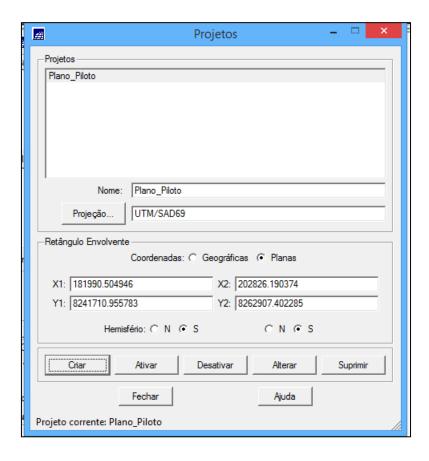


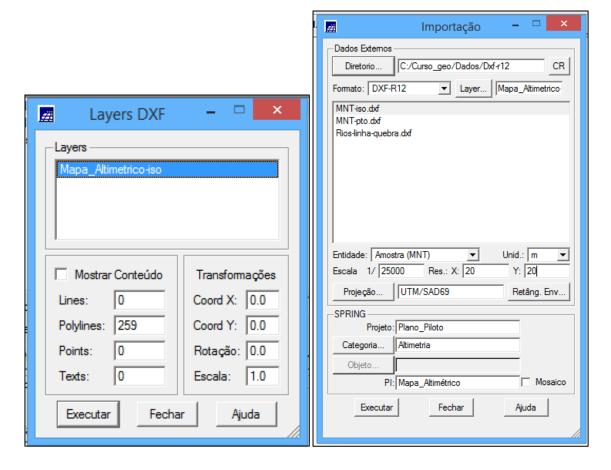
Programa de Pós-Graduação em Sensoriamento Remoto

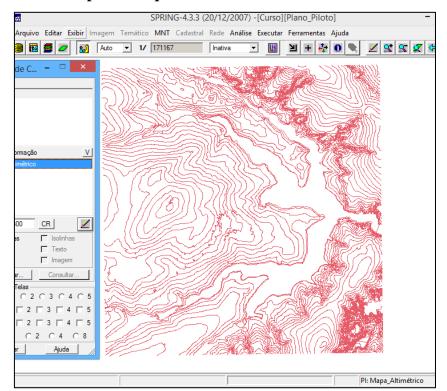

Discente: Jessyca Fernanda dos Santos Duarte

Disciplina: Introdução ao Geoprocessamento (SER-300)

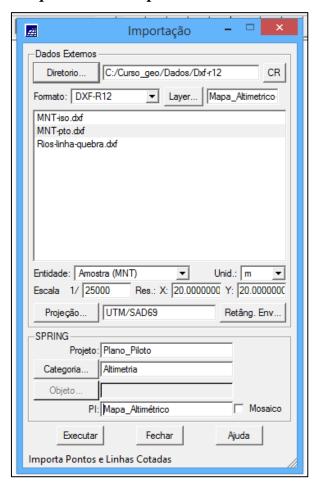
Relatório – Laboratório 3: Laboratório de MNT (Exercícios Práticos)

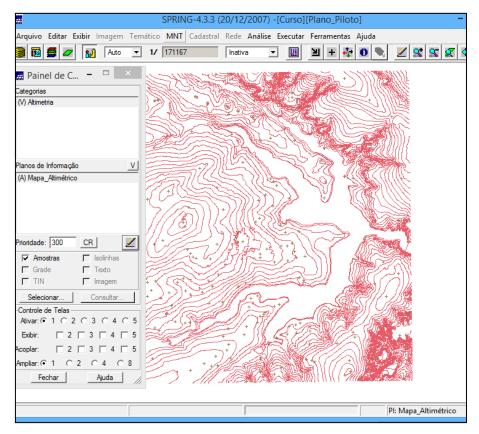
Exercício 1 - Definindo o Plano Piloto para o Aplicativo 1.


