Introdução ao Geoprocessamento – SER 300 Prof.: Dr Antônio Miguel Vieira Monteiro Discente: Allan Henrique Lima Freire Análise Espacial de Dados Geográficos – Relatório Laboratório 4

Objetivo

Os projetos desenvolvidos em SIG aplicados a prospecção mineral tem o objetivo de combinar dados espaciais para descrever e analisar interações, de modo a fazer previsões através de modelos prospectivos empíricos e fornecer apoio nas decisões tomadas por especialistas, e consequentemente definir melhor as regiões mais enriquecidas num determinado bem mineral.

Os objetivos deste trabalho são a seleção de áreas potenciais à prospecção de Cromo, a partir das técnicas AHP (Processo Analítico Hierárquico) e "Fuzzy Logic". Os dados foram obtidos através de campanhas de campo realizadas na região de Pinheiros Altos, município de Piranga, Minas Gerais, no período de abril a julho de 1996, numa área de 51,33Km2.

Uma segunda parte do trabalho refere-se aos dados utilizados na indústria Ripasa S. A. Celulose e Papel. O objetivo, nesse segundo momento, será investigar se há ou não a presença de relação entre a quantidade de madeira presente nos talhões de Eucalyptus e a resposta espectral obtida através de imagem de Sensoriamento Remoto.

Desenvolvimento

Para responder essas questões, foi criado um roteiro de execução em forma de exercícios que ao longo da confecção da atividade guiou e auxiliou na geração dos produtos cartográficos. A base de Sistema de Informações Geográficas para gerar esses produtos foi retirada dos arquivos "Lab_Legal_2004" e bancos de dados pessoais contidos na máquina do autor.

Esse relatório foi estruturado a partir dos procedimentos realizados em cada exercício proposto. Foram geradas capturas de tela que estão relacionadas com a requisição de cada atividade para comprovar a resolução do procedimento e apresentar o resultado final.

PARTE 1 - Módulo: Análise Multi Critério

Exercício 1 - MODELAGEM DO BANCO DE DADOS PIRANGA

Categorias Classes Ter	máticas			
M Amostras				^
C CAT_Cadastral				
CAT_Imagem				
M CAT_MNT				
R CAT_Rede				
T CAT_Tematico				
Cobalto_Fuzzy				
Cromo_AHP				\mathbf{v}
Nome: Amostras	Tabela	: CG0000	08	
Modelos de Dados				
O Imagem	$\bigcirc c$	adastral		
MNT		ede		
🔿 Temático				
Criar Altera	ar Su	uprimir	Visual	
Executar	Fechar		Ajuda	

Figura 1 – Modelando o banco de dados para preparar a importação dos arquivos

Exercício 02 – IMPORTAR DADOS

Figura 2 - Importação dos dados referente ao trabalho

Exercício 3 - GERAÇÃO DE GRADE REGULAR PARA O PI TEORES_CROMO

		Au	xiliar			_ U
quivo Editar Exibir Imagem Temático	MNT Cadastral	Rede Aná	lise SCarta	Executar Ferrar	mentas Plugins	Ajuda
i 📰 🖉 🗖 😼 🔛 🔍 🖄 🖊	0 🗞 💆 🔍	् 🗖 🖓	🔦 🕌 🖓 -	• 🔣 🎼 😳	Auto 🔻 1/ 62	191.074219 Inativa 🔻
nel de Controle 🗗 🗄	×	<u>т</u> т	T	T T	T T T	
Tela Ativa : Auxiliar	e-1 4.4e-1 2.8e- + + +					+ +
PI Disponíveis PI Selecionados	e-1 5.0e-1 5.0e-			-1 6.6e-1 7.4e-1 3		-1 4.4a-1 +
Categoria / Plano de Informação						
 M (V) Amostras () Teores Cobalto 	e-1 4,3 <u>9</u> -1 6,6 <u>e</u> -					+
(Glm) Teores_Cromo	e-1 3.8a-1 4.2a- + +					-1 2.4a-1 +
 ▷ T () Drenagem ▷ T () Geologia 	e-1 2.9e-1 3.8e-			-1 4.39-1 4.29-1 4		-1
▷	r + +					
	e-1 3.5e-1 3.5e- + +					++++
	e−1 2.3e−1 2.2e- + + +			-1 3.7e-1 6.9e-1 f +		+ 4.90-1
	e-1 1.3e-1 4.2e- F + +	-2 8.1e-2 2.3e + +		-1 4.2e-1 5.3e-1 5		-1 8.7e-1 +
	e-2 7.7e-2 3.6e-			1 7.3e-1 9.8e-1	1.027 8.5e-1 8.5e	a-1 8.9e-1 9.2e-1
	e-2 7.0e-2 1.7e-			-1 1.055 1.072	1.035 1.007 1.0	38 9.1e-1 9.2e-1
8= 🗔 💥 🐭 🥒 🔲 🙆	e-2 8,5e-2 1.6e- + +			-1 1.296 1.306	1.208 1.019 9.7	e-1 1.082 9.2e-1
	e-1 9.7e-2 1.3e-		-1 1.282 1.21	0 1.241 1.397	1.623 1.26B 1.1	10 1.153 9.20-1
Amostras Isolinhas			1 0 0 1 1 10	1 1048 1 677	4.050 4.054 4.7	75 1 000 0 0 1
Grade Texto	e-1 1.1e-1 2.2e- + + +		-1 3.8e-1 1.08 +	5 1.246 1.637 + +	1.900 1.651 1.5	75 1.296 9.2e-1 +
TIN Imagem	e-2 1.2e-1 1.2e- + +	-1 3.8e-1 5.4e + +	-1 7.1e-1 1.08	7 1.458 1.700	1.7B0 1.710 1.5	21 1.413 9.20-1
	·			PI:	Teores_Cromo	

