

SER-301: ANÁLISE ESPACIAL DE DADOS GEOGRÁFICOS

Bárbara Maria Giaccom Ribeiro

RELATÓRIO DE ATIVIDADES LABORATÓRIO Nº 2: GEOESTATÍSTICA NÃO LINEAR

INPE São José dos Campos 2008

1 INTRODUÇÃO

O Laboratório 2 teve como objetivo a prática e o entendimento de um dos procedimentos da geoestatística não-linear implementado no SPRING: *Krigeagem por Indicação*.

A *Krigeagem por Indicação* busca obter uma grade regular de valores a partir dos dados amostrados pontualmente.

O módulo de *Krigeagem por Indicação* implementado no SPRING baseia-se na subrotina "ik3d" da GSLIB (DEUTSCH e JOURNEL, 1992). Este módulo possibilita a espacialização, segundo uma grade regular, de atributos espaciais de natureza contínua e categórica. Juntamente com o mapa de atributos, é gerado um mapa de incerteza, também com uma representação de grade regular, de estimação.

O exemplo prático deste *Laboratório* refere-se à estimativa de cotas de altimetria, de uma região fictícia, cujas amostras foram obtidas ao longo de um rio. A proposta foi adensar o conjunto de dados e obter os valores de altimetria para o restante da área.

2 DADOS

Os dados disponíveis estavam contidos no banco de dados "Mancha_Teste", composto por um projeto chamado "Inundação", cujas amostras referem-se a valores de inundação gerados por um modelo hidrológico.

3 DESENVOLVIMENTO

Os passos desenvolvidos neste *Laboratório 2* resumem-se em: (1) análise exploratória dos dados, (2) análise estrutural (cálculo e modelagem do semivariograma) e (3) realização de inferências pelo procedimento de *Krigeagem por Indicação*.

A análise geoestatística realizada no software Spring segue-se as seguintes etapas:

1

O banco de dados utilizado foi o Mancha_Teste, e o projeto Inundação, com projeção *UTM/SAD69*, determinado pelas seguintes coordenadas: 49º 47' 38,98" O e 25º 51' 44,13" S; 48º 42' 50,67" O e 25º 16' 38,08" S.

Figura 1 – ativação do banco de dados Mancha_Teste.

Projetos 📃 🗆 🔀	
Projetos	
Nome: Inundacao	
Projeção UTM/SAD69	
Retängulo Envolvente Coordenadas: O Geográficas O Planas	
X1: (421400.000000 X2: 729100.000000	
Y1: 7139000.000000 Y2: 7202400.000000	
Oriar Ativer Desativer Alberer Suprimir	
Pecher Ajuda	

Figura 2 – ativação do projeto Inundação dentro do banco de dados Mancha_Teste.

Inicialmente ativou-se o Banco de Dados e o Projeto com os respectivos dados. Os dados pontuais – amostras, e a delimitação do limite da área puderam ser visualizados, e então se procedeu a fase de realização da análise exploratória.

Figura 3 – visualização dos PIs: Limite (categoria: Mancha) e Cotas_Res (categoria: MNT_Krig).

3.1 Análise Exploratória em Geoestatística

No Spring a análise exploratória dos dados é realizada por meio de estatísticas univariadas e bivariadas.

As estatísticas univariadas fornecem um meio de organizar e sintetizar um conjunto de valores, e é realizada, principalmente, por meio do histograma. As características importantes do histograma são organizadas em três grupos:

1. *medidas de localização*: média, valor mínimo, quartil inferior, mediana, quartil superior e valor máximo;

2. medidas de dispersão: variância e desvio padrão;

3. *medidas de forma*: coeficiente de assimetria, coeficiente de curtose e coeficiente de variação.

As estatísticas bivariadas fornecem meios de descrever o relacionamento entre duas variáveis, isto é, entre dois conjuntos de dados ou de duas distribuições. Esta relação pode ser visualizada através do diagrama de dispersão e o grau da relação linear entre as variáveis pode ser medido através do coeficiente de correlação.

A primeira fase da análise geoestatística realizada neste *Laboratório* foi a *análise exploratória*, que fornece os padrões dos dados. Inicialmente, optou-se pela *estatística descritiva*, que fornece diversas informações sobre os dados utilizados, como número de amostras, média, desvio padrão, valor máximo e mínimo das amostras, entre outras (Figura 4).

