

Ministério da Ciência, Tecnologia e Inovação

CURSO DE PÓS-GRADUAÇÃO EM SENSORIAMENTO REMOTO

SER300 – Introdução ao Geoprocessamento

LABORATÓRIO 1

José Guilherme Fronza

INPE São José dos Campos 2015

Laboratório 1

Este exercício visa elaborar, modelar e implementar no SPRING uma base de dados do Plano Piloto de Brasília para responder as seguintes questões:]

- Identificar usos e cobertura na região do Plano Piloto;
- Cadastrar e identificar as classes de utilização das quadras da asa norte e sul do Plano Piloto;
- Identificar as áreas em cotas altimétricas;
- Verificar as condições de acesso no Plano Piloto;
- Computar a declividade média dentro de cada quadra do plano piloto.

Passo 1. Criação do Banco de Dados

Figura 1. Criação do Banco de Dados no SPRING

Passo 2 Criar Projeto

			11.03	100					
rojetos									
DF									
Nome: DF									
Projeção	Projeção UTM/Datum->SAD69								
Projeção de Re	ferên	cia							
Projeção									
letângulo Envolv	rente								
Coordenadas:	C) GMS		00	5D	۲	Planas		
1: 146465.9696				x2:	25400	0.8586			
1: 8221030.8834				Y2:	82865	86579.5752			
Hem	isfério	: () N	•) s		() N 🖲 S			
Criar	A	tivar	Desi	tiver		Alterar	Suprime		
			Loners						
	Fe	chor				Ajuda			

Exercício 2 – Importar Limite do Distrito Federal

F

Figura 3. Importação de Limite do Distrito Federal

Exercício 3 - Importando Corpos de Água e Rios

Figura 4. Importação de Rios e Corpos de água do DF

Exercício 5 e 6 - Importando Escolas de arquivo Shape e Importando Regiões Administrativas de arquivos ASCII-SPRING

Figura 5. Importação de Mapa_ADM e Escolas

Exercício 7 e 8 – Importando Rodovias de arquivos ASCII-SPRING e Altimetria de arquivos DXF

Figura 6. Importação de Rodovias e Altimetria do DF.

Figura 7. TIN gerado pelo SPRING.

Exercício 10 - Gerar grades retangulares a partir do TIN

Figura 8 Grade Regular gerada a partir de TIN no software SPRING.

Exercício 11 - Geração de Grade de Declividade e Fatiamento

Figura 9 Grade de Declividade gerada e posterior fatiamento em classes de declividade em graus.

Exercício 12 e 13- Criar Mapa Quadras de Brasília e atualização de atributos usando legal

Figura 10 Importação de Quadra do Distrito Federal e atualização do atributos declividade por quadra (LEGAL).

Exercício 14 - Importação de Imagem Landsat e Quick-Bird

Figura 11 Imagem Landsat ETM (esquerda) e imagem do satélite QuickBird à direita.

Exercício 15 - Classificação supervisionada por pixel

Figura 12 Classificação supervisionada por Pixel. Esquerda antes da pós-classificação e direita pós classificada.