

LABORATÓRIO 4 – PARTE 1

Denis Corte Vieira

Trabalho exigente para a obtenção de nota parcial na disciplina de Introdução ao Geoprocessamento (SER-300)

INPE São José dos Campos 2017 Para a realização dos exercicios propostos se utilizou o software livre do INPE, *SPRING* versão 4.3.3 (32 bits).

Inicialmente se ativou o Banco de Dados "Piranga" e se verificou os modelos de dados que compunham o Banco de Dados, para em seguida se ativar o Projeto "Cromo".

Exercício 1 - Geração de Grade Regular para o PI: Teores_Cromo

Com o Banco de Dados e o Projeto ativos, por meio do menu 'MNT' se criou a 'Grade Retangular' a partir da Entidade 'Amostra' tendo como Plano de Informação de saida "Teores_Cromo". Se utilizou 'Média Ponderada' como 'Interpolador', com 'Potencia' '2' e 'Raio' de '3500', para se preencher toda a imagem.

Figure 1. Grade Retangular e Imagem criadas a partir das amostras no Plano de Informação 'Teores Cromo'.

Exercício 2 - Geração de Grade Regular para o PI: Teores_Cobalto

Com o Banco de Dados e o Projeto ativos, por meio do menu 'MNT' se criou a 'Grade Retangular' a partir da Entidade 'Amostra' tendo como Plano de Informação de saida "Teores_Cobalto". Se utilizou 'Média Ponderada' como 'Interpolador', com 'Potencia' '2' e 'Raio' de '3500', para se preencher toda a imagem.

🗾 SPR	ING-4.3.3 (20/12/20	007) -[Pi	ranga][(Cromo]								-		-										-	- 0	×
Arquivo Editar Exibir Imagem Temático MNT Cadastral Rede Análise Executar Ferramentas Ajuda																										
8	3 🛢 🖉 📢	Auto	• 1	38541	In	ativa	•	M	M	+ 🦂	• 0		<u> </u>	5	2 🗢	5	8									
							1	17			1															
	Painel de Con			×		5 <u>9.8</u>	62.5 +	^{68,5} -	69.9	68.6	73.2	79.2	81.9	86.8	94.8	BB.3	83.9	81.9	81.7	B0.5	84.0					
	Categorias	🕒				52.2		64.5	70.8	71-1	76.9	80,8	81.3	85.8	102.1	89.3	78.8	80.0	80.2	79.6	83.8					
	(V) Amostras			_												+										
	() Drenagem () Geologia								70.d	94.2	80.0	82.2	80.5	82.1	82.4	72.1	75.1	79.6	81.3	B0.0	78.G					
	() Recorte					59.7		65.1	.sla	75.7	84.4	74.8	60.4	83.1	77.1	77.3	78.4	80.1	61.1	83.5	77.2					
													+	.+	-											
	Planos de Informaç	ão		V		58.5	72,1 +	+	68.0 +	70.8	70,4 +	75.5	78,9	89.5	- 1 .	75.9	79.7	80.8	81.5	83.0	72.5					
	(AGIm) Teores_Co	bato				71.3	75.3	72.4	70.1	72.0	73,3	76.0	74.6	78.0	78.5	79.8	81.8	82.3	85.2	85.5	77.4					
	() Teores_Cromo							4.5		-	70.0	~														
						10.0	72.4			/ 4 .2	16.2	81.0	81.8	+	80.7	86.7	85.2	84.6	85.1	87.0	89.7					
						66.8	70.0	69.9	70.8	74.5	80.2	84.7	90.6	90.3	95.3	90.2	88.8	86.7	87.6	88.1	94.5					
	Prioridade: 300	CR		2			07.0	88 A	87.7	70.1		00.0	05.0	00 E	+	00.1	97.5	80.0	07.0	DAE	00.8					
	Amostras	Г	solinhas			+			+	~ + '	a1.2		90.6	90.5	-925	30.1	87.5	69.0	95.9	94.0	90.4					
	Grade		exto			6 <mark>8.5</mark>	87.8 +	84,8	-65.5	75.5	84.4	90,9	93.6	93,5	95.3	99.8	85.0	94.2	98.4	100.5	97.7					
			nagem	_			87.2	69.9	71.0	78 3	84.4	00.0	3.70	00.1	102.1	110.4	100.8	105.0	101.6	103.9	108.2					
	Controle de Telas	<u> </u>	onsultar									+			+	+	100.0	100.0	101.0	+	+					
	Ativar: • 1 C	2 0 3	○ 4	C 5		66.8	89.1 +	69.1 +	71.5	77,5	81,8	84.9	93.6	102.1	104.4	104.9	104.7	104.7	105.7	106.2	109.4					
	Exibir: 🗆 2	: 🗆 3	□ 4 I	5		84.5	87.5	85.2	64.5	87.4	82.0	91.5	104.3	105.7	105.9	108.9	109.7	106.4	107.3	110.0	110.9					
	Acoplar: 🗌 2	I □ 3	□ 4 I	5		÷															+					
	Ampliar: 1 C	2 0	4 0	8		0 <mark>4.</mark> 2	66.8 +	83.5 +	-	457	74,5	103.8	105.9	106.8	110.4	124.4	125.4	112.1	110.6	112.4	112.7					
	Fechar	_	Ajuda			84.2	67.3	64.5			75.2	94.0	100.9	106.2	118.2	150.41	148.3	125.9	118.4	115.9	123.4					
		_	_			÷									+	++	- +	+	+		*					
						55.0	85.3 +	07.1 +	66.1 +	68.9 +	80.3	91.4	100.1	106.8	119.1	137.8	140.7	128.5	122.7	123.0	127.0					
<u> </u>																										
								(1.1.1)		-	_	_		_	_	_	_	_	_	_		PI: Teores_Cobalt	:0		10.3	22
) 🧲 🔤				1	1	7	W														PT 🔶 😚	a 💰 🛱	al 🌵 🏴	20/05/	2017

Figure 2. Grade Retangular e Imagem criadas a partir das amostras no Plano de Informação 'Teores_Cobalto'.

Exercício 3 - Gerar Mapa Ponderado da Geologia

Com Banco de Dados e Projeto ativos por meio do menu Analise>LEGAL, se editou e se executou o programa "Geologia Ponderada".

Figure 3. Visualização do Plano de Informação 'Geologia Ponderada' após execução do Programa LEGAL.

Exercício 4 - Mapear a grade (representação) do PI Teores_Cromo utilizando Fuzzy Logic.

Com Banco de Dados e Projeto ativos por meio do menu Analise>LEGAL, se criou, editou e se executou o programa "CromoFuzzy".

Figure 4. Visualização do Plano de Informação 'Cromo_Fuzzy' após execução do Programa LEGAL.

Exercício 5 - Mapear a grade (representação) do PI Teores_Cobalto utilizando Fuzzy Logic.

Com Banco de Dados e Projeto ativos por meio do menu Analise>LEGAL, se criou, editou e se executou o programa "CobaltoFuzzy".

BPRING-4.3.3 (20/12/2007) -[Piranga][Cromo]	the second second descent from the second of the second seco	
Arquivo Editar Exibir Imagem Temático MNT Cadast	ral Rede Análise Executar Ferramentas Ajuda	
💓 🖬 🗲 🗾 🔝 Auto 💌 1/ 38541	hativa 🔽 🔟 🗎 🕂 🍄 💽 🗨 🗶 🕵 🕵 🐼 🍄 🔊	
Image: Second Secon	Cd 3 Se=00 8.3e=00 8.3e=00 8.4e=00 8.3e=00 8.6e=00 6.0e=00 5.1e=00 8.2e=00 6.2e=00 5.7e=00 8.3e=00 6.1e=00 5.1e=00 5.0e=00 6.2e=00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ptoridade: 300 CR ZI Isolinhas Grade Toto TIN Gragen	4.3+000 5 2-00 8.2+00 8.2+00 8.2+00 8.4+00 8.4+00 8.4+00 8.2+00 8	
Selectonar Consultar Controle de Telas Ativar. © 1 C 2 C 3 C 4 C 5 Ativar. © 1 C 2 C 3 C 4 C 5 Exbir.	4.1e=005.2e=005.2e=005.4e=005.8e=005.3e=005.3e=005.1e=005.6e=007.5e=007.5e=005.7e=007.5e=005.7e=005.7e=005.7e=005.7e=005.7e=001 4.2e=005.3e=005.3e=005.4e=005.1e=005.4e=005.1e=005.6e=007.0e=007.0e=007.0e=007.0e=007.0e=007.0e=007.0e=007.0e=00	
Acoplar: 2 3 4 5 Amplar: 1 2 4 8 Fechar Auda	4.0=-00 8.2=-00 8.0=-00 8.0=-00 8.0=-00 7.1=-00 7.2=-00 7.2=-00 7.2=-00 7.0=-00 8.0=-00 8.0=-00 7.7=-00 7.6=-00 7.7=-00 7.7=-00 7.6=-00 7.7=-00 7.7=-00 7.6=-00 7.7=-00 7.7=-00 7.7=-00 7.7=-00 7.7=-00 7.6=-00 7.7=-0	
	C0 41e-008.2e-008.1e-008.3e-008.0e-006.9e-008.0e-007.2e-008.0e-007.7e-008.8e-008.1e-008.1e-008.0e-008.7e-008.0e-001	
		PI: Cobalto_Fuzzy
	🔑 🛛 🞢 🖉 🚾 🐘	PT 🔺 🍓 🝊 💰 🛱 💷 🔶 🏴 20:00

Figure 5. Visualização do Plano de Informação 'Cobalto_Fuzzy' após execução do Programa LEGAL.

Exercício 6 - Cruzar os PI's Cromo_Fuzzy e Cobalto_Fuzzy utilizando a função Fuzzy Gama.

Com Banco de Dados e Projeto ativos por meio do menu Analise>LEGAL, se criou, editou e se executou o programa "GamaFuzzy".

Figure 6. Visualização do Plano de Informação 'Gama_Fuzzy' após execução do Programa LEGAL.

Exercício 7 - Criar o PI Cromo_AHP utilizando a técnica de suporte à decisão AHP (Processo Analítico Hierárquico).

Com Banco de Dados e Projeto ativos por meio do menu 'Analise>Suporte à Decisão(AHP)', se criou, editou e se executou o programa "CromoAHP". Para sua criação foram informadas as Categorias "Cromo_Fuzzy", "Cobalto_Fuzzy" e "Geologia_Ponderada". Se indicou peso 5 para os critérios 'Cromo_Fuzzy – Cobalto_Fuzzy', peso 8 para os critérios 'Cromo_Fuzzy – Geologia_Ponderada', e peso 4 para os critérios 'Cobalto Fuzzy – Geologia Ponderada'.

Figure 7. Visualização do Plano de Informação 'Cromo_AHP' após execução do Programa LEGAL criado a partir do Processo de Analise Hierárquico.

Exercício 8 - Realizar o Fatiamento no Geo-Campo Gama_Fuzzy.

Com Banco de Dados e Projeto ativos por meio do menu Analise>LEGAL, se criou, editou e se executou o programa "FatiamentoGamaFuzzy".

Figure 8. Visualização do Plano de Informação 'FAT_Gama_Fuzzy' após execução do Programa LEGAL.

Exercício 9 - Realizar o Fatiamento no Geo-Campo Cromo_AHP.

Com Banco de Dados e Projeto ativos por meio do menu Analise>LEGAL, se criou, editou e se executou o programa "FatiamentoCromoAHP".

Figure 9. Visualização do Plano de Informação 'FAT_Cromo_AHP' após execução do Programa LEGAL.

Exercício 10 - Etapa Final (Apresentação e Analise dos Mapas de Potencialidade de Cromo gerados pelas técnicas AHP e Fuzzy Gama).

Figure 11. Visualização do Plano de Informação 'Cromo_AHP' após execução do Programa LEGAL criado a partir do Processo de Analise Hierárquico.