Introdução ao Geoprocessamento – SER 300 LABORATÓRIO 4

Aluno: Wesley Augusto Campanharo - 139203

Este laboratório tem o objetivo de demonstrar algumas técnicas de álgebra de mapas. Para isso será realizado um estudo de caso no município de Piranga-MG, no período de Abril a Julho de 1996 a fim de selecionar áreas potenciais a prospecção de Cromo, a partir de técnicas AHP (Processo Analítico Hierarquico) e "Fuzzy". O fluxograma de trabalho está apresentado na Figura 1.

Figura 1. Modelo de trabalho utilizado.

LAB04

Exercício 1 e 2 – Geração de grade regular de teor de Cromo e Cobalto

A partir das amostras gerou-se as grades regulares de teor de Cobalto e Cromo.

#	SPRI	VG-4.				anga][C	romo]		-							• >	<u> </u>	🛃 T	ela 2													l	- 6	×
A	rquivo	quivo Editar Exibir Imagem Temático MNT Cadastral Rede Análise Executar Ferramentas Ajuda									Exib	oir Exe	cutar																					
6		5		82	Auto	• 1.	/ 3741	Inativa		-	R	+	0		2 2	2	»	80	A	to	- 1.	/ 374	79	- F	nativa	-		Ы.	+ 🦣	0	2	5 9		(-
Π		*		. *	1.00		1					1754	1		15	12		ľ					*		4	*	1	N.	-		1		1	*
5										96.9								• F ^{cc}	×.10					20-200	5.70 001	8.46-001	B.1a-00	1 1.046	7.60-00	6.20 , 00 E	.90-001 +	5.96-0015	8e-0018. +	30-001
50									89.8	102.8	89.4							ler-CC	0 6.0e-(0014:2#		e-0015.5	30KI E	49-00	6.56-001	8.3e-001	7.3e-00	1 1.165	6.3e-00	5.0e-00 E	.4e÷001	5.68-0015	6e-0016.	2e-001
											-						H																	
ľ	.a .a																L K	e-cu	+	UD.00	+	6-00 E.	/s=00b	+	+	+	+	P.06-00			+	+	+	+
24																		*-00 †) 14.6a-4	06.00	-0019.0	e-0018.1	6e-0015		16-001 +	8.4a-00' +	6.4e-00	¥.8e-00	¥.6e-00	4.7a-00 M	96-00	5.1e-00% +	8а-00 Б. Ф	2e-001
84																		ia - 00		0015.40	-00%.7	o-0011.0			.8a-001 +	1.9e-00*	7.90-00			4.8a—DQ M	.8e-00	4.9e-005	20-00%	0-001
7																	1	e-00												4.5e-00 M		5.be-003	66-00%.	0-001
																		+																#
74																	18	41-CC	18.6e_(+	0018.7e		€-0012.7						N.60-00	100-00	5.0e-00 E	00-001	5.4p-0015 +	70-00°B. +	80-001
8																		ercc										7.26-00	6.7 6 -03	5.7e-00 5	.8a~00	5.8e-0015	1e-007. +	26-001
61								96.9							.95.4	96.0		****										1.00	6.9e-00	5.8e-0016	48-00	7.0e-007	3e-007.	9e-001
E																													B Ba-M	5 8e-D0 0	34-001	7.86-0018	56-008	78-001
																		÷																
1									100.4	104.2	117.2		98.4	104.0	103.4	103.9		¢								5.7e=001 +	8.9 0 -00	1 1.059	1.252	9.7e-00 E	.8e-001	9.9e-00'B	4=-001	1.006
ы										104.9	106.5	107.1	106.6	106.8	107.2	107.5	18	ie								1.7e-001 +	1.238	1.164	1.114	1.042 9	.6e-001	9.5e-009	8e-001	1.050
53								104.6	108.0	107.9	111.9	112.6	106.6	107.5	108.0	109.1		e								1.100	1.353	1.486	1.271	1.110 9	.2e-001	8.4e-001	1.008	1.066
							103.8	107.0	110.4	116.4	130.9	178.B		110.6	111.2									4e-20	1.531	1.373	1.293	1.393	1.870	1.572	1.020	9.9=-001	1.054	1,106
											+	+						ŧ.							+	+		+	+	+				t
S.							83.8	102.8	108.8	126.1	152.4	148.9	127.1	117.3	1143	112.9		•						+++00	1.160	1.214	1.251	1.554	1.853	1.838	1.497	1.217	1.169	1.197
7								98.9	10 9.4	125.6	142.2	142.2	130.Z	121.9	118.0	116.1							10-00 F	.24-001	9.6e-001	1.119	1.261	1.573	1.887	1.872	1.635	1.410	1.333	1.297
																	4																	
#	P	0		23	1			Γ					Te	ela inati	va																PI:	leores_C	omo	1

Figura 2. Grades regulares geradas para Cobalto e Cromo.

Exercício 3 – Gerar Mapa ponderado de geologia

Com auxílio do script em LEGAL, gerou-se as ponderações nas classes geológicas existente. Em que a escala de peso utilizada foi mv1 > Arvm = Asap > mb > Arvs = Granito.

Figura 3. Ponderação dos dados geológicos realizado.

Exercício 4 - Mapear a grade (representação) do PI Teores_Cromo utilizando Fuzzy Logic.

Com auxílio de um script escrito em LEGAL, gerou o mapa ponderado de Cromo com base em logica Fuzzy.

Figura 4. Mapa de teores de cromo ponderados utilizando logica Fuzzy.

Exercício 5 - Mapear a grade (representação) do PI Teores_Cobalto utilizando Fuzzy Logic.

Com auxílio de um script escrito em LEGAL, gerou o mapa ponderado de Cobalto com base em logica Fuzzy.

Figura 5. Mapa de teores de cromo ponderados utilizando logica Fuzzy.

LAB04

Exercício 6 - Cruzar os PI's Cromo_Fuzzy e Cobalto_Fuzzy utilizando a função Fuzzy Gama.

Utilizou outro script em LEGAL para gerar o cruzamento entre os dados ponderados de Cromo, Cobalto e Geologia.

Figura 6. Mapa do cruzamento entre Cromo, Cobalto e Geologia.

Exercício 7 - Criar o PI Cromo_AHP utilizando a técnica de suporte à decisão AHP

Suporte à decisă Categorias Gama_Fuzzy Gama_Fuzzy_Lito Geologia Geologia_Pondera	logia		
Critéri	0	Peso	Critério
Cromo_Fuzzy	5	Melhor	Cobalto_Fuzzy <=>
Cobalto_Fuzzy	4	Moderadamente Melhor	Geologia_Pondera <=>
Cromo_Fuzzy	8	Criticamente Melhor	▼ Geologia_Pondera <=>
		Igual	▼ <=>
		Igual	▼ <=>
		Igual	<=>
		Igual	▼
		Igual	▼ <=>
		Igual	▼ <=>
		Igual	▼ <=>
	Razão d	e Consistência 0.081	
Calcular Pe	eso	Fechar	Ajuda

Figura 7. Parâmetros utilizados na análise AHP.

Figura 8. Mapa gerado após analise AHP.

Exercício 8 – Realizar o fatiamento no Geo-campo gama fuzzy

Realizou-se o fatiamento utilizando um script em LEGAL, obtendo o mapa de classes de potencial de Cromo obtido pela lógica Fuzzy.

Figura 9. Mapa com as classes de potencial de Cromo gerado pela logica Fuzzy.

Exercício 9 – Realizar o fatiamento no Geo-Campo Cromo-AHP

Realizou-se o fatiamento utilizando um script em LEGAL para obter o mapa de classes de potencial de Cromo gerado pela técnica AHP.

Figura 10. Mapa com as classes de potencial de Cromo gerado pela técnica AHP.