Introdução ao Geoprocessamento - SER 300

Laboratório 5

Aluno: Celso Henrique Leite Silva Junior (Registro: 135208)

O presente laboratório apresentou como objetivo através de procedimentos geoestatísticos a variabilidade espacial da textura do solo da fazenda Canchim, pertencente ao Centro Nacional de Pesquisas de Solos (CNPS-RJ). Foram utilizados dados de 85 amostras coletadas no horizonte Bw além de dados litólicos do local.

Os procedimentos constaram de (Figura 1): (a) análise exploratória dos dados, (b) análise estrutural (cálculo e modelagem do semivariograma) e (c) realização de inferências (Krigeagem ou Simulação).

Figura 1 – Etapas da análise geoestatística.

Exercício 1: Carregar os dados no SPRING

Figura 2 – Banco de dados do Projeto Canchim aberto no SPRING.

Exercício 2: Análise exploratória

Aqui foi realizada a análise estatística univariada e bivariada do conjunto de dados das 85 amostras (Figura 3). As análises univariadas constituem as estatísticas descritivas além do histograma e do gráfico de probabilidade normal.

Figura 3 – Área basal por talhões espacializada.

Exercício 3: Considerando Isotropia dos dados

Aqui será testada a hipótese que os dados são isotrópicos, ou seja, a variação é constante para todos os eixos de dispersão da amostra, assim, um único modelo seria suficiente para descrever a variabilidade espacial do fenômeno.

Exercício 3.1: Análise da variabilidade espacial por semivariograma

considerando isotropia

Foi gerado um semivariograma com os valores padrões do sistema, posteriormente ajustou seus valores de "lag", "incremento" e "tolerância" para se obter valores mais próximos a um modelo exponencial (Figura 4).

Figura 4 – Semivariogramas com tolerância angular de 90 graus com valores padrões do SPRING (direita) e com valores ajustados(esquerda).

Exercício 3.2: Modelagem do semivariograma experimental

Os dados do semivariograma ajustado com o modelo gaussiano são apresentados na Figura 5.

Paine	□ ×	
legotas Anostras_Campo Classe_Solo Inagem Mapa_Solo Mapa_Solo atmetia atmetia atmetia atmetia atmatia atmatia atmatia atmatia atmatia atmatia atmatia atmatia atmatia Code Thi Selectionar	Relatório de Dados – × ALUSTE DO. SE MIVARIO GRAMA Samáto: Samáto: - X No. de Laga: 0. Satatico (anchan/Geo Statistic/argla_0 var No. de variárea: 3 No. de Laga: 0. Satatico (anchan/Geo Statistic/argla_0 var No. de variárea: 3 No. de Laga: 6 Parámetros inclass: Eleto Pepta (Co): 129 524 Para mode to mathematico: 3 Modelo de Semivariograma Gaussiano No. Acance 1 43 629 145 434 196 536 2997 592 2 41.704 143 849 204 116 3162 341 3 3 317.6 397	Modelo de Ajuste = Gaussiano X 390 X 351 X 312 X 273 X Y 234 X (h 195) 156 117 X 39 X 0 X
oplar: □ 2 □ npliar: □ 2 □ Fechar	Salvar_	0 1000 2000 3000 4000 5000 Distancia

Figura 5 – Valores encontrados no modelo Gaussiano ajustado.

Exercício 3.3: Definindo os parâmetros do modelo isotrópico

Através da formula Volume = Area_Basal x Altura foram obtidos os valores de volume espacializados por talhão (Figura 3).

Análise dos focos de calor e seus impactos no Maranhão durante eventos de seca no período 1998 a 2016

a Paine — 🗆 X	Parâmetros Estruturais — 🗆 X —	Relatório de Dados – X	
) Classes_Solo) Imagem () Linites) Mapa_Geologia) Mapa_Solos	Número de Estruturas: © 1 C 2 C 3 Efeito Pepita: 143.743	Sumation: Arquivo: C: topringdb:\SER300_BD_SacCarlos/Canchim/GeoStatistic/argila_0.var No. de vardwer: 3 No. de Laga: 6 No. de Laga: ador: 6	à
anos de Informação V) altimetria) altitude) areia_grossa) areja_grossa	tipo: caussano ⊂ Contribuição: 204.454 Angulo Anis.: 0 Acance Máx: 3176.39 Alcance Mín.: 3176.39 Segunda Estrutura	Partametros iniciais: Here Pretas (Co) Mix: Coascisiono Contreluzido Col: 2010 1055 Acance (a): 2400 259	
) calcio ioridade: 300 CR ✓ Amostras □ Grade □ Texto	Contribuição: Angulo Anis. Acance Máx. Acance Mín.	Modelo de Senivariograma Gaussiano No. Akake Efeto Pepta Contribuição Alcance 1 -39 923 145 434 198 536 2997 992 2 -41 704 143 464 204 k116 3182 341	
TIN Imagem Selecionar Consultar iontrole de Telas Atvar: 6 1 C 2 C 3 C 4 C 5	Contribuição: Angulo Anis.: Acance Máx: Acance Mín.:	3 -41.713 143.743 204.454 3176.397	
bolbin: 2 3 4 5 coplar: 2 3 4 5 mpliar: 1 2 2 4 5 mpliar: 1 2 2 4 6 Fechar Aiuda 4 4 4 5		Salvar	

