

Programa de Pós-Graduação em Sensoriamento Remoto Discente: Jessyca Fernanda dos Santos Duarte Disciplina: Introdução ao Geoprocessamento (SER-300)

Relatório – Laboratório 1: Modelagem da Base de Dados

1. Introdução

O planejamento e organização territorial são importantes para auxiliar a racionalizar a gestão do espaço geográfico, visando um desenvolvimento sustentável aprimorando a economia e a responsabilidade socioambiental. Para Kohlsdorf (1985), o Planejamento Urbano possui dois fatores cruciais no modo de pensar e agir sobre a cidade. O primeiro é assumir a cidade como um processo contínuo. O planejamento, dentro dessa concepção, é entendido como um processo-subsídio a tomadas de decisões que têm a função de transformar a cidade de acordo com objetivos pré-estabelecidos. O segundo é a entrada em cena de contribuições vindas de outras disciplinas, tais como a sociologia, a geografia e a economia. Assim o Planejamento Urbano assumiu característica multidisciplinar ao longo do tempo. O uso de geotecnologias auxilia de amplamente o planejamento e o ordenamento territorial, desta forma, o presente estudo visa elaborar, modelar e implementar no SPRING uma base de dados do Plano Piloto de Brasília para Identificar usos e cobertura no local de estudo, cadastrar e identificar as classes de utilização das quadras da asa norte e sul do Plano Piloto, e computar a declividade média dentro de cada quadra do plano piloto.

Figura 1: Modelo OMT-G do estudo urbano do Plano Piloto de Brasília.

Definição de um Esquema Conceitual

2. Metodologia

O presente estudo foi realizado no *software* Spring 5.2.7, onde foram realizadas diversas etapas desde a criação do banco de dados até a geração dos produtos finais. Estas etapas foram denominadas de exercícios.

Exercício 1 - Modelagem do Banco OMT-G

Inicialmente foi criado o banco de dados, em seguida foi definido o projeto e então foram adicionados os dados associados às suas respectivas classes e categorias.

- a) Criação do banco de dados denominado como "Curso" (figura 2).
- b) Definição do projeto chamado "DF" (figura 3).
- c) Criação de categorias e classes (figura 4).

Figura 2. Criação do banco de dados.

Banco de Dados - 🗆 🗙										
Diretório C:\Users\IVAN\Desktop\LAB1GEO Banco de Dados										
Curso										
Gerenciador: SQLite Alterar Senha										
Criar Ativar Suprimir Fechar Ajuda										
Banco de Dados corrente Curso										

Figura 3. Definição do projeto.

			Proj	ietos	5		
Proj	etos						
DF							
	Nome:	DF					
	Projecão	UTM/Dati	um->S/	AD69			
Pr	ojeção de Referênc	ia					
	Projeção						
Retá	ngulo Envolvente						
Co	ordenadas: 🤇) GMS		\bigcirc	GD	• P	lanas
X1:	146465.9696			X2:	254090.8	586	
Y1:	8221030.8834			Y2:	8286579	5752	
	Hemisfério	() N () s		0	I 🖲 S	
	Criar	tivar	Dec	ativar		terar	Suprimi
	Cildi A	uvai	Desc	auvai		(C) di	Suprim
	Fe	char				Ajuda	
						-	

Figura 4. Criação de categorias (A) e classes (B).

(A)

<i>4</i> 1	Modelo	de Dados	- □ ×
Categorias	Classes Temática	as	
C Unidad C Cad_Es C Cad_Un M Altimet M Grades T Declivi T Limites T Uso_Te	e_Politica colas bano tria _Numericas dade tra		^ ~
Nome: Uso_	Terra	Tabela: CG00002	5
-Modelos de	Dados		
🔿 Imagem	1	Cadastral	
		○ Rede	
Temátic	0		
Criar	Alterar	Suprimir	Visual
Executar	Fe	echar	Ajuda

(B)

Modelo de Dados 🗕 🗆 🗙	
Categorias Classes Temáticas	
1. 0 a 2 graus 2. 2 a 4 graus 3. 4 a 8 graus 4. > 8 graus	
Nome: 0 a 2 graus	
Criar Alterar Suprimir Visual	
Executar Fechar Ajuda	

Após criar as classes temáticas, foi necessário definir cores aleatórias para diferenciálas entre si visualmente. Na figura 5 pode ser observado este processo. Figura 5. Definição de cores por classes temáticas.

