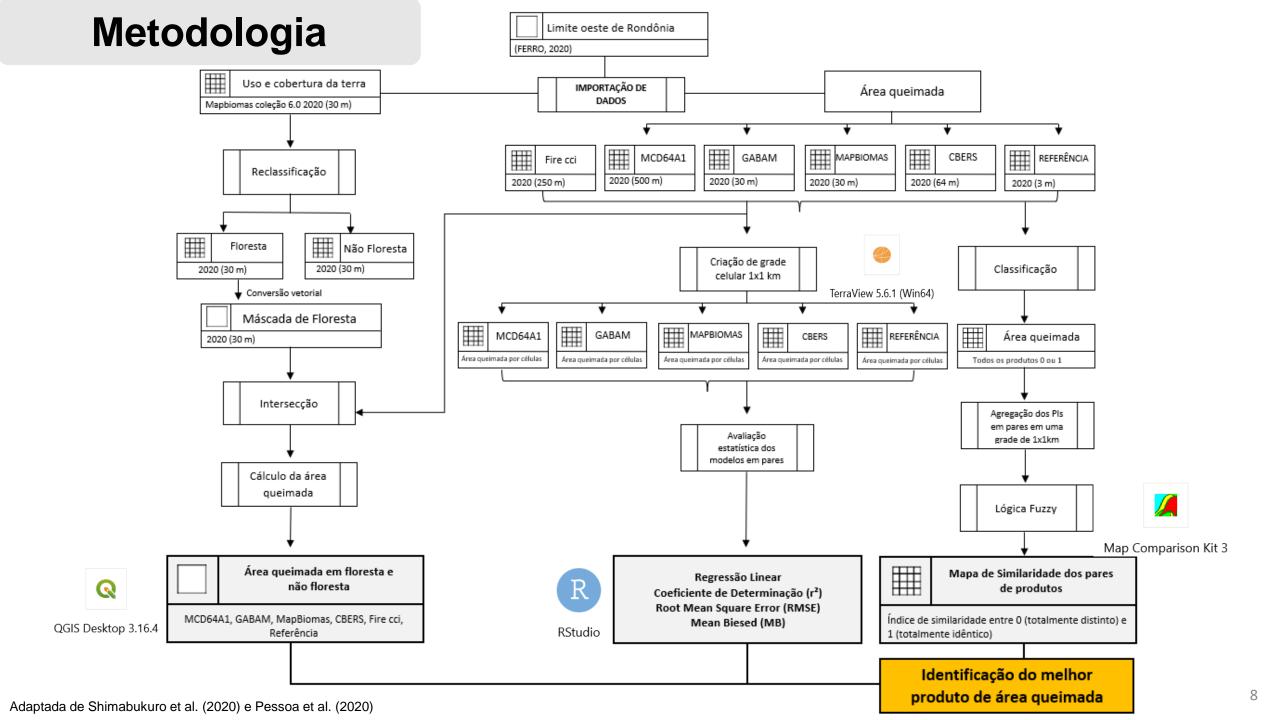
Comparar os produtos de área queimada globais e regionais com mapa de referência de área queimada obtido por meio de dados do Sentinel-2 e planet.



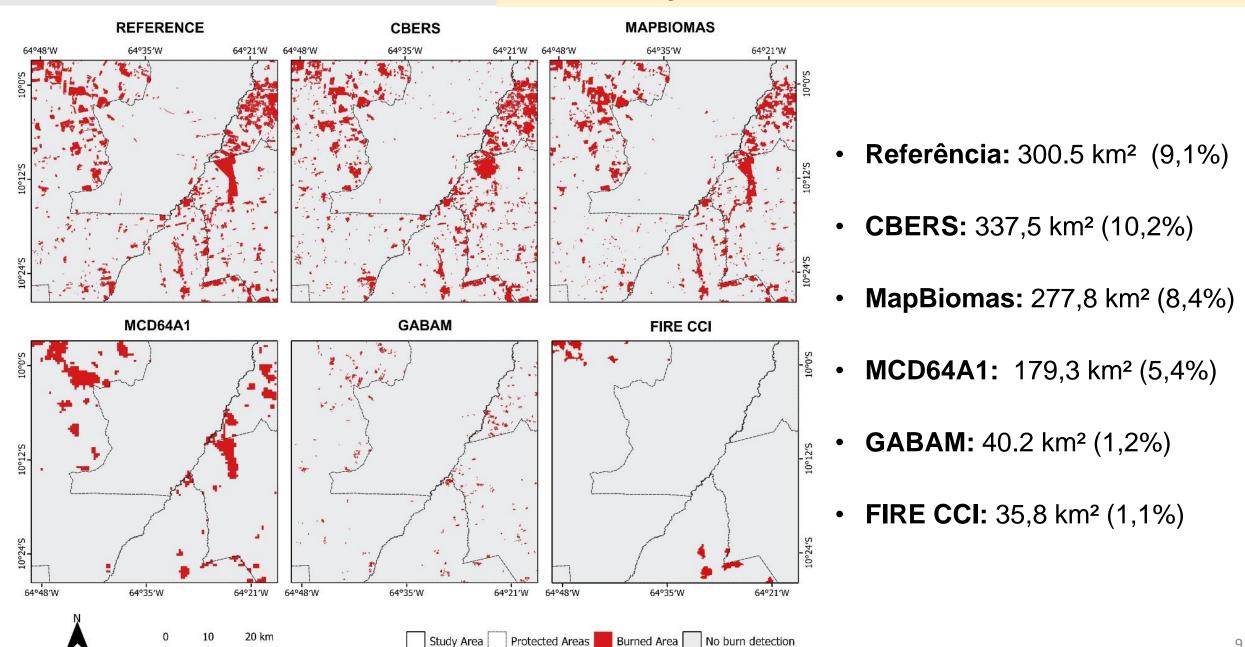
Avaliar diferenças e semelhanças entre os produtos de área queimada em relação ao total de área queimada detectada e a distribuição espacial.