Exercício 4 - GERAÇÃO DE GRADE REGULAR PARA O PI: TEORES_COBALTO

Figura 4 – Grade Regular dos Teores de Cobalto

Exercício 4 - GERAR MAPA PONDERADO DA GEOLOGIA

Figura 5 - Mapa ponderado em relação as classes do "Mapa Geologico".

<u>Exercício 5 - MAPEAR A GRADE DO PI TEORES_CROMO UTILIZANDO</u> <u>FUZZY LOGIC.</u>

Figura 6 - Mapa fuzzy em relação as classes as amostras dos valores de Cromo.

<u>Exercício 6 - MAPEAR A GRADE DO PI TEORES_COBALTO UTILIZANDO</u> <u>FUZZY LOGIC.</u>

Figura 7 - Mapa fuzzy em relação as classes as amostras dos valores de Cobalto

Exercício 7 - CRUZAR OS PI'S CROMO FUZZY, COBALTO FUZZY E GEOLOGIA_PONDERADA UTILIZANDO A FUNÇÃO FUZZY GAMA.

Figura 8 – Mapa gama com dados cruzados entre os valores de cromo e cobalto fuzzy e o mapa ponderado de Geologia.

Exercício 8 -	CRIAR O PI CROMO	AHP UTILIZANDO	AHP (PROCESSO
<u>ANALÍTICO</u>	HIERÁRQUICO).		

Gama_Fuzzy_Litolo	gia		▲ E	kibir
Geologia Geologia Ponderad	ła			
Recorte			•	
Critério		Peso	Critério	
Cromo_Fuzzy	5	Melhor	Cobalto_Fuzzy	<=
Geologia_Pondera	7	Muito Melhor	Cobalto_Fuzzy	<=
Geologia_Pondera	2	Um Pouco Melhor	Cromo_Fuzzy	<=)
		Igual	•	<=
		Igual	•	<=
		Igual	•	<=
		Igual	•	<=
		Igual	•	<=
		Igual	•	<=
		Igual	•	<=
	Razão d	le Consistência 0.012		

Figura 9 – Geração do modelo AHP para os dados selecionados.

Figura 10 – Geração do mapa AHP dos dados dos valores de Cromo.

Exercício 9 - REALIZAR O FATIAMENTO NO GEO-CAMPO GAMA_FUZZY.

Figura 11 – Fatiamento do mapa de Gama Fuzzy criado no exercício 7. *Exercício 9 - REALIZAR O FATIAMENTO NO GEO-CAMPO CROMO_AHP.*

Figura 12 – Fatiamento do mapa de AHP criado no exercício 8.

Exercício 9 – Etapa final

Com essas práticas em diferentes métodos de classificação é possível perceber como a combinação dos dados espaciais auxilia na descrição e análise das interações entre classes e como eles se comunicam. Esse procedimento contribui na tomada decisões e também nas previsões quanto ao comportamento dos alvos analisados, nesse caso os valores de cromo e cobalto.

Ao longo de todo esse processo foi gerado os mapas de potencialidade à prospecção do cromo e cobalto em Piranga, utilizando as técnicas Fuzzy Gama e AHP e conforme as figuras 11 e 12 demostraram, os modelos geraram algumas variações espaciais quanto a classificação de potencialidade à prospecção dos elementos químicos.

O mapa Gama Fuzzy apresentou uma descontinuidade muito bem delimitada entre as transições das classes de nível de potencialidade, geralmente isso é provocado pela forma de atuação do método, que faz uma atribuição de valores entre verdadeiro e falso (OU booleano) através das funções de mapeamento quadrática, linear, ou sigmoide, que o SIG opta em calcular. Entretanto esse tipo de variação, na realidade não acontece dessa forma, uma validação a campo pode ser necessária para aprimorar as conclusões sobre as transições ou outro tipo de método poderá ser utilizado para explicar melhor essas variações de potencialidades com a realidade biofísica do terreno.