	🜆 Relatório de Dados	
Rede Análise Executar Ferramentas Ajuda Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica Image: Construction of the statistica	E S T A T Í S T I C A S: Cotas_Res => Número de Pontos	
Ativo: Cotas_Res Selecionar outro PI Executar Fechar Ajuda	Salvar Apagar Fechar Ajuda	

Figura 4 – Análise >> Análise exploratória >> Estatísticas Descritivas.

A segunda opção dentre as estatísticas descritivas se refere ao *Histograma*, que apresenta a distribuição dos dados em classes e uma curva Gaussiana para fins de

comparação. Para efeito de comparação, foram realizados três histogramas com 5, 10 e 20 classes de dados, respectivamente (Figura 5).

Figura 5 – Histogramas apresentados em 5, 10 e 20 classes de dados (em amarelo), com as respectivas distribuições Gaussianas, com médias e desvios padrões calculados a partir dos dados amostrados (em vermelho). A distribuição dos dados é negativamente assimétrica com coeficiente de assimetria igual a - 0,5261.

O recurso do Gráfico da Probabilidade Normal também costuma ser utilizado para uma melhor caracterização dos dados (representa a probabilidade em relação à normalização da variável) (Figura 6).

Figura 6 – Gráfico da Probabilidade Normal.

3.2 Análise Variabilidade Espacial por Semivariograma

Na geoestatística, a *análise da variabilidade espacial por semivariograma* é a etapa mais importante de todo processo, pois o modelo de semivariograma escolhido corresponde à interpretação da estrutura de correlação espacial a ser utilizada nos procedimentos inferenciais da krigeagem.

Figura 7 – Análise >> Geoestatística >> Geração de semivariograma >> semivariograma por indicação.

Geração de semivariograma por indicação para dados contínuos

No processo de krigeagem por indicação os valores do atributo são transformados, segundo uma função não linear. A codificação por indicação, sobre um conjunto de dados amostrais numéricos, da VA Z(u), para um valor de corte zk, gera um conjunto amostral por indicação I(u; zk) do tipo: (FELGUEIRAS, 1999)

$$I(\mathbf{u}; z_k) = \begin{cases} 1, & \text{for } Z(\mathbf{u}) \le z_k \\ 0, & \text{for } Z(\mathbf{u}) > z_k \end{cases}$$

Neste exercício, os semivariovariogramas foram gerados para valores de corte considerando os quartis. Cada quartil define um valor de corte (*zk*), a saber: *zk*₁ = -1,24; *zk*₂ = 1,42 e *zk*₃ = 3,02.

Por se tratar de valores numéricos, utiliza-se a opção de semivariograma por indicação para dados contínuos. No caso de informações temáticas, a opção será semivariograma para dados categóricos.

Assumindo isotropia para cada *zk* definido acima, um semivariograma por indicação (omnidirecional) será gerado e ajustado.

Figura 8 – Semivariograma por indicação: corte: -1.24, nº Lag: 6, incremento: 649,0, tolerância: 324,5. É possível visualizar os resultados numéricos para melhor entendimento dos resultados.

Figuras 9 e 10 – Semivariogramas por indicação (e respectivos resultados numéricos): cortes: 1.42 e 3.02, nº Lag: 6, incremento: 649,0, tolerância: 324,5.

Os parâmetros de Lag foram alterados buscando melhorar o semivariograma até que se obtivesse um resultado considerado adequado.

Figura 11 – Parâmetros para o cálculo do semivariograma a partir de amostras irregularmente espaçadas em duas dimensões (Fonte: CAMARGO, 1997).

Segundo Camargo (1997), *Lag* refere-se a uma distância pré-definida que é utilizada no cálculo do semivariograma. Tomando como exemplo a Figura 11, e como referência o *Lag*₂, supõe-se um incremento de *Lag* igual a 100 metros, com tolerância de 50 metros. Considere a direção de medida a 45° com tolerância angular de 22,5°. Desta forma, qualquer par de observações cuja distância esteja compreendida entre 150 e 250 metros e entre 22,5° e 67,5° será incluído no cálculo do semivariograma de *Lag*₂. Este processo se repete para todos os *Lag*s (CAMARGO, 1997).

Ainda com referência na Figura 11, a largura de banda – BW – refere-se a um valor de ajuste a partir do qual se restringe o número de pares de observações para o cálculo do semivariograma (CAMARGO, 1997).