Entender as potencialidades e limitações de cada produto de área queimada, visando selecionar o produto mais fidedigno com a realidade, para estimativas de emissão de carbono pelo fogo em inventários regionais na Amazônia.

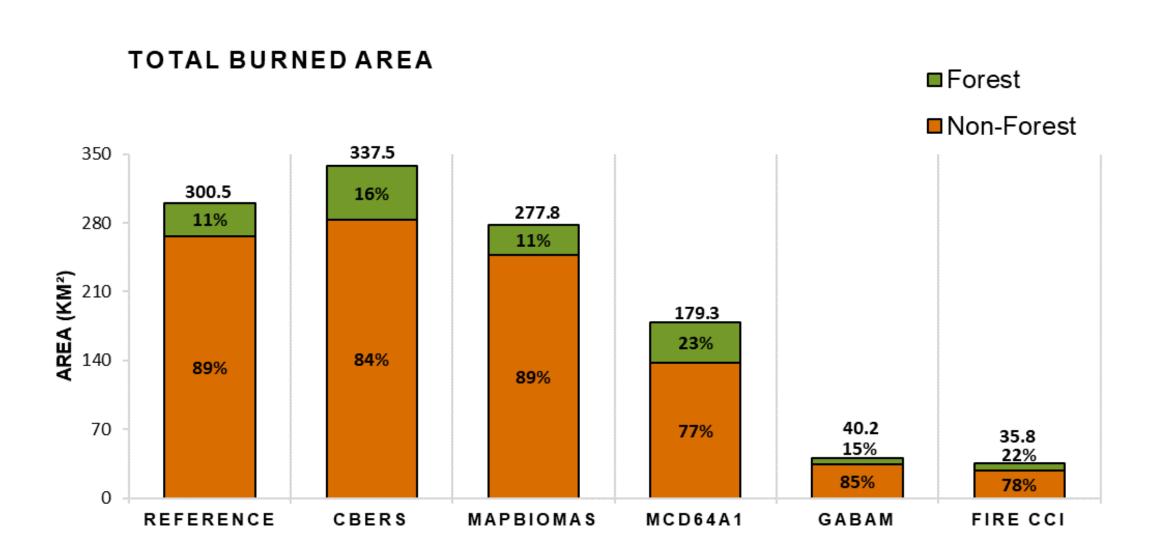
Área de Estudo

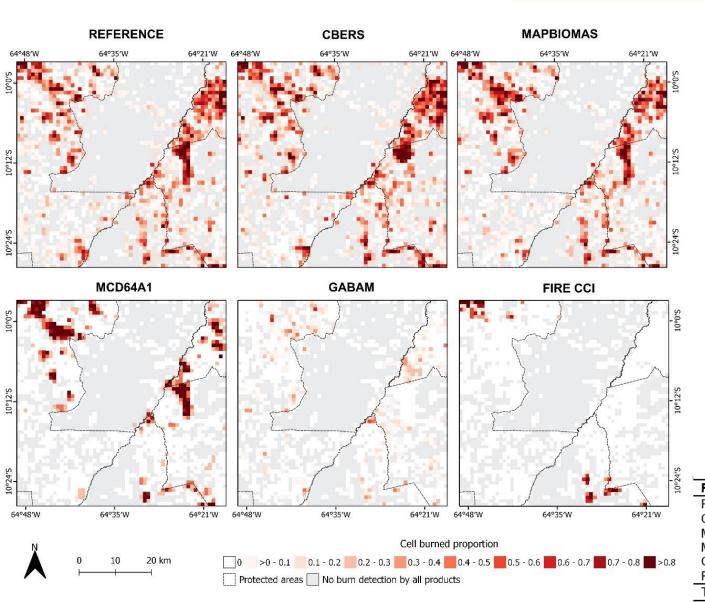


Metodologia


Tabela 1. Especificação dos produtos de área queimada

Produto	Desenvolvedor	Sensores	Resolução Espacial	Escala	Período	Intervalo de tempo	
CBERS	Ferro (2021)	Cbers 4 e 4A (WFI)	64 m	Local (Rondônia)	Mensal	2020	FERRO, 2021
MapBiomas Fogo	MapBiomas	Landsat (TM, ETM+, OLI)	30 m	Brasil	Mensal	1985 - presente	ALENCAR et al., 2022
MCD64A1	NASA	MODIS	500 m	Global	Mensal	2000 - presente	GIGLIO et al., 2018
Fire_cci	ESA	MODIS	250 m	Global	Anual	2001 - presente	CHUVIECO et al., 2018