Visuais de Apresentação Gráfica 🛛 – 🗆 💌
Áreas Linhas Pontos Textos
Cor Ouro
Estilo: Sólido V
SPR ^I NG
SPRING
+
Executar Substituir Fechar Ajuda

A próxima etapa é importar os dados, para isto, é importante antes converter o arquivo Shape para ASCII-SPRING (figura 6), importar o arquivo ASCII criados pela conversão e ajustar, poligonalizar e associar a classe temática.

Figura 6. Conversão de arquivo shape para ASCII-SPRING.

rquivo	Editar	Exibir	Imagem	Te								
Ban	co de Dao	dos										
Proj	eto		+	1 -								
Mod	delo de D	ados		E								
Obj	eto / Não	Espacia	I									
Ativ	ar Carta				Conversa	ão ASCII-	SPRING -					
Gere	enciador	de Usuár	ios		Entrada							
Log	ar				Arquivo	C:/Users/IVAN/Desktop/MESTRADO INPE						
Reca	arregar Pr	rojeto			Modelo SPRING: Temático							
Assi	stentes		•		Categorias do C Atributos (Classe	a)						
Imp	ortar		•		[NONE]							
Con	verter pa	ra ASCII	SPRING		SPRAREA							
Abri	ir Imagen	n										
Expo	ortar		•		Coord X/Long		Coord Y/Lat					
Salv	ar Como	Imagem	JPEG									
Orto	orretificaç	ão de In	nagens									
Reg	istro		-									
Imp	rimir da 1	Fela			Saída							
Con	versor Sp	oring Terr	alib		Nome do Arquivo	ASCII: limi	te_df					
				_								

Exercício 2 – Importando Limite do Distrito Federal.

Antes de importar esses dados será feita a conversão para ASCII-SPRING. O arquivo importado do limite do Distrito Federal está representado na figura 7.

Figua 7. Importação do shape de limite do Distrito Federal, Brasília.

Exercício 3 – Importando Corpos de Água.

Figura 8. Importação do shape de corpos d'água.

Exercício 4 – Importando Rios de arquivo Shape.

Figura 9. Importação do shape de rios.

Exercício 5 – Importando Escolas de arquivo Shape.

Figura 10. Importação do shape de escolas.

Exercício 6 – Importando Regiões Administrativas de arquivos ASCII-SPRING

Figura 11. Importação de arquivo Ascii-spring.