🛃 Geração de Semivariograma 📃 🗆 🔀
PI Ativo: Cotas_Res
Análise: Unidirecional 💌 Amostragem: Irregular 💌
Opções: Semivariograma por Indicação(Contín 🗸
PI de Cruzamento
Parâmetros de Lag
No. Lag: Incremento: Tolerância:
Parametros de Direção
✓ Dir1: 45.000000 + Tol1: 22.50000(Bw1: MAX +
Dir2: 45.000000 (+) Tol2: 35.000000 (+) Bw2: MAX (+)
3 Dir3: 90.000000 (+) Tol3: 35.000000 (+) Bw3: MAX (+)
4 Dir4: 135.00000 (*) Tol4: 35.000000 (*) Bw4: MAX (*)
Padronizar Resultado Numérico
Executar Fechar Ajuda

Figura 12 – Janela de definição dos parâmetros para geração do semivariograma no Spring.

Figuras 13 e 14 – Semivariogramas por indicação (e respectivos resultados numéricos): corte: -1.24, nº Lag: 4 e 3, incremento: 649,0, tolerância: 324,5. O melhor resultado foi obtido com Lag = 3.

Figuras 15 e 16 – Semivariogramas por indicação (e respectivos resultados numéricos): corte: 1.42, nº Lag: 3 e 2, incremento: 649,0, tolerância: 324,5. O melhor resultado foi obtido com Lag = 2.

Figuras 17 e 18 – Semivariogramas por indicação (e respectivos resultados numéricos): corte: 3.02, nº Lag: 3 e 2, incremento: 649,0, tolerância: 324,5. O melhor resultado foi obtido com Lag = 2.

3.3 Ajuste ou Modelagem do Semivariograma

O gráfico do semivariograma experimental, $\oint(h)$, é formado por uma série de valores, conforme ilustram as Figuras 8, 9, 10, 13, 14, 15, 16, 17 e 18, sobre os quais objetiva-se ajustar uma função (modelo). É importante que o semivariograma experimental possua variações semelhantes ao de um modelo teórico (esférico, exponencial, gaussiano, potência) a ser ajustado. Isto garante que o ajuste seja mais

representativo, ou seja, que o modelo ajustado represente a tendência de $\oint(h)$ em relação a *h*. Deste modo, as estimativas obtidas a partir da krigeagem serão mais exatas e, portanto mais confiáveis.

Uma vez gerado o semivariograma omnidirecional o passo seguinte é o ajuste ou modelagem do mesmo.

Figura 19 – Análise >> Geoestatística >> Ajuste de semivariograma >> semivariograma por indicação.

Figuras 20 e 21 – Modelos de ajuste esférico e exponencial para o semivariograma de corte = -1.24 e lag = 3.

Foram gerados quatro modelos de ajuste (*esférico*, *exponencial*, *potência* e *gaussiano*) do último semivariograma produzido (de corte = -1.24 e lag = 3; Figura 14). Ao se comparar os modelos, o que melhor representou os dados foi o *exponencial*, cujos resultados (gráfico e parâmetros do modelo) são mostrados na Figura 21. O modelo *esférico* produziu resultados muito semelhantes. Já os modelos *potência* e *gaussiano* não foram capazes de representar o semivariograma (Figuras 22 e 23).

Figuras 22 e 23 – Modelos de ajuste *potência* e *gaussiano* para o semivariograma de corte = -1.24 e lag = 3.

O mesmo procedimento foi repetido para os valores de corte 1.42 e 3.02 (lag = 2 para ambos). Os quatro modelos de ajuste gerados para cada um dos casos são mostrados nas Figuras 24, 25, 26, 27, 28, 29, 30 e 31. A comparação dos resultados de cada grupo de modelos indicou que o modelo de ajuste que melhor representou os dados para o corte = 1,42 foi o *exponencial*, cujos resultados (gráfico e parâmetros do modelo) são mostrados na Figura 25; para o corte = 3.02, o modelo *gaussiano* foi o mais representativo de seu semivariograma (Figura 31).

Figuras 24, 25, 26 e 27 – Modelos de ajuste *esférico, exponencial, potência* e *gaussiano* para o semivariograma de corte = 1.42 e lag = 2.

Figuras 28, 29, 30 e 31 – Modelos de ajuste esférico, exponencial, potência e gaussiano para o semivariograma de corte = 3.02 e lag = 2.