Inicialmente deve-se ativar o banco de dados e o projeto Plano Piloto de Brasília.

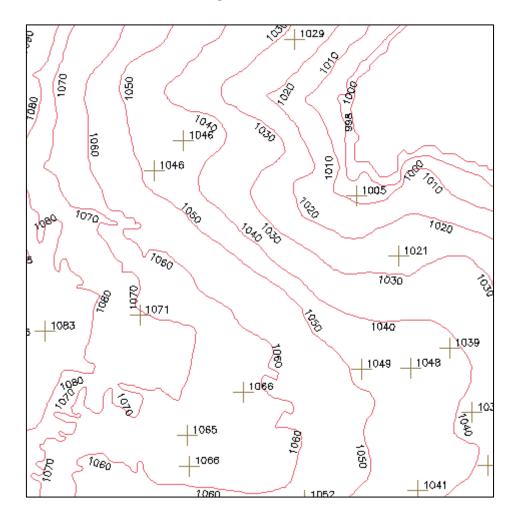

Exercício 2 - Importação amostras de modelo numérico de terreno

Os procedimentos são:


- 1. Importar arquivo DXF com isolinhas num PI numérico
- 2. Importar arquivo DXF com pontos cotados no mesmo PI das isolinhas
- 3. Gerar toponímia para amostras



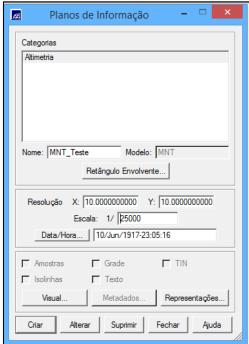
Passo 1 - Importar arquivo DXF com isolinhas num PI numérico


Passo 2 - Importar arquivo DXF com pontos cotados no mesmo PI das isolinhas

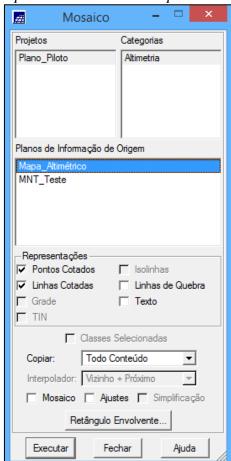
Passo 3 - Gerar toponímia para amostras

Gerando textos p/ amostras de PI numérico:

Exercício 3 - Edição de modelo numérico de terreno

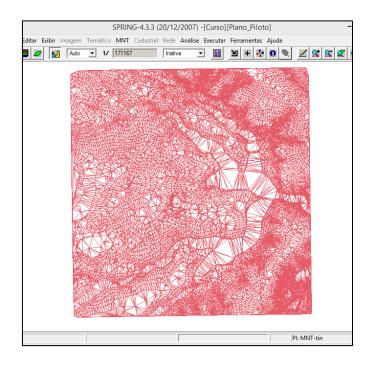

Os procedimentos são:

- 1. Criar um novo PI numérico e fazer cópia do mapa altimétrico
- 2. Editar isolinhas e pontos cotados num PI numérico
- 3. Suprimir o PI MNT_Teste

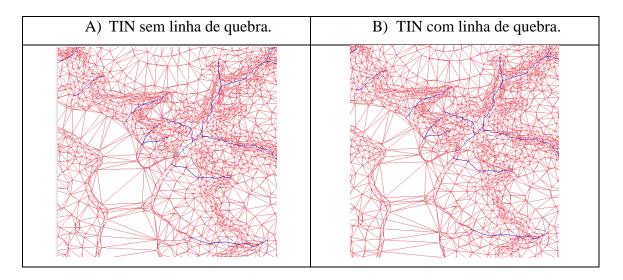

Passo 1 - Criar um novo PI numérico e fazer cópia do mapa altimétrico

Para fazer a copia de um PI numérico para outro, primeiro deve ser criado um novo.

Criando PI para edição na tela:


Copiando dados de um PI para outro:

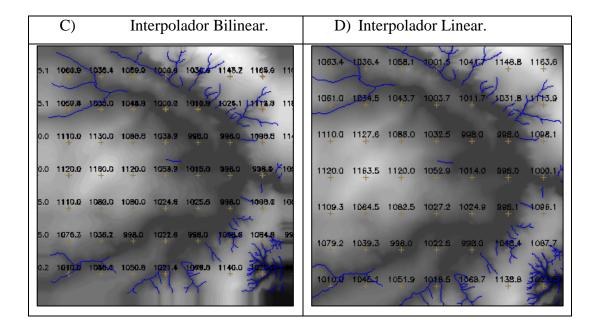
Passo 2 - Editar isolinhas e pontos cotados num PI numérico


■ Edição Topológica - □ ×									
€ Edição Gráfica	C Verificação								
Editar: Linhas ▼									
Contomo	Nós AjustadosNós não Ajustados								
Edição de Linhas									
Modo: Contínuo ▼									
Topologia: Manual									
Fator Digit.(mm): 2	.00								
Valor Z: 10	075 CR								
☐ Mestra	Linhas de Quebra								
Operação: C	Operação: Criar Linha Fechada ▼								
Desfazer	Salvar								
Tolerância(mm): 0.00 ▼									
Ajustar	Poligonalizar								
Objetos Classes Visual									
Atualizar Índices Atualizar Area/Per.									
Fechar	Ajuda								
Editando MNT_Teste									

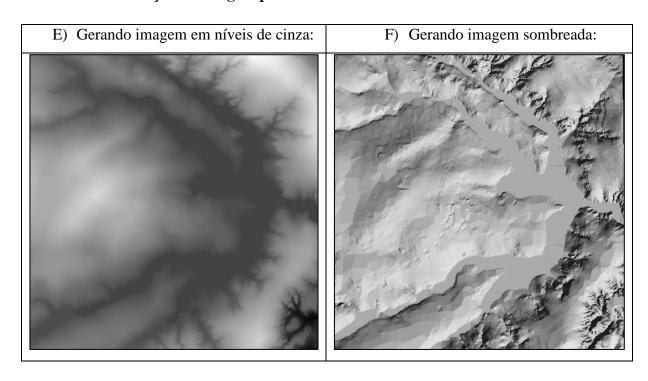
Exercício 4 - Gerar grade triangular com e sem linha de quebra

O objetivo agora é utilizar um drenagem como linha de quebra. Os procedimentos são:

- 1. Importar a drenagem de arquivo DXF para PI temático
- 2. Gerar grade triangular utilizando o PI drenagem como linha de quebra

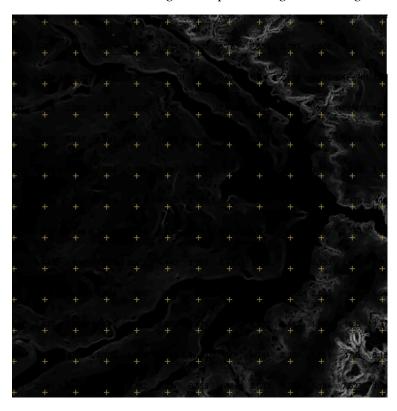


Exercício 5 - Gerar grades retangulares de amostras e de outras grades

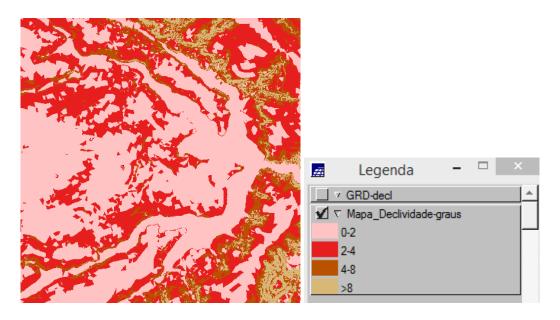

Gerando grade retangular a partir das amostras:

4.9	1054.3	1030.0	1050.0	1065,0	1040.0	1022.7	1102.3	(1094,6	1118,5	1157.8	1210.0	1200.0	1115.3	1043.3
5.1	1090.0	1055.2	1024.9	105B.0	1B70.B	1074.7	1015.6	1030.0	1086.3	1120.B	1145.7	1170.0	1164.8	1105.1
4.9	1090.0	1055.0	1035.5	1010.0	1005.2	1008.5	1040.0	1015.0	998.0	1957.5	1105.1	1125.7	1128.2	1164.8
4.9	1090.0	1055.5	1030.0	1035.0	1050.0	1030.0	998.0 +	1025.0	1020.0	898.0	1048.1	1035.7	1114.B	11BD.0 +
5.1	1080.0	1075.0	1084.9	1086.3	1090.0	1035.0	1030.0	998.0	1003.8	1020.0	998.0	1054.4	10941	1170.0
5.1	1120.0	1110.0	1135.2	1114.9	1095.3	1075.0	1045.2	1016.2	998.0	1000.0	998.0	1012.8	1100.0	1150.0
3.9	1130.0	1120.0	1130.0	115B.0	11 <u>3</u> 0.B	1110.0	1055.2	1024.9	998.0	998.0	99 <u>8</u> .0	1016.0	1080.0	1105.5
0.0	1130.0	1120.0	1150.0	1165.8	1130.0	1105.2	1067.4	1024.4	1015.0	1004.9	998.0	995.0	1013.7	1054.0
o.a	1120.0	1130.0	1150.0	1119.8	1120.0	1100.0	1070.0	1060.0	1048.0	1810.8	99 8. 0	1015.7	1025.0	99 B .0
4.9	1102.8	1115.0	1103.9	1090.0	1104.8	1080.0	1044.8	1040.0	1024.9	1025.3	998.0	1052.8	1090.0	1084.9
0.0	1090.0	1098.9	1090.0	1068.4	1064.6	1033,1	996.0	998.0	0.8ee	998.0	99B.Q	1036.4	1110.0	1073.4
4.9	1070.0	1090.0	1064.2	1034.2	1B24.7	0.889	1020.0	1005.2	998.0	1005.4	1020.8	1085.0	1095.5	1044.9
9.9	1030,0	1040.0	1030.0	1010.0	1014.3	1025.3	1030.0	998.0	1016.4	1025.7	1090.0	1100.0	1050.07	1040.0
4.9	1040.0	1010.0	1025.4	1035.3	1850.8	1042.5	1016.0	1025.3	1050.0	1100.0	1130.0	1104.0	? ` }	$\overrightarrow{\uparrow}$
4.9	1025.0	1045.0	1060.0	1059.5	1045.1	1015.4	1052.9	1085.0	1032.2	110 0.0	1150.0	1106,0	040.0	963,6

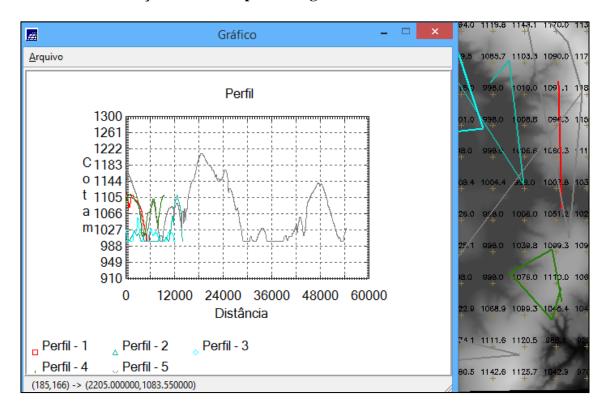
Refinar grade retangular a partir de outra grade retangular:

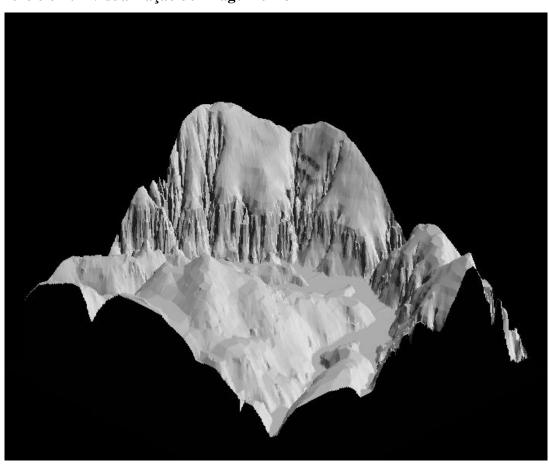


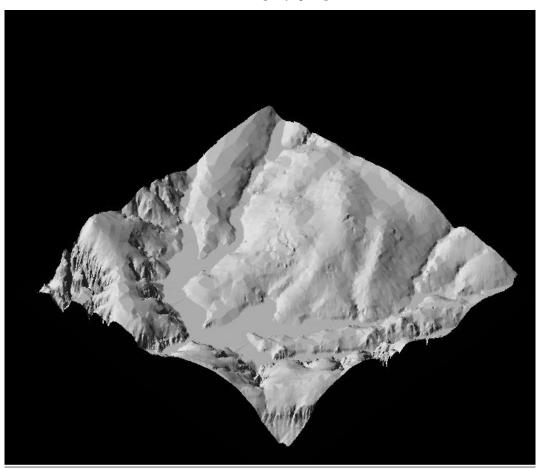
Exercício 6 - Geração de Imagem para Modelo Numérico

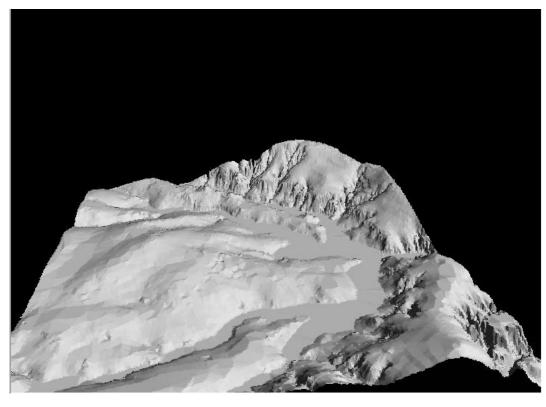


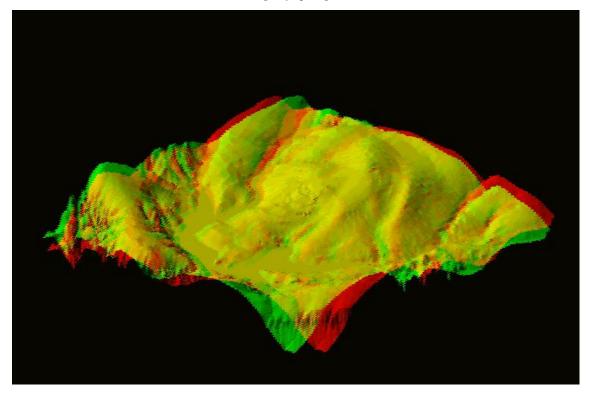
Exercício 7 - Geração de Grade Declividade


Gerando declividade em graus a partir de grade retangular:


Exercício 8 - Fatiamento de Grade Numérica - Mapa de Declividade


Exercício 9 - Geração de Perfil a partir de grades


Exercício 10 - Visualização de Imagem em 3D


Visualizando em projeção paralela:

Visualizando em projeção perspectiva:

Visualizando em projeção paralela-estéreo:

O presente laboratório permitiu entender e executar exercícios práticos sobre os modelos numéricos do terreno (MNT), como a geração de grades numéricas, regulares e triangulares, possibilitando visualizar imagens de relevo sombreado e em níveis de cinza, sob diferentes perspectivas e dimensões.