A técnica AHP, possibilita uma influência muito mais manipulativa por parte do usuário, quanto a definição dos pesos e critérios analisados, por causa da liberdade de comparação bilateral entre os dados. Combinado com uma boa metodologia e conhecimento científico dessa interação entre as variáveis, o mapa final pode ser menos descontinuo nas transições e pode apresentar uma relação entre o real e computacional mais aprimorado. Mas assim como o Fuzzy, sempre a necessidade de ir a campo verificar qual comportamento está fazendo mais sentido a técnica utilizada.

PARTE 2 - Módulo: LEGAL

	Dai	ico de Da	luos		
Diretório.	C:\Pro	ogram Files (x	86)\spring	433_Por	rt\sprir
Banco de D	ados				
Florestal					
	Nome	: Florestal			
Geren	Nome	: Florestal	Alterar	Senha	1
Geren	Nome ciador: Acc	: Florestal	Alterar	Senha	
Geren	Nome ciador: Acc Ativar	: Florestal	Alterar	Senha	Ajuda
Geren	Nome ciador: Acc Ativar	: Florestal cess ▼ Suprimir	Alterar	Senha	Ajuda

Exercício 1 - CARREGAR BANCO DE DADOS FLORESTAL

Figura 13 – Abertura do banco de dados Florestal.

Exercício 2 - ATIVAR PROJETO RIPASA

2	Projetos – 🗆 🗙
Projetos	
Ripasa	
, Nor	ne: Ripasa
Projeção	NO PROJECTION/NONE
-Retängulo Envolv	condenadas: C Geográficas (* Planas
X1: 712500.00	20000 X2: 721595.625000
Y1: /482289.0	Y2: 7489633.500000
Н	emisfério: CN CS CN CS
Criar	Ativar Desativar Alterar Suprimir
	Fechar Ajuda

Figura 14 – Ativação do projeto.

Exercício 3 – VISUALIZANDO OS DADOS

Figura 15 - Visualização espacializada dos objetos.

Figura 16 – Visualização tabular do dado de talhões.

<u>Exercício 4 – ESPACIALIZAÇÃO E VISUALIZAÇÃO DOS ATRIBUTOS</u> <u>AREA_BAS E H_M FEITAS NO LEGAL</u>

Figura 17 – Dados numéricos de área e altura inseridos na base tabular de talhões.

<u> Exercício 5 – GERAR O PLANO DE INFORMAÇÃO DE VOLUME NO LEGAL</u>

Figura 18 – Dados numéricos inseridos na base tabular de talhões.

<u>Exercício 6 – ATUALIZAR O ATRIBUTO VOLUME NO BANCO DE DADOS</u> <u>UTILIZANDO O OPERADOR DE MÉDIA ZONAL</u>

<i>ti</i>	🛛 Tabela: Talhoes – 🗆 🗙						
A	Arquivo Mostrar Ajuda						
	AREA_BAS	H_M	VOLUME	ND	▲		
2	0.567450	30.00000	17.023500	0.000000			
3	0.188570	17.000000	3.205688	0.000000			
4	0.321700	23.000000	7.399099	0.000000			
5	0.331830	24.000000	7.963919	0.000000			
6	0.395920	26.000000	10.293919	0.000000			
7	0.331830	24.000000	7.963919	0.000000			
4					• •		

Figura 19 – Dados numéricos de volume inseridos na base tabular de talhões.

<u>Exercício 7 – ATUALIZAR O ATRIBUTO VOLUME NO BANCO DE DADOS</u> <u>UTILIZANDO O OPERADOR DE MÉDIA ZONAL</u>

12		Tabela: Talhoes -					
A	quivo Mostrar Ajuda						
	AREA_BAS	H_M	VOLUME	ND		•	
2	0.567450	30.000000	17.023500	34.892042	-	-	
3	0.188570	17.000000	3.205688	25.616663			
4	0.321700	23.000000	7.399099	23.818225			
5	0.331830	24.000000	7.963919	25.898868			
6	0.395920	26.000000	10.293919	33.027502			
7	0.331830	24.000000	7.963919	45.829906			
4	•					-	

Figura 20 – Dados numéricos de ND inseridos na base tabular de talhões.

			~		
F / ' O	VEDICIAD	CODDET 1/			TOTTINE END
$H_{x}\rho rc_{1}c_{10} X =$	VHRIHII AR	I I I K K H I A I			VIIII/VIE E NII
		COMPLEX		mnbulus	

Figura 21 - Correlação em Scatter Plot entre Volume e ND