GABAM	China (RAD/CAS)	Landsat (TM, ETM+, OLI)	30 m	Global	Anual	2000 - presente	LONG et al., 2019


Referência → Ferro (2021) → Sentinel – 2 e Planet Scope → 10 e 3 m


Distribuição espacial da área total queimada

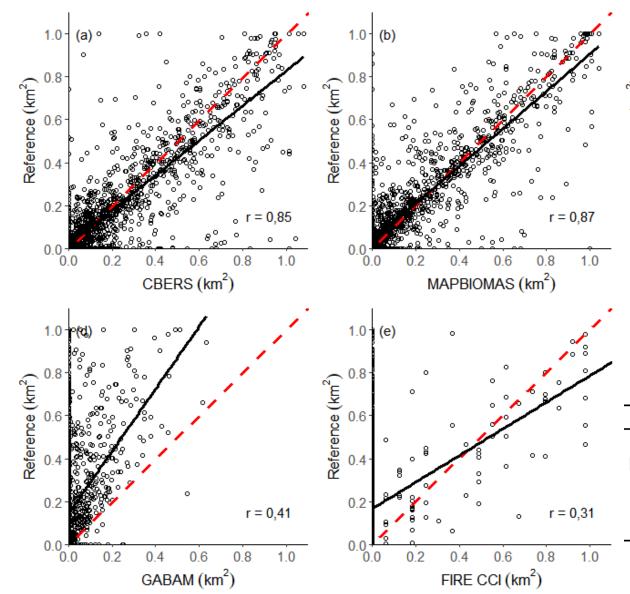
Distribuição espacial da área total queimada por cobertura terrestre

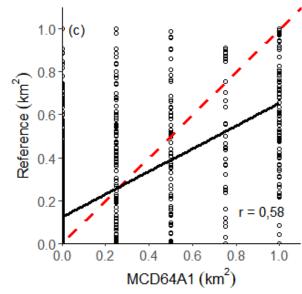
Avaliação Estatística: Proporção de células queimadas

Fire cci → Maior n° de células sem detecção de queimadas

MCD64A1, Gabam e Fire cci → Menor número de células queimadas

Referência, CBERS e MapBiomas→ Maior n° de células com baixa proporção de cicatrizes de queimadas (0 e 0.1).

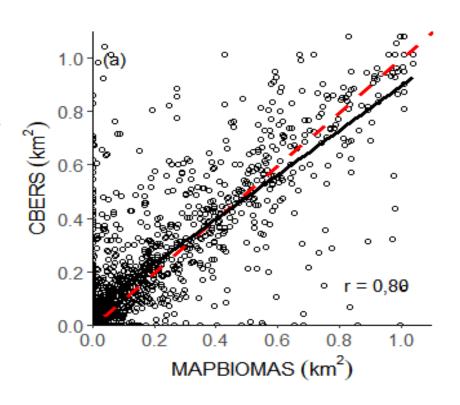

CBERS: Mais células com área queimada que os demais.


Referência: 88% das células com valores até 0,5 km².

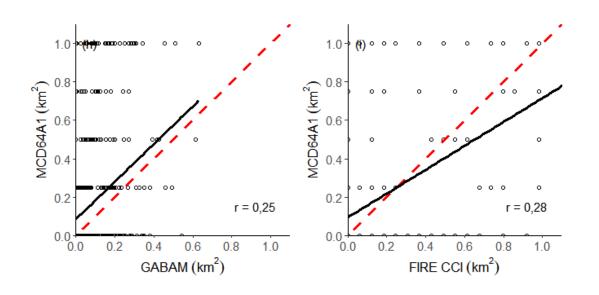
Products	0	>0-0.1	0.1-0.2	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	>0.8
Reference	403	520	223	141	87	95	64	41	32	62
CBERS	324	545	238	140	99	85	67	51	39	80
MapBiomas	478	542	185	113	85	58	74	43	27	63
MCD64A1	1.359	0	0	115	0	69	0	0	36	89
Gabam	1.278	252	81	32	15	6	2	2	0	0
Fire cci	1.591	8	18	7	4	8	4	7	8	13
Total	5.433	1.867	745	548	290	321	211	144	142	307

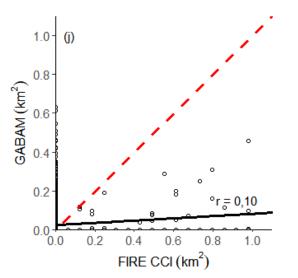
Total de células de 1x1km na área de estudo: 1.668

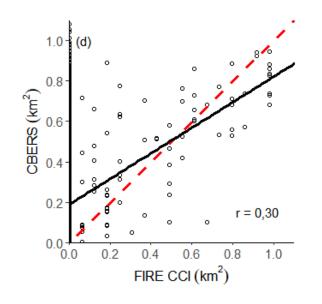
Avaliação Estatística Comparação entre Referência e Produtos



Model	r²	RMSE	MB	MB (% of observed)
Reference x CBERS	0.718	0.128	-0.022	<mark>-12.30</mark>
Reference x MapBiomas	0.759	0.118	0.014	<mark>7.54</mark>
Reference x MCD64A1	0.333	0.197	0.073	40.34
Reference x Gabam	0.168	0.22	0.156	86.61
Reference x Fire cci	0.094	0.229	0.159	88.07

