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Abstract

This paper presents three multivariate geostatistical algorithms for incorporating a digital elevation model into the spatial
prediction of rainfall: simple kriging with varying local means; kriging with an external drift; and colocated cokriging. The
techniques are illustrated using annual and monthly rainfall observations measured at 36 climatic stations in a 5000 km2 region
of Portugal. Cross validation is used to compare the prediction performances of the three geostatistical interpolation algorithms
with the straightforward linear regression of rainfall against elevation and three univariate techniques: the Thiessen polygon;
inverse square distance; and ordinary kriging.

Larger prediction errors are obtained for the two algorithms (inverse square distance, Thiessen polygon) that ignore both the
elevation and rainfall records at surrounding stations. The three multivariate geostatistical algorithms outperform other inter-
polators, in particular the linear regression, which stresses the importance of accounting for spatially dependent rainfall
observations in addition to the colocated elevation. Last, ordinary kriging yields more accurate predictions than linear regres-
sion when the correlation between rainfall and elevation is moderate (less than 0.75 in the case study).q 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Measured rainfall data are important to many
problems in hydrologic analysis and designs. For
example the ability of obtaining high resolution esti-
mates of spatial variability in rainfall fields becomes
important for identification of locally intense storms
which could lead to floods and especially to flash
floods. The accurate estimation of the spatial distribu-
tion of rainfall requires a very dense network of
instruments, which entails large installation and
operational costs. Also, vandalism or the failure of

the observer to make the necessary visit to the gage
may result in even lower sampling density. It is thus
necessary to estimate point rainfall at unrecorded
locations from values at surrounding sites.

A number of methods have been proposed for the
interpolation of rainfall data. The simplest approach
consists of assigning to the unsampled location the
record of the closest gage (Thiessen, 1911). This
method amounts at drawing around each gage a poly-
gon of influence with the boundaries at a distance
halfway between gage pairs, hence the name Thiessen
polygon for the technique. Although the Thiessen
polygon method is essentially used for estimation of
areal rainfall (McCuen, 1998), it has also been applied
to the interpolation of point measurements (Creutin
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and Obled, 1982; Tabios and Salas, 1985; Dirks et al.,
1998). In 1972, the US National Weather Service has
developed another method whereby the unknown
rainfall depth is estimated as a weighted average of
surrounding values, the weights being reciprocal to
the square distances from the unsampled location
(Bedient and Huber, 1992, p. 25). Like the Thiessen
polygon method, the inverse square distance tech-
nique does not allow the hydrologist to consider
factors, such as topography, that can affect the catch
at a gage. The isohyetal method (McCuen, 1998,
p. 190) is designed to overcome this deficiency. The
idea is to use the location and catch for each gage, as
well as knowledge of the factors affecting these
catches, to draw lines of equal rainfall depth (isohyets).
The amount of rainfall at the unsampled location is
then estimated by interpolation within the isohyets. A
limitation of the technique is that an extensive gage
network is required to draw isohyets accurately.

Geostatistics, which is based on the theory of
regionalized variables (Journel and Huijbregts,
1978; Goovaerts, 1997, 1999), is increasingly
preferred because it allows one to capitalize on the
spatial correlation between neighboring observations
to predict attribute values at unsampled locations.
Several authors (Tabios and Salas, 1985; Phillips et
al., 1992) have shown that the geostatistical prediction
technique (kriging) provides better estimates of rain-
fall than conventional methods. Recently, Dirks et al.
(1998) found that the results depend on the sampling
density and that, for high-resolution networks (e.g. 13
raingages over a 35 km2 area), the kriging method
does not show significantly greater predictive skill
than simpler techniques, such as the inverse square
distance method. Similar results were found by
Borga and Vizzaccaro (1997) when they compared
kriging and multiquadratic surface fitting for various
gage densities. In fact, besides providing a measure of
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Fig. 1. Location of the study area and positions of the 36 climatic stations.