Figura 6 – Valores ajustados e definidos para o semivariograma.

Exercício 3.4: Validação do modelo de ajuste

Com o objetivo de validar o ajuste, foram gerados estatísticas descritivas, como, histograma do erro; estatística descritivo; distribuição dos valores observados e estimados; além do diagrama espacial de erros (Figura 7).

Figura 7 – (A) Diagrama espacial de erros do semivariograma ajustado; (B) Histograma de erros; (C) Estatística dos erros; (D) Distribuição observado x estimado.

Exercício 3.5: Interpolação por krigeagem ordinária

Posterior à validação do modelo, foi realizado a interpolação por krigeagem, obtendo-se assim o mapa de distribuição do teor de argila. No entanto, foi necessário realizar o corte da imagem para a área de estudo, dessa maneira, foi utilizado o script escrito em LEGAL. Em seguida foi realizada a classificação do teor de argila de acordo com as classes proposta por Calderano Filho et al. (1996).

Figura 8 – Mapa de distribuição de argila utilizando a krigeagem ordinária.

Figura 9 – Teores de argila classificados.

Exercício 4: Considerando Anisotropia dos dados

Aqui foram realizadas análises levando em consideração que existe variação das amostras ao longo de todas as suas direções. Assim, foi realizado novos semivariograma e mapas de anisotropia.

Figura 10 – Mapa de anisotropia.

Exercício 4.2: Geração dos semivariogramas direcionais

Aqui foram gerados os semivariogramas para as 3 direções, omnidirecional, 17 graus e 107 graus.

Figura 11 – Semivariograma gerado para as três direções.

Exercício 4.3: Modelagem dos semivariogramas direcionais

Primeiramente foi gerado o semivariograma para a direção de 17 graus (Figura 12), depois foi gerado para a direção de 107 graus (Figura 13).

Figura 13 – Semivariograma esférico ajustado para a direção de 107 graus.

Exercício 4.4: Modelagem da anisotropia

Aqui foi realizada a fusão dos modelos encontrados para 17 e 107 graus em um único modelo (Figura 14). Os dados do modelo único foram inseridos nos parâmetros estruturais do semivariograma.

🛃 Parâmetros Estruturais — 🗆 🗙				
Parâmetros				
Número de Estruturas: O 1 O 2 💿 3				
Efeito Pepita: 28				
Primeira Estrutura				
Tipo: Esférico 💌				
Contribuição: 63 Ångulo Anis.: 17				
Alcance Máx.: 1677 Alcance Mín.: 000001				
Segunda Estrutura				
Tipo: Esférico 💌				
Contribuição: 140 Angulo Anis.: 17				
Alcance Máx.: 2961.78 Alcance Mín.: 1677				
- Terceira Estrutura				
Tipo: Esférico				
Contribuição: 71 Ângulo Anis.: 17				
Alcance Máx.: 100000 Alcance Mín.: 2961.78				
Executar Fechar Ajuda				

Figura 14 – Parâmetros de ajuste do semivariograma único.

Exercício 4.5: Validação do modelo de ajuste

Figura 15 – Estatísticas de validação do modelo único anisotrópico.

Exercício 4.6: Interpolação por krigeagem ordinária

Depois de realizada a validação do modelo, foi iniciado o processo de interpolação dos valores (Figuras 16 e 17).

Figura 16 – Mapa de distribuição de argila utilizando modelo anisotrópico.

Figura 17 – Teores de argila classificados.

Exercício 5: Computar o teor médio de argila para cada classe do solo

Aqui foi calculado o teor médio de argila para cada classe de solo, a partir das superfícies isotrópicas e anisotrópicas. A tabela de atributos foi atualizada utilizando um script escrito em linguagem LEGAL (Figura 18).

Figura 18 – Tabela de atributos atualizada.