3.4 Validação do Modelo de Ajuste do Semivariograma

Uma vez realizado o procedimento de ajuste do semivariograma, os parâmetros do modelo serão utilizados em sua validação. Estes dados são coletados no *Relatório de Dados*, e então inseridos nos respectivos campos da interface de *Parâmetros Estruturais*.

Figuras 32, 33 e 34 – Parâmetros dos modelos de ajuste para cada semivariograma produzido.

A análise do semivariograma compreende o levantamento do semivariograma experimental e posteriormente o ajuste a uma família de modelos teóricos. Em toda esta seqüência, existe sempre um certo grau de incerteza sobre os parâmetros ajustados aos

modelos. Esta incerteza é o *erro da estimativa*, o qual pode ser obtido através do procedimento chamado *validação do modelo*, processo de validação envolve a reestimação dos valores conhecidos através dos parâmetros ajustados ao modelo do semivariograma.

โดเ		
Análise Executar Ferramentas Ajuda		📕 Parâmetros Estruturais 📃 🗔 🔯
LEGAL Suporte à Decisão (AHP) Estatística Espacial		Parâmetros Número de Estruturas: ① 1 ① 2 ① 3
Geoestatística Análise Exploratória Lineamentos Geração de Semivariograma		Efeito Pepita: 0.053
Ajuste de Semivariograma Validação do Modelo de Ajuste Krineanem	🔄 Validação do Modelo 📃 🗆 🔀	Tipo: Exponencial 🔽
Krigeagem por Indicação	PI Ativo Nome: Cotas_Res Verificar Modelo)	Alcance Máx.: 5367.76 Alcance Mín.: 5367.76
	Parâmetros de Interpolação	Segunda Estrutura Tipo: Esférico
	Numero de Pontos no Elipsoide de Busca Mínimo: 4 Máximo: 16 Elipsófida de Busca (Paira Orienta Fia)	Contribuição: Ângulo Anis.:
	R.Min.: 124975, R.Máx.: 124975, Ångulo: 0	Terceira Estrutura
	Resultados Diagrama Espacial do Erro	Tipo: Esférico 🔽 Contribuição: Ângulo Anis.:
	Diagrama Espacial do Erro Histograma do Erro Exet Estatísticas do Erro Diagrama Observado x Estimado Numérico	Alcance Máx.: Alcance Mín.: Executar Fechar Ajuda

Figura 35 – Análise >> Geoestatística >> Validação de Modelo de Ajuste >> Parâmetros Estruturais.

Antes de executar a krigeagem é recomendável verificar os resultados da validação. Problemas óbvios podem ser identificados com os parâmetros de entrada (por exemplo, a especificação do semivariograma) ou com os dados (*outliers,* por exemplo).

O módulo de validação desenvolvido no Spring utiliza a subrotina "kt3d" da GSLIB (DEUTSCH e JOURNEL, 1992) e fornece as saídas: diagrama espacial do erro, histograma do erro, estatísticas do erro, diagrama dos valores observados x estimados, e os resultados numéricos.

Os Parâmetros de Interpolação Mínimo e Máximo referem-se ao Número de Pontos no Ellipsóde de Busca. São preenchidos com valores default (4 e 16, respectivamente). São definidos os raios e a orientação do Elipsóide de Busca. Os campos *R.min*, *R.max* e Ângulo são inicializados, para um caso isotrópico, com seguintes valores default: *R.min* e *R.max* equivalem, em metros, à diagonal do retângulo envolvente do Projeto e o Ângulo possui um valor qualquer, por exemplo igual a zero. Evidentemente que se a anisotropia faz-se presente, esses parâmetros devem ser ajustados e escolhidos de acordo (DEUTSCH e JOURNEL, 1992).

14

\overline Relatório de Dados						_ 🗆 🛛
	Inf	olayer: Cot	as_Res			~
7 = Number of Variables						
X Localization						
Y Localization						=
Z Localization (not used)						-
Observed						
Estimated						
Variance Estimation						
Error = Estimated - Observed						
676327.688 7173197.500	0.000	4.360	3.696	0.079	-0.664	
675457.688 7174943.000	0.000	2.590	2.171	0.090	-0.419	
674330.875 7175706.500	0.000	2.930	2.532	0.069	-0.398	
674063.500 7176201.000	0.000	2.970	3.060	0.067	0.090	
673624.438 7177295.000	0.000	0.920	-0.803	0.073	-1.723	
676863.500 7171123.000	0.000	2.400	0.866	0.162	-1.534	
676138.500 7173214.500	0.000	3.210	3.334	0.074	0.124	
676121.313 7173201.000	0.000	3.440	3.156	0.075	-0.284	
675856.750 7173190.000	0.000	2.440	1.858	0.095	-0.582	
675625.375 7173056.000	0.000	0.280	0.719	0.100	0.439	
675361.188 7172949.500	0.000	-2.470	0.328	0.104	2.798	
675123.063 7172801.000	0.000	-1.180	-0.529	0.134	0.651	
675135.188 7174710.500	0.000	2.090	2.128	0.082	0.038	
675117.375 7174696.000	0.000	2.020	2.169	0.082	0.149	✓
131300 (05 3131(01 000		0.070		0.110	0.470	
		Salvar				
Apagar		Fechar]	A	juda	

Figuras 36, 37, 38, 39 e 40 – resultados obtidos na *validação do modelo de ajuste* do semivariograma (corte=-1.24, lag=3): *Diagrama Espacial do Erro*: os símbolos tipo cruz na Figura 36 indicam a localização geográfica das amostras e a magnitude do erro (para os símbolos pequenos o erro é menor e vice-versa); *Estatísticas do Erro, Histograma do Erro, Diagrama Observado X Estimado, Numérico (Relatório de Erros).*

3.5 Krigeagem por Indicação

A etapa final do processo geoestatístico é a inferência dos valores nos pontos da grade não amostrados, utilizando o estimador de krigeagem por indicação.

O módulo de *Krigeagem por Indicação* implementado no SPRING baseia-se na subrotina da GSLIB (DEUTSCH e JOURNEL, 1992). Este módulo possibilita a espacialização, segundo uma grade regular, de atributos espaciais de natureza contínua e categórica. Neste caso os dados utilizados referem-se a fenômenos contínuos. Além disso, é gerada uma representação de grade regular, com valores de desvio padrão, representativa das incertezas associadas às estimativas do atributo.

Figura 41 – Análise >> Geoestatística >> Krigeagem por Indicação >> Modelos Probabilidades (Parâmetros Estruturais)

🔄 Parâmetros Estruturais 📃 🗆 🔀	🗖 Parâmetros Estruturais 📃 🗆 🔀	🖉 Parâmetros Estruturais 📃 🗆 🔀
Parâmetros Corte: 1.240000 1.420000 3.020000	Parâmetros Corte: -1.240000 1,420000 3.020000	Parâmetros Corte: -1.240000 1.420000 3.020000
Número de Estruturas: 1 2 3 Efeito Pepita: 0.05300	Número de Estruturas: 1 2 3 Efeito Pepita: 0.007	Número de Estruturas: 1 2 3 Efeito Pepita: 0.125
Primeira Estrutura	Primeira Estrutura	- Primeira Estrutura
Tipo: Exponencial 🗸	Tipo: Exponencial 🗸	Tipo: Gaussiano 🗸
Contribuição: 0.20500 �ngulo Anis.: 0.00000	Contribuição: 0.261 �ngulo Anis.: .000000	Contribuição: 0.065 �ngulo Anis.: .000000
Alcance Máx.: 5367.76 Alcance Mín.: 5367.76	Alcance Máx.: 254,053 Alcance Mín.: 254,053	Alcance Máx.: 923,268 Alcance Mín.: 1923,26
Segunda Estrutura	Segunda Estrutura	Segunda Estrutura
Tipo: Esférico 🗸	Tipo: Esférico 🗸	Tipo: Esférico 🗸
Contribuição: 🔷 ngulo Anis.:	Contribuição: 🔷 ngulo Anis.:	Contribuição: 🔷 ngulo Anis.:
Alcance Máx.: Alcance Mín.:	Alcance Máx.: Alcance Mín.:	Alcance Máx.: Alcance Mín.:
Terceira Estrutura	Terceira Estrutura	Terceira Estrutura
Tipo: Esférico 🗸	Tipo: Esférico 🗸	Tipo: Esférico 🗸
Contribuição: 🔷 ngulo Anis.:	Contribuição: �ngulo Anis.:	Contribuição: 🔷 ngulo Anis.:
Alcance Máx.: Alcance Mín.:	Alcance Máx.: Alcance Mín.:	Alcance Máx.: Alcance Mín.:
Atualizar Suprimir Fechar Ajuda	Atualizar Suprimir Fechar Ajuda	Atualizar Suprimir Fechar Ajuda

Figura 42 – Parâmetros estruturais dos modelos de ajuste dos semivariogramas relativos aos três cortes.

Definição dos Parâmetros Estruturais: foram selecionados cada valor de corte apresentado na lista "*Corte*" e então os demais campos da janela *Parâmetros Estruturais* foram atualizados automaticamente. Definiu-se também um valor de probabilidade global para o valor de corte selecionado. Cada valor de corte precisa ter uma probabilidade global que varie entre 0 e 1 e a soma das probabilidades globais associadas aos valores de corte deve ser igual a 1.

Após a definição dos parâmetros estruturais para os valores de corte considerados, iniciou-se a execução da *krigeagem por indicação*.

Inicialmente, o tipo de krigeagem escolhido foi o "Ordinária". Os campos *Res.X* e *Res.Y* permaneceram preenchidos com valores *default*, segundo as definições para o *Plano de Informação* ativo (optou-se por não alterar estas resoluções).

Os Parâmetros de Número de Pontos na Área de Busca Mínimo e Máximo referem-se aos números mínimo e máximo de pontos no *Elipsóde de Busca*. Foram utilizados, inicialmente, os valores *default* 4 e 16, respectivamente.

Foram definidos também os raios e a orientação do *Elipsóide de Busca*. Os campos *R.min*, *R.max* e Ângulo são inicializados, para um caso isotrópico, com seguintes valores default: *R.min* e *R.max* equivalem, em metros, ao alcance do variograma isotrópico e o Ângulo igual a zero.

As saídas da *Krigeagem por Indicação* são dois *Planos de Informação* com representações em grade regular, uma com valores do atributo (Krig_A) e outra com incertezas da estimação (Krig_A_Inc). Por se tratar de atributos contínuos, foram escolhidas a média (poderia ser a mediana) como *Valor* e intervalos de confiança baseados em desvios padrões (poderia ser quantis) como *Incerteza*.

A grade de krigeagem gerada é apresentada na Figura 43 e representa os valores do atributo estimado através da média. Uma representação numérica da incerteza associada à estas estimativas também foi gerada: PI krig_A_Inc.

A variabilidade espacial é melhor visualizada por meio da Imagem da grade numérica gerada. Desta forma, tem-se uma visão imediata do comportamento espacial da variável (Figura 44). Os níveis de cinza mais escuros correspondem aos valores baixos do atributo estimado, e os mais claros, por sua vez, correspondem a valores altos.

17

	SPRING-5.0.2 [Mancha_Teste][Inundac	ao]	_ 7 🔀
	Arquivo Editar Exibir Imagem Temático M	IT Cadastral Rede Análise Executar Ferramentas Ajuda	
📠 Krigeagem por Indicação 📃 🗔 🔯	🛢 🖬 🚍 🖉 🔛 🗎 + 💠 🔍	🖉 🔍 🔍 🕰 🖙 🐴 📲 = 🔍 = 🔣 🔯 * Auto 🔛 1/ 73729 🛛 Inativa 🔍 🦿	
Entrades	Painel de Controle 🔗 :		+ +
PI Ativo: Cotas_Res Modelos/Probabilidades	Tela Ativa : Principal	1.875 -2.013 -2.165 -1.309 -1.463 -1.463 -1.463 -1.463 -1.463 -1.463 -1.463 -1.463 -1.607 -2.691 -2.691 -1.238 -2.0e-002	3.7e-001 3.6e-0
Parâmetros da Krigeagem	PI Disponíveis PI Selecionados	2130 -1875 -1875 -2185 -1300 -1203 -1432 -1747 -1805 -2891 -2891 -1247 -276-00-00-	3.5e=001.3.7e=5
Variável: Contínua M	Categoria / Plano de Informação		+ +
Tipo Krig : Ordinária w	M () Altimetria O Carl Rin	2,085 -1,620 -2,139 -1,875 -2,205 -8.5+0011,530 -2,531 -3,090 -2,695 -1,268 -2.8+001+2.5+0023.8+001	6.9e-001 9.1e-C
Opcilio: Completa	⊕ I ()Ima_Dtm	2,232 -2,232 -2,066 -1,620 -1,333 -6.3e-001 -1,288 -3,304 -3,162 -1,366 3.0e-002-1.2e-0023.8e-0015.1e-001	2.717 3.271
	⊕ T (V) Manchas ⊕ M (V) Mnt Krig		1.776 1.10
Parametros de Grade	(A) Cotas_Res	2242 -2242 -2222 -2206 -1241 -1246 -664-001 -2234 -1210 306-001 206-002036-001 1224 3227	a4/6 3.40
Retângulo Envolvente	- () Elevicas () INU	2,129 -2,342 -2,302 -2,514 -1,399 -1,114 1,148 9.44-001 2,576 2,533 2,596 3,278 3,281	2.879 2.80 + +
Res. X: 1.000000 Res. Y: 1.000000	(G) krig_A () krig_A_Inc	2,101 -2,101 -2,101 -2,107 -2,551 -2,955 -1.741 ,2,457 2,202 2,693 2,728 3,275 3,294 2,907	3.260 3.25:
Parâmetros de Interpolação			+ +
Número de Pontos na Área de Busca		1351 -1351 -1585 -1570 -1413 -3245 -3109 -846-035-2447 2544 3257 23974 2367 3220	5.262 2.79
Minimo: 4 Máximo: 16		94-00+8.14-00+6.84-00+6.84-001-1.047 -2.546 -2.152 1.462 2.231 3.272 3.471 3.457 3.422 2.835	2.798 2.62
R.Min.: 24995.C R.Máx.: 24995.C Incude: 0.0		5e-00+4.5e-00+5.2e-00+5.2e-00+4.7e-00+-2.1e-001-1.231-3.4e-001 2.0e0 1.529 3533 3.446 3.283 2.470 2.557	2.621 2.59
			+ +
		74-0014.84-0014.84-0014.84-0014.74-0014.84-0011.74-0011.74-0011.7450-3.84-001.3440 2.413 2.430 2.773 2.746	2.729 2.720
Categona Mnt_kng Pi vaores: Kng_A		8q-001-5.2q-001-5.2q-001-6.5q-001-1.154 -0.3q-001-1.9q-002 1.276 -3.2q-002 1.674 2.423 2.428 2.642 2.662	2.672 2.671
Valor: metia		5e-001-7.3e-001-1.079 -1.180 -1.023 -3.8e-0018.2e-003 1.329 6.2e-0018.5e-001 1.686 2.231 2.260 2.587	2.618 2.63
Executar Fechar Ajuda			+ +
		6e-001-1.081 -1.064 -1.051-6.2e-00+3.0e-0016.7e-001 1.287 9.8e-001 1.293 1.724 2.136 2.169 2.189	2.204 2.60
		1,083 -1,089 -1,083 -5.3e-00+8.4e-0013.7e-001 1.684 1.391 1.101 1.334 1.384 1.334 2.103 2.135	2.162 2.18
	📕 🖪 💥 🖬 🖉 🔞	1.073 -1.089 -1.083 -8.34-0011.84-001 4.14-001 1.221 1.477 1.186 1.302 1.437 1.238 1.270 2.096	2.129 2.154
	Amostras Isolnhas	1,073 -1,088 -4.8e-001+1.5e-0014.4e-001 6.4e-001 1.756 1.218 1.235 1.298 1.377 1.193 1.230 2.070	2.106 2.13
	Grade Texto	1.073 -5.0e-00+4.0e-0012.1e-0014.8e-0016.6e-001 1.687 1.255 1.266 1.305 1.366 1.403 1.205 1.240	2.090 2.121
	Imagem		+ +
	L	J □ + Principal / Auxiliar / Tela 2 / Tela 3 / Tela 4	

Figura 43 - Após a definição dos parâmetros estruturais de cada modelo de ajuste, para visualizando da grade de krigeagem gerada, basta executar a krigeagem por indicação e selecionar a opção "Grade" no plano de informação gerado (krig_A).

PI: Cotas_Res

Mr2Ano Estar Extra Extr Extra Extra Extra <		_ 5
Image: Point State Image: P		
Terad dx Cortade Ø X Terad X <td< th=""><th><u> </u></th><th></th></td<>	<u> </u>	
Life Attive: Finninglat Tipo 3,482 4,403 3,400 3,466 3,405 3,406 3,406 3,701 3,222 Coporter 17.90 3,403 3,700 3,700 3,600	+ +	+ + +
I Desconsol Apple Apple <thapple< th=""> <thapple< th=""></thapple<></thapple<>	3 3.223 5.303	6.884 5.928 6.4
Cacoperta Plano de Informação	3 5.286 5.933	6.054 6.480 6.50
■ Concating Concating <td>+ +</td> <td>+ + +</td>	+ +	+ + +
■ ■	5.430 6.466	0.468 0.304 0.31
Image: Series (1) Image: Series (1) Series (2)	6.070 6.505 + +	6.425 3.138 2.01
Importance Importa	1 6.400 6.164	1.697 2.906 1.91
() Mu A (1) mu A	5 8.083 1.695	1088 2695 20
(G) Mag_A_Jac 4 geo 3 geo		+ + +
Importance Importa	1.720 1.941	2.954 1.420 1.45
Houstage Pale Constraint	7 2.781 2.891	1.404 1.419 2.66
	1 1.194 1.247	2.641 2.655 2.38
Up Ages Sale S	3 1.382 3.140	2.355 2.350 2.3
1 1 2 2 4 540 540 540 540 517 540 547 347 342 244 201 4 540 54	1 2.414 2.436	2.439 2.440 2.4
Spin 4. gon 4. gon <td>4 2.761 2.417</td> <td>2.412 2.418 2.4</td>	4 2.761 2.417	2.412 2.418 2.4
Topi 4-842 4-871 4-924 6-704 5-704 6-707 3-707 3-704 3-706 3-707 3-704 3-706 3-707 3-704 3-706	1 2.654 2.811	2.370 2.388 2.4
1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	s 2.013 2.730	2.837 2.928 2.3 + + +
IE IE<	2 4.782 2.688	2.813 2.890 2.8
Amostras Isolinhas	3 4.788 4.897	2.785 2.861 2.9 + + +
	0 4.785 4.874	2.772 2.842 2.8
Grade Texto 460 5.021 8.372 5.208 6.080 4.917 3.093 3.668 3.687 3.677 3.731	1 3.809 4.865	4.931 2.831 2.8
□ TIN □ Imagem	+ +	+ + +

Figura 44 - Grade numérica de representação da incerteza associada às estimativas geradas com a krigeagem por indicação.

Figura 45 – Imagens das grades numéricas da krigeagem por indicação e das incertezas associadas.

A porção extra da imagem que ultrapassa o contorno externo da área de estudo pode ser eliminada através de um recorte de imagens (Figura 47). Isto é realizado através de um programa escrito em LEGAL (*Linguagem Espacial para Geoprocessamento ALgébrico*). Entretanto, é necessário criar um PI de imagem em uma nova categoria de imagem (Figuras 46).

Figura 46 – Geração de PI de imagem da grade de krigeagem por indicação em categoria 'Imagem'.

Figura 46 – Geração de PI de imagem da grade de krigeagem por indicação em categoria 'Imagem'.

O mesmo procedimento foi realizado para gerar a imagem da grade de incerteza, que também foi recortada conforme o limite da área de estudo (Figura 48).

Figura 47 – PI da imagem da krigeagem por indicação recortado conforme o limite da área de estudo.

Figura 48 – PI da imagem da grade de incerteza gerada pela *krigeagem por indicação* recortado conforme o limite da área de estudo.

4 CONCLUSÃO

A *krigeagem por indicação* consiste numa operação não-paramétrica e não considera nenhum tipo de distribuição de probabilidade a priori para a variável aleatória. Ao invés

disso, ela possibilita a construção de uma aproximação discretizada da fdc de Z(u). Os valores de probabilidades discretizados podem ser usados diretamente para se estimar valores característicos da distribuição, tais como: valor médio, variância, moda, quantis e outros.

Por meio deste *Laboratório 2* foi possível obter conhecimentos de análise geoestatística, aplicando-os no *software* SPRING e analisando os seus resultados a partir das imagens, semivariogramas e relatórios gerados.

Referências Bibliográficas

CAMARGO, E. C. G. Desenvolvimento, implementação e teste de procedimentos geoestatísticos (krigeagem) no Sistema de Processamento de Informações Georeferenciadas (SPRING). **Dissertação** (Mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 1997.

DEUTSCH, C. V.; JOURNEL, A. G. **GSLIB Geostatistical Software Library and User's Guide**. Oxford University Press, 1998.

FELGUEIRAS, C. A. *Modelagem Ambiental com Tratamento de Incertezas em SIG: O paradigma Geoestatístico por Indicação.* **Tese** (Doutorado em Computação Aplicada), São José dos Campos, INPE, 1999.