prediction error (kriging variance), a major advantage
of kriging over simpler methods is that the sparsely
sampled observations of the primary attribute can be
complemented by secondary attributes that are more
densely sampled. For rainfall, secondary information
can take the form of weather-radar observations. A
multivariate extension of kriging, known as cokriging,
has been used for merging raingage and radar-rainfall
data (Creutin et al., 1988; Azimi-Zonooz et al., 1989).
Raspa et al. (1997) used another geostatistical tech-
nique, kriging with an external drift, to combine both
types of information. In this paper, another valuable
and cheaper source of secondary information is
considered: digital elevation model (DEM). Precipi-
tation tends to increase with increasing elevation,
mainly because of the orographic effect of moun-
tainous terrain, which causes the air to be lifted verti-
cally, and the condensation occurs due to adiabatic
cooling. For example Hevesi et al. (1992a,b) reported
a significant 0.75 correlation between average annual
precipitation and elevation recorded at 62 stations in
Nevada and southeastern California. In their paper,
they used a multivariate version of kriging, called
cokriging, to incorporate elevation into the mapping
of rainfall. A more straightforward approach consists
of estimating rainfall at a DEM grid cell through a
regression of rainfall versus elevation (Daly et al.,
1994).

In this paper, annual and monthly rainfall data from
the Algarve region (Portugal) are interpolated using
two types of techniques: (1) methods that use only
rainfall data recorded at 36 stations (the Thiessen
polygon, inverse square distance, and ordinary
kriging); and (2) algorithms that combine rainfall
data with a digital elevation model (linear regression,
simple kriging with varying local means, kriging with
an external drift, colocated ordinary cokriging).
Prediction performances of the different algorithms are
compared using cross validation and are related to the
strength of the correlation between rainfall and elevation,
and the pattern of spatial dependence of rainfall.

2. Case study

The Algarve is the most southern region of Portu-
gal, with an area of approximately 5000 km2. Fig. 1
shows the location of 36 daily read raingage stations
used in this study. The monthly and annual rainfall
depths have been averaged over the period of January
1970–March 1995, and basic sample statistics (mean,
standard deviation, minimum, maximum) are given in
Table 1. The subsequent analysis will be conducted on
these averaged data, hence fluctuations of monthly
and annual precipitations from one year to another
will not be investigated.

P. Goovaerts / Journal of Hydrology 228 (2000) 113–129 115

Table 1
Statistics for the monthly and annual rainfall data (36 observations). The last three columns give the linear correlation coefficient between
rainfall and elevation, and the mean absolute error (MAE) and mean square error (MSE) of prediction of rainfall by linear regression of
elevation

Period Rainfall (mm) Correlation MAE MSE

Mean Std. dev. Min. Max.

Jan 69.9 24.7 37.6 137.0 0.69 13.9 317
Feb 58.0 25.7 27.4 146.6 0.75 12.5 287
Mar 32.7 11.4 17.2 73.9 0.80 5.05 47.4
Apr 42.1 17.3 17.9 105.9 0.74 8.91 135
May 21.0 9.8 7.2 54.6 0.83 4.30 30.1
Jun 8.1 3.7 3.2 16.8 0.83 1.71 4.33
Jul 1.0 0.8 0.0 3.2 0.39 0.66 0.61
Aug 2.0 1.2 0.0 5.3 0.33 0.85 1.21
Sep 12.1 4.1 5.6 22.8 0.75 2.24 7.56
Oct 59.6 16.1 32.2 111.0 0.76 8.38 111
Nov 79.3 22.0 39.4 148.7 0.72 11.1 231
Dec 96.3 33.7 44.4 183.0 0.71 19.9 562
Annual 482.1 159.8 259.5 1005 0.79 76.2 9774



Another source of information is the elevation map
shown in Fig. 2. Each grid cell represents 1 km2 and
its elevation was computed as the average of the
elevations at 4 discrete points within the cell. The
relief is dominated by the two main Algarve’s moun-
tains: the Monchique (left) and the Caldeira˜o (right).
Table 1 indicates that the correlation between rainfall
and elevation ranges from 0.33 to 0.83, hence it seems
worth accounting for this exhaustive secondary infor-
mation into the mapping of rainfall. The control of
elevation on the spatial distribution of rainfall
explains the moderate to strong correlation between
monthly rainfall data, see Table 2. Apart from the two
dry months of July and August the correlation ranges
from 0.50 to 0.97. The correlation coefficients of
Table 2 have been averaged as a function of the
time lag between months, excluding July and August.
Fig. 3 shows that the average correlation between
rainfall measured over two consecutive months�lag�
1� is 0.9 and slightly decreases to 0.8 as the separation
time increases.