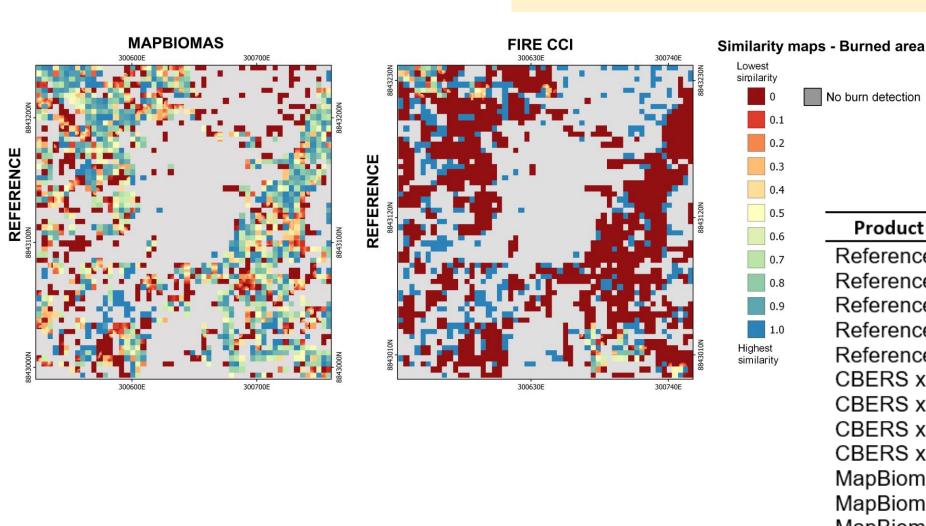

Avaliação Estatística Comparação entre Pares de Produtos

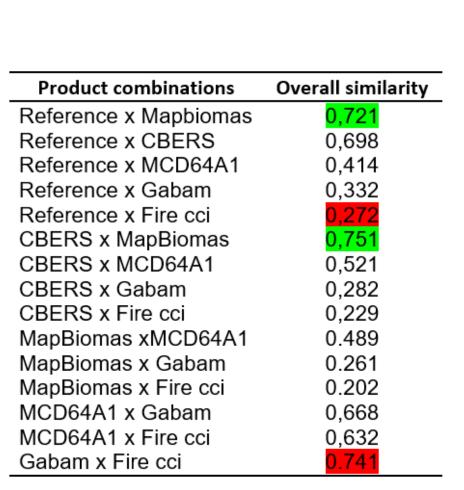

Model	r ²	DMCE	MD	MD (0/ of obcorred)
<u> Model</u>	<u> </u>	RMSE	MB	MB (% of observed)
CBERS x MapBiomas	0.633	0.152	0.036	<mark>17.67</mark>
CBERS x MCD64A1	0.273	0.215	0.095	46.88
CBERS x Gabam	0.172	0.229	0.178	88.08
CBERS x Fire cci	0.090	0.241	0.181	89.38
MapBiomas x MCD64A1	0.394	0.188	0.059	35.48
MapBiomas x Gabam	0.209	0.214	0.142	85.52
MapBiomas x Fire cci	0.116	0.227	0.145	87.10
MCD64A1 x Gabam	0.064	0.253	0.083	77.56
MCD64A1 x Fire cci	0.080	0.251	0.086	80.01
Gabam x Fire cci	0.010	0.068	0.003	10.89



Avaliação Estatística Comparação entre Pares de Produtos

Model	r²	RMSE	MB	MB (% of observed)
CBERS x MapBiomas	0.633	0.152	0.036	17.67
CBERS x MCD64A1	0.273	0.215	0.095	46.88
CBERS x Gabam	0.172	0.229	0.178	88.08
CBERS x Fire cci	0.090	0.241	0.181	<mark>89.38</mark>
MapBiomas x MCD64A1	0.394	0.188	0.059	35.48
MapBiomas x Gabam	0.209	0.214	0.142	85.52
MapBiomas x Fire cci	0.116	0.227	0.145	87.10
MCD64A1 x Gabam	0.064	0.253	0.083	77.56
MCD64A1 x Fire cci	0.080	0.251	0.086	80.01
Gabam x Fire cci	0.010	0.068	0.003	<mark>10.89</mark>





Análise de Acordos Índice de Similaridade

No burn detection

RESULTADOS E DISCUSSÕES LIGHT

- 10% (305 km²) da área de estudo foi afetada pelo fogo, 89% (266,21 km²) áreas não florestais, evidenciando a maior utilização do fogo em áreas de pastagens e agricultura.
- 11% (34,29 km²) do total de área queimada ocorreu sobre a vegetação nativa.
- Boa concordância visual entre os mapas de áreas queimadas produzidos por três conjuntos de dados (Referência, CBERS e MapBiomas). MCD64A1, Fire cci e Gabam foram os que mais diferiram dos demais conjuntos de dados, omissão de área queimada (40,3%, 88%, 85%).
- MCD64A1, Fire cci e GABAM também obtiveram resultados similares (PESSOA et al., 2020 e Shimabukuro et al., 2020);
- Em relação a referência, CBERS superestima em 12% o total de área queimada. MapBiomas subestima em média 7,5%.
- Embora CBERS tenha em média, superestimado em 12%, possui resolução espacial mais grosseira que MapBiomas, produziu desempenho semelhante.
- Entre produtos operacionais, MapBiomas apresentou melhor desempenho para a localidade de estudo e a grade adotada.
- Porém, estudos preliminaries indicam baixo desempenho do Mapbiomas fogo em outras regiões do Brasil (MATAVELLI et al., 2022; MEDEIROS et al., 2022, submetidos).

CONCLUSÃO

- Dos parâmetros analisados o Mapbiomas obteve melhor desempenho, no entanto subestima o total de área queimada.
- CBERS tem potencial para geração de estimativas de áreas queimadas, podendo melhorar suas estimativas a medida que utilize um acervo de imagens mais amplo e haja a integração com outros sensores, como Amazônia 1.
- Ter a melhor resolução espacial não implica na melhor deteccção, necessariamente.
- Todos os produtos de área queimada diferem da referência de acordo com a área total mapeada e demais parâmetros analisados, tanto sobre áreas de floresta, como não florestas.
- A escolha do produto a ser adotado como fonte de entrada para estimativas de emissão de Carbono influenciará as taxas de emissão.
- Todos os produtos apresentam limitações e discrepâncias, nenhum deles é o retrato fiel dos processos da superficie;

PRÓXIMOS PASSOS...

 Avaliar os produtos de área queimadas em diferentes tamanhos de grades celulares.

Incluir cenas AWFI do Amazônia – 1 no produto aqui denominado CBERS.

 Estimar a emissão de carbono da queima da biomassa pelos diferentes produtos de área queimada, qualificando as contribuições por tipos de uso do solo, a partir de modelagem, aplicando o modelo 3BEM - PREP-CHEM-SRC versão 1.8.3. de Matavelli et al. (2021).

OBRIGADA! poliana.ferro@ifac.edu.br