Exercício 7 - Importando Rodovias de arquivos ASCII-SPRING

Exercício 8 – Importando Altimetria de arquivos DXF

Passo 1 - Importar arquivo DXF com isolinhas num PI numérico

Passo 2 - Importar arquivo DXF com pontos cotados no mesmo PI das isolinhas

Passo 3 - Gerar toponímia para amostras

Exercício 9 - Gerar grade triangular- TIN

Passo 1 - Importar a drenagem de arquivo DXF para PI temático

Passo 2 - Gerar grade triangular utilizando o PI drenagem como linha de quebra

Exercício 10 - Gerar grades retangulares a partir do TIN

											SPI	RING-	5.2.7[Curso][DF]									
<u>A</u> rquivo <u>E</u>	ditar Exib	ir Imagem	Temático	MNT	Cadastral	Rede	A <u>n</u> álise	SCart	a Ex	ecutar	Eerra	mentas	Terr	aLib	Plugins	s Aju	<u>d</u> a							
🛛 📾 🗧		🗆 🔏 🚹	য় ্য	+ 🔩	• 0 🗞	₫ 🔍	୍ କ୍ କ୍	~ ~	1	* ®a	- 10	R**	00 A	uto -	• 1/ 1	41332.	390625	Ina	ativa 🔻	8				
Painel de Cont	trole		8	×					Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
	Tela Ativ	/a : Principal							1076.2	1081.5	1029.0	1038.8	1088.5	1058.6	1041.0	1012.8	1096.2	1083.1	1116.8	1124.3	1176.2	1195.8	1173.1	1117.4
PIDisponi	veis PI Se	lecionados							1093.0	1071.2	1031.2	1010.0	1040.1	1055.3	1059.6	1044.6	1007.8	1020.2	1021.8	1112.1	1122.4	1146.7	1187.8	1145.7
∠ategona ▲ M (V	/) Altimetria /) Altimetria	ntormação							1106.8	1079.6	1054.2	1037.8	1009.2	1017.4	1001.0	998.0 +	1030.0	1019.2	998.0 +	1049.0	1094.9	1114.5	1109.6	1148.4
() (G	Altimetria-1	TIN-Iq TIN-Iq-GRD							1091.5	1068.7	1032.6	1042.5	1043.1	1055.5	1043.1	1004.1	, 998.0	1028.0	1017.8	998.0 +	1011.9	1053.2	1084.4	1144.1
→ C () → T ()) Cad_Escola) Corpos_Ag	s ua							1089.8	1050.3	1050.9	1088.3	1093.2	1085.5	1044.2	1040.0	1006.8	9 88.0	1094.0	1020.0	99 4.0	1012.8	1080.2	1128.8
▶ T () ▶ C ()) Limites) Rios								1125.7	1109.5	1120.0	1140.0	1108.9	1096.4	1077.4	1056.6	1024.4	1010.8	998.0 +	1003.0	998.0 +	1000.8	1062.7	1123.0
▶ C () ▶ R ()) Unidade_Po) Vias_acesso	olitica							1130.2	1119.8	1129.1	1140.0	1147.3 +	1133.5	1111.5	1081.4	1042.8	1011.3	998.0 +	998.0 +	998.0 +	1004.6	1073.1	1094.2
									1130.1	1120.0	1127.6	1155.3	1168.0 +	1134.2	1107.8	1072.1	1038.7	1001.7	998.4 +	999.0 +	998.0	988.0 +	1040.5	1041.6
									1128.4	1120.0	1141.1	1151.3	1131.3	1125.2	1115.7	1082.2	1067.2	1043.8	1031.4	1010.0	998.0 +	0.49e	1026.8	1017.8
									+	1111.2	1130.1	1117.5	1105.0	1118.0	1098.1	1068.6	1057.5	1048.3	1033.7	1023.8	99 8 .0	1097.8	1069.1	1090.4
									+	1095.4	1095.5	1078.1	1078.6	1088.2	1067.1	1034.5	1008.7	1011.7	1009.6	1012.6	99 8 .0	1030.5	1092.3	1110.0
									+	1098.1	1093.7	1050.6	1059.6	1047.5	1022.9	98 <mark>8</mark> .0	99 8 .0	1000.0	99 8 .0	0.8ee	1005.5	1072.0	1104.2	1105.5
									+	10 <u>62</u> .B	1062.6	1045.9	1020.7	1002.9	9 88 .0	1025.0	1020.0	99 8 .0 +	99 8 .0 +	1016.5	1052.1	1085.3	1088.0	1055.3
	i 🕺	d 🖉 🗄	8						+	1023.5	1017.1	1010.8	988.9 +	1025.2	1032.1	10 40.8	1009.8	1007.8	1028.0	1033.7	1096.3	1111.8	1007.2	1043.3
Amostra	as	Is <u>o</u> linhas							+	1009.2	1018.5	1035.5	1045.6 +	1052.8	1047.8	1013.4	1011.5	1030.0	1063.5	1105.8	1127.2	1127.0	98 <u>0</u> .0	939.0 +
Grade		Texto							+	1039.9	1053.2	1080.0	10 58. 0 +	1047.5	1014.5	1031.0	1086.8	1083.3	1028.1	1102.1	1147.7	1129.0	99 3. 4	1001.5

Exercício 11 - Geração de Grade de Declividade e Fatiamento

Limpando pixels com edição matricial:

Exercício 12 - Criar Mapa Quadras de Brasília

1. Importar arquivo de linhas para criar mapa cadastral

- 2. Associação automática de objetos e importação de tabela ASCII
 - Importando arquivo com atributos das quadras:

3. Geração de toponímia dentro de cada polígono

4. Carregar módulo de consulta e verificar tabela

• Exibindo histograma:

• Exibindo diagrama de dispersão:

• Exibindo gráfico "Pie Chart":

Exercício 13 - Atualização de Atributos utilizando o LEGAL

Passo 1 - Criar um novo atributo para o objeto Quadras

Db	jeto e Não Espaci	al 🗕 🗆 🗙
Tabelas Atributos		
Atributos da Categoria [0	Quadras]	
GEOID Bu ASA Bu USO NUM_IMOV POPULAC spring id		
MDECLIV		
Nome: MDECLIV	Tamanho: 17	
Тіро		
🔘 Inteiro	🔿 Data	
Real	🔿 Texto	
Inserir	Remover	Metadados
Executar	Fechar	Ajuda

Passo 2 - Atualizar atributo pelo operador de média zonal

• Visualizando um mapa de quadras com novo atributo calculado:

#											SPRING	-5.2.7[Curs	io][DF]	
Arc	qu' Vier	un en	a da Ob	iotos -	tico	MNT g	Cadastral	<u>R</u> ede A <u>n</u> áli	se SCarta	Exec <u>u</u> tar	<u>F</u> erramenta	ns TerraLib	Plugir	ns Aju <u>d</u> a
		Jalizaça	o de Ob	jetos	」 」 」	+ 💠	0 🗞	1 9 9 9	द 🗇 🔦	📲 🗕 🖓	• 🔣 🕅	🔅 Auto	▼ 1/	174468.875000
Daine	8	🔓 🗘 🛙	≣ ⊅	8 -										
rain	1	Quadras		1	^									
F	PI				×									
6	a				^						<u> </u>			
	⊳ M ∩	Altimetria												
		Cad Esco	las							1				
	4 C (V) Cad Urb	ano						-		7428			
	(L)	OT) Mapa	Quadras						1					
	Þ 🔳 ()	Corpos_A	gua								S SL I			
	Þ 🔳 ()	Declivida	de							~	THE	-		
	Þ M ()	Grades_N	umericas								BHH -	$\prec \rightarrow$		
L	5 ITIO	Limiter			-						117	×		
	0= 5	a 🗤	ഷ് ര	/	2									
		~ ~							-	61 H P				
15	_ Pontos		v 00	ojetos						-				
	/ Linhas		✓ Te:	xto										
1									_					
_						• •	- ≍ \ <u>Pri</u>	ncipal / Auxilia	r_/_Tela 2	/ <u>Tela 3</u> /∖	Tela 4 / Te	la 5_/		
Tabe	la													
-	1 - 8%	- 🍃 [3 /	8 =	- 8									
	id	nome	rotulo	area	erimetri	ASA	USO	NUM_IMOV	OPULA	MDECL	.IV			
1	61721	SQN	SQN	110770	1345.51	NORTE	Hotel	12	3500	2.415293943	841			
2	61722	SQN	SQN	110082	1336.19	NORTE	Publico	15	250	2.013620441	177			
3	61723	SQN	SQN	104903	1310.89	NORTE	Publico	18	300	2.488792744	931			
4	61724	SQN	SQN	106524	1305.89	NORTE	Publico	100	400	1.880875391	838			
5	61725	SQN	SQN	101699	1279.4	NORTE	Resid	120	500	2.615973900	235			
6	61726	SQN	SQN	95459	1248.97	NORTE	Resid	35	140	1.996087250	625			
7	61727	SQN	SQN	108359	1323.46	NORTE	Resid	24	100	1.7645345570	06			
8	61728	SQN	SQN	104378	1301.07	NORTE	Resid	24	120	1.919881113	217			
9	61729	SQN	SQN	113198	1351.42	NORTE	Resid	30	120	1.977844772	257			
10	61730	SON-	SOM-	112457	1340.52	NORTE	Resid	30	150	1 637316492	812			

Exercício 14 - Importação de Imagem Landsat e Quick-Bird

• Composição R5 G4 B3 – Landsat 7:

• Imagem Quickbird comparada à imagem Landsat:

Exercício 15 - Classificação supervisionada por pixel

Nesta etapa foi realizada a classificação supervisionada por pixel, onde foram coletadas amostras de treinamentos para cada classe. A figura abaixo representa a classificação pelo algoritmo *maxver* (máxima verossimilhança).

• Eliminando ruídos de classificação, ou executando uma pós-classificação:

As figuras abaixo representam a comparação do resultado após a eliminação de ruídos na classificação, deixando os polígonos das classes mais homogêneas.

• Mapeando temas da imagem classificada para classes de uso da Terra:

Conclusões

A partir das atividades desenvolvidas no laboratório 1, foi possível colocar em prática o conhecimento teórico, de forma didática, através do *software* SPRING. Assim, a contextualização dos temas abordados em sala de aula, como geo-objetos e geo-campos, foi essencial para melhor compreensão dos conceitos. O escopo do trabalho foi baseado no Modelo Geo-OMT, que permite organizar as etapas do processamento e possibilita ter uma visão da totalidade do mesmo. Além de ser possível compreender como podem ser feitos estudos urbanos por meio do uso do geoprocessamento, e conhecer o uso do LEGAL para operações com cálculo de atributos. O resultado final foi obtido por meio da classificação supervisionada, onde foi gerado o uso da terra, que deverá auxiliar em projetos de planejamento urbano.