3. Interpolation procedures

This section briefly introduces the different esti-
mators used in the case study. Interested readers
should refer to Goovaerts (1997) for a detailed presen-
tation of the different kriging algorithms, and Deutsch
and Journel (1998) for their implementation in the
public-domain Geostatistical Software Library
(Gslib).

3.1. Univariate estimation

Consider first the problem of estimating the rainfall
depthz at an unsampled locationu using only rainfall
data. Let {z�ua�;a � 1;…;n} be the set of rainfall
data measured atn� 36 locationsua .

The most straightforward approach is the Thiessen
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Fig. 2. Digital elevation model.

Table 2
Matrix of linear correlation coefficients between monthly rainfall data (36 observations)

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan 1.00 0.97 0.86 0.85 0.84 0.78 0.23 0.31 0.58 0.88 0.94 0.94
Feb 1.00 0.92 0.91 0.87 0.81 0.22 0.42 0.64 0.92 0.96 0.93
Mar 1.00 0.96 0.89 0.80 0.20 0.47 0.71 0.89 0.89 0.81
Apr 1.00 0.91 0.82 0.20 0.42 0.71 0.91 0.89 0.78
May 1.00 0.88 0.33 0.36 0.75 0.90 0.85 0.78
Jun 1.00 0.38 0.34 0.77 0.84 0.79 0.72
Jul 1.00 20.04 0.26 0.12 0.24 0.34
Aug 1.00 0.46 0.37 0.35 0.31
Sep 1.00 0.75 0.65 0.50
Oct 1.00 0.89 0.81
Nov 1.00 0.91
Dec 1.00

Fig. 3. Average correlation between monthly rainfall data measured
at increasing time intervals: 1–5 months.



polygon method whereby the value of the closest
observation is simply assigned tou:

zp
Pol�u� � z�ua 0 � with uu 2 ua 0 u , uu 2 uau ;a ± a 0:

�1�

Fig. 4 (2nd graph) shows the map of annual rainfall
interpolated at the nodes of a 1× 1 km2 grid corre-
sponding to the resolution of the elevation model. The
map displays the characteristic polygonal zones of
influence around the 36 gages.

To avoid unrealistic patchy maps, the depthzcan be
estimated as a linear combination of several surround-
ing observations, with the weights being inversely
proportional to the square distance between obser-
vations andu:

zp
Inv�u� � 1Xn�u�

a�1

la�u�

Xn�u�
a�1

la�u�z�ua�

with la�u� � 1

uu 2 uau2

�2�

Fig. 4 (3rd graph) shows the map of annual rainfall
produced using the inverse square distance method
andn�u� � 16 surrounding observations.

The basic idea behind the weighting scheme (2) is
that observations that are close to each other on the
ground tend to be more alike than those further apart,
hence observations closer tou should receive a larger
weight. Instead of the Euclidian distance, geostatistics
uses the semivariogram as a measure of dissimilarity
between observations. The experimental semivario-
gram ĝ�h� is computed as half the average squared
difference between the components of data pairs:

ĝ�h� � 1
2N�h�

XN�h�
a�1

�z�ua�2 z�ua 1 h��2; �3�

whereN(h) is the number of pairs of data locations a
vector h apart. The semivariogram is a function of
both the distance and direction, and so it can account
for direction-dependent variability (anisotropic spatial
pattern).

Fig. 5 (top graph) shows the semivariogram of
annual rainfall computed from the 36 data of Fig. 4.
Because of the lack of data only the omnidirectional
semivariogram was computed, and hence the spatial
variability is assumed to be identical in all directions.
Semivariogram values increase with the separation
distance, reflecting our intuitive feeling that two rain-
fall data close to each other on the ground are more
alike, and thus their squared difference is smaller, than
those that are further apart. The semivariogram
reaches a maximum at 25 km before dipping and fluc-
tuating around a sill value. The so-called “hole effect”
typically reflects pseudo-periodic or cyclic phenom-
ena (Journel and Huijbregts, 1978, p. 403). Here, the
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Fig. 4. Annual rainfall maps obtained by interpolation of 36 obser-
vations (top map) using the Thiessen polygon, inverse square
distance, and ordinary kriging.



hole effect relates to the existence of two mountains
40 km apart (recall Fig. 2) which creates two high-
valued areas in the rainfall field.

Kriging is a generalized least-square regression

technique that allows one to account for the spatial
dependence between observations, as revealed by the
semivariogram, into spatial prediction. Most of geos-
tatistics is based on the concept of a random function,
whereby the set of unknown values is regarded as a set
of spatially dependent random variables. Each
measurementz�ua� is thus interpreted as a particular
realization of a random variableZ�ua�. Interested
readers should refer to textbooks such as Isaaks and
Srivastava (1989, pp. 196–236) or Goovaerts (1997,
pp. 59–74) for a detailed presentation of the theory of
random functions. Like the inverse square distance
method, geostatistical interpolation amounts at esti-
mating the unknown rainfall depthzat the unsampled
location u as a linear combination of neighboring
observations:

zp
OK�u� �

Xn�u�
a�1

lOK
a �u�z�ua� with

Xn�u�
a�1

lOK
a �u� � 1: �4�

The ordinary kriging weightslOK
a �u� are determined

such as to minimize the estimation variance,
Var{Zp

OK�u�2 Z�u�} ; while ensuring the unbiased-
ness of the estimator, E{Zp

OK�u�2 Z�u�} � 0: These
weights are obtained by solving a system of linear
equations which is known as “ordinary kriging
system”:

Xn�u�
b�1

lb�u�g �ua 2 ub�2 m�u� � g �ua 2 u� a � 1;…; n�u�

Xn�u�
b�1

lb�u� � 1

8>>>>><>>>>>: �5�

wherem (u) is the Lagrange parameter accounting for
the constraint on the weights. The only information
required by the kriging system (5) are semivariogram
values for different lags, and these are readily derived
once a semivariogram model has been fitted to experi-
mental values. Fig. 5 shows three different types of
permissible models that are combined with a nugget-
effect model for the fitting of the experimental semi-
variogram of annual rainfall:

1. Spherical model with rangea

g�h� � 1:5
h
a

2 0:5
h
a

� �3

if h # a

1 otherwise

8><>: �6�
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Fig. 5. Experimental semivariogram of the annual rainfall with three
different permissible models fitted.



2. Cubic model with rangea

g�h��

7
h
a

� �2

28:75
h
a

� �3

13:5
h
a

� �5

20:75
h
a

� �7

if h # a

1 otherwise

8>>>>>><>>>>>>:
�7�

3. Dampened hole effect model

g�h� � 1:0 2 exp
23h

d

� �
cos

h
a
p

� �
�8�

whered is the distance at which 95% of the hole
effect is dampened out.

The spherical model is the most widely used semi-
variogram model and is characterized by a linear
behavior at the origin. The cubic model (Galli et al.,
1984; Chilès and Delfiner, 1999, p. 84) displays a
parabolic behavior at the origin and is preferred to
the Gaussian model because it avoids numerical
unstability in kriging system (Wackernagel, 1998, p.
120). Although no direct information is available on
the variability of rainfall over very short distances (the
first semivariogram value corresponds to a lag of
5.9 km), ancillary information, such as the more
detailed semivariogram of a correlated attribute like
altitude (Fig. 6), suggests that one can expect a para-
bolic behavior for the first lags. Note that a very regu-

lar behavior near the origin can be combined with a
nugget effect, the latter reflecting measurement errors
that are superimposed on the underlying continuous
phenomenon. The last type of function is more
complex and used to model hole effect (Deutsch and
Journel, 1998, p. 26). The three models have been
fitted using regression and are such that the weighted
sum of squares (WSS) of differences between experi-
mentalĝ�hk� and modelg �hk� semivariogram values
is minimum:

WSS�
XK
k�1

v�hk��ĝ�hk�2 g �hk��2 �9�

The weights were taken asN�hk�=�g �hk��2 in order
to give more importance to the first lags and the ones
computed from more data pairs. The cubic model has
been retained because it yields the smallest WSS
value while being more parsimonious (less parameters
to estimate) than the dampened hole effect model. Fig.
4 (bottom graph) shows the rainfall map produced by
ordinary kriging using the cubic semivariogram
model and the 16 closest observations at each grid
node. Like the inverse square distance method, the
rainfall map is quite crude, which stresses the
importance of accounting for more densely
sampled information, such as the digital elevation
model of Fig. 2.

3.2. Accounting for elevation

Consider now the situation where the rainfall data
{ z�ua�;a � 1;…;n} are supplemented by elevation
data available at all estimation grid nodes and denoted
y(u).

A straightforward approach consists of predicting
the rainfall as a function of the co-located elevation,
e.g. using a linear relation such as:

zp�u� � f � y�u�� � ap
0 1 ap

1y�u� �10�
where the two regression coefficientsap

0;a
p
1 are esti-

mated from the set of collocated rainfall and elevation
data {�z�ua�; y�ua��; a � 1;…;n} : For example, the
relation between annual rainfall and elevation was
modeled as z�u� � 324:1 1 0:922y�u� R2 � 0:62;
leading to the rainfall map shown at the top of Fig.
7. A major shortcoming of this type of regression is
that the rainfall at a particular grid nodeu is derived
only from the elevation atu, regardless of the records
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Fig. 6. Experimental semivariogram of elevation computed from the
DEM of Fig. 2.



at the surrounding raingagesua . Such an approach
amounts at assuming that the residual valuesr�ua� �
z�ua�2 f � y�ua�� are spatially uncorrelated. Spatial
correlation of the residuals or of the rainfall
observations can be taken into account using
the three types of geostatistical algorithms
described below.

Simple kriging with varying local means (SKlm)
amounts at replacing the known stationary mean in
the simple kriging estimate by known varying

means mp
SK�u� derived from the secondary infor-

mation (Goovaerts, 1997, pp. 190–191):

zp
SKlm�u�2 mp

SK�u� �
Xn�u�
a�1

lSK
a �u��z�ua�2 mp

SK�ua��

�11�
If the local means are derived using a relation of type
(10), the SKlm estimate can be rewritten as the sum of
the regression estimatef � y�u�� � mp

SK�u� and the SK
estimate of the residual value atu:

zp
SKlm�u� � f � y�u��1

Xn�u�
a�1

lSK
a �u�r�ua� �12�

where the weightslSK
a �u� are obtained by solving the

simple kriging system:Xn�u�
b�1

lSK
b �u�CR�ua 2 ub� � CR�ua 2 u�

a � 1;…;n�u� (13)

whereCR(h) is the covariance function of the residual
RF R�u� � Z�u�2 m�u�; not that ofZ(u) itself. If the
residuals are uncorrelated,CR�h� � 0;h; hence all
kriging weights in Eq. (12) are zero and the SKlm
estimate is but the value provided by linear regression.
Unlike the ordinary kriging system (5), the SK system
(13) can be expressed in terms of only covariances
because of the lack of constraints on kriging weights
(Goovaerts, 1997, p. 135). However, the common
practice consists of estimating and modeling the
semivariogramgR�h�, then retrieving the covariance
CR�h� asCR�0�2 gR�h�: This conversion from semi-
variogram to covariance values is automatically
performed within most geostatistical softwares,
hence the user typically provides only the semivario-
gram model. For example Fig. 8 shows the semi-
variogram of residuals for annual rainfall with the
model fitted. This model was used to generate the
rainfall map in Fig. 7 (2nd graph). The impact of
elevation on the rainfall map is less pronounced
than for the map generated using linear regression
that was but a rescaling of the elevation model (Fig.
7, top graph).

Like the SKlm approach, kriging with an external
drift (KED) uses the secondary information to derive
the local mean of the primary attributez, then
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Fig. 7. Annual rainfall maps obtained by interpolation of 36 obser-
vations accounting for the digital elevation model of Fig. 2. Four
algorithms are considered: linear regression, simple kriging with
varying local means, kriging with an external drift and colocated
ordinary cokriging.



performs simple kriging on the corresponding resi-
duals:

zp
KED�u�2 mp

KED�u� �
Xn�u�
a�1

lSK
a �u��z�ua�2 mp

KED�ua��

�14�

where mp
KED�u� � ap

0�u�1 ap
1�u�y�u�: Estimates (11)

and (15) differ by the definition of the local mean or
trend. The trend coefficientsap

0 and ap
1 are derived

once and independently of the kriging system in the
SKlm approach, whereas in the KED approach the
regression coefficientsap

0�u� andap
1�u� are implicitly

estimated through the kriging system within each
search neighborhood. In other words, the relation
between elevation and rainfall is assessed locally,
which allows one to account for changes in correlation
across the study area. The coefficientsap

0�u� andap
1�u�

can be computed and mapped for interpretation
purposes (e.g. see Goovaerts, 1997, p. 201) but they
are not required for estimation. Indeed, the usual and
equivalent expression for the KED estimate
(Wackernagel, 1998, pp. 199–201; Goovaerts, 1997,
pp. 194–198) is:

zp
KED�u� �

Xn�u�
a�1

lKED
a �u�z�ua� �15�

The kriging weightslKED
a �u� are the solution

of the following system of �n�u�1 2� linear

equations:

Xn�u�
b�1

lKED
b �u�gR�ua 2 ub�1 mKED

0 �u�

1mKED
1 �u�y�ua� � gR�ua 2 u� a � 1;…;n�u�Xn�u�

b�1

lKED
b �u� � 1

Xn�u�
b�1

lKED
b �u�y�ub� � y�u�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: �16�

wheremKED
0 �u� and mKED

1 �u� are 2 Lagrange para-
meters accounting for the constraints on the
weights. Note that elevation datay(ua ) and y(u)
intervene in the kriging system but they are not
directly included in the estimate (15). Fig. 7 (third
graph) shows the map of KED estimates of annual
rainfall, which looks very similar to the SKlm
map.

Another approach for incorporating secondary
information is cokriging, a multivariate extension of
kriging (Goovaerts, 1997, pp. 203–248). When the
secondary variable is known everywhere and varies
smoothly across the study area (e.g. elevation) there is
little loss in retaining in the cokriging system only the
secondary datum co-located with the locationu being
estimated (Xu et al., 1992; Goovaerts, 1998). Indeed
the co-located elevationy(u) tends to screen the influ-
ence of further away elevation data. Moreover, using
multiple secondary data can lead to unstable cokriging
systems because the correlation between close eleva-
tion data is much greater than the correlation between
distant rainfall data (Goovaerts, 1997, p. 235). The
“co-located” cokriging estimate is then:

zp
CK�u� �

Xn�u�
a�1

lCK
a �u�z�ua�1 lCK�u�� y�u�2 mY 1 mZ�;

�17�
wheremZ andmY are the global means of the rainfall
and elevation data, see Table 1. The second term of
Eq. (17) corresponds to a rescaling of the secondary
variable (elevation) to the mean of the primary vari-
able (rainfall) to ensure unbiased estimation. The
main difference between cokriging and the two
previous geostatistical algorithms lies in how the
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Fig. 8. Experimental residual semivariogram of annual rainfall with
the model fitted.



elevation value is handled. Whereas that datum
directly influences the cokriging estimate, in the
SKlm and KED approaches elevation provides infor-
mation only about the primary trend at locationu. The
cokriging weights are solutions of the following

system of�n�u�1 2� linear equations:

Xn�u�
b�1

lCK
b �u�gZZ�ua 2 ub�1 lCK�u�gZY�ua 2 u�

1mCK�u� � gZZ�ua 2 u� a � 1;…; n�u�Xn�u�
b�1

lCK
b �u�gYZ�u 2 ub�1 lCK�u�gYY�0�

1mCK�u� � gZY�0�Xn�u�
b�1

lCK
b �u�1 lCK�u� � 1

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
wheregZY�ua 2 u� is the cross-semivariogram value
between primary and secondary variables at locations
ua andu respectively. Fig. 9 shows the experimental
semivariograms of elevation and annual rainfall, and
their cross semivariogram computed as:

ĝZY�h� � 1
2N�h�

XN�h�
a�1

�z�ua�2 z�ua 1 h��

� � y�ua�2 y�ua 1 h�� �18�
Note that the semivariogram of elevation has been
computed from only the 36 climatic stations, not the
entire DEM as in Fig. 6, to avoid possible inconsis-
tencies in the subsequent modeling of direct and cross
semivariograms (Goovaerts, 1997, p. 52; Wackerna-
gel, 1998, p. 159) A linear model of coregionalization
was fitted using an iterative procedure developed by
Goulard (1989). The three semivariograms are
modeled as a linear combination of the same set of
basic models (here a nugget effect and a cubic model
with range 29.18 km) so that the WSS criterion is
minimum under the constraints of positive semi-defi-
niteness of the matrix of sills, see Goovaerts (1999)
for more details. Fig. 7 (bottom graph) shows the map
of cokriging estimates of annual rainfall. Unlike the
three previous techniques, the details of the elevation
map do not appear in the rainfall map which actually
shows more similarities with the ordinary kriging map
at the bottom of Fig. 4.

4. Evaluation of the different interpolators

The performances of the seven interpolators were
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Fig. 9. Experimental semivariograms of annual rainfall and eleva-
tion and their cross semivariogram, with the linear model of core-
gionalization fitted.



assessed and compared using cross validation (Isaaks
and Srivastava, 1989, pp. 351–368). The idea consists
of removing temporarily one rainfall observation at a
time from the data set and “re-estimate” this value
from remaining data using the alternative algorithms.
The comparison criterion is the mean square error
(MSE) of prediction which measures the average
square difference between the true rainfallz(ua) and
its estimatezp(ua ):

MSE� 1
n

Xn
a�1

�z�ua�2 zp�ua��2 �19�

wheren� 36 for the Algarve data set. The value of
this criterion should be close to zero if the algorithm is
accurate. For linear regression, the MSE was simply
computed as the average square residual value for the
linear model fitted using all 36 observations, which
means that the prediction error would tend to be
underestimated for this method. Although the various
kriging interpolators provide an estimate of the error
variance, the latter has not been retained as a perfor-
mance criterion because in practice it usually provides
little information on the reliability of the kriging esti-
mate, as reminded by several authors (Journel, 1993;
Armstrong, 1994).

The same interpolators as described in previous
sections and illustrated for annual rainfall have been
applied to monthly rainfall data. Fig. 10 shows, for
example, the semivariograms of raw rainfall data and
residuals for four of the wettest months (recall Table
1). Because of the control of the relief on the spatial
distribution of precipitations, the semivariograms
have similar shape although the nugget effect and
range of the cubic model fluctuate from one month
to another. For the same four months, Fig. 11 shows
the maps of ordinary kriging estimates; to facilitate
the comparison of grayscale maps, six equally prob-
able classes of values have been created for each
month. Despite the similarity of their semivariograms,
monthly rainfall maps show slightly different patterns:
smaller precipitations are recorded along the West
Coast in December and February whereas high preci-
pitation cells move towards the West in April and
October.

Fig. 12 shows the mean square errors of prediction
produced by each of the seven interpolation algo-
rithms for the monthly (Jan–Dec) and annual (Ann)

rainfall. Results are expressed as proportions of the
prediction error of the linear regression approach,
hence absolute values are easily retrieved by multi-
plying these percentages by the values of Table 1 (last
column). The conclusions are as follows:

1. Larger predictions errors are obtained for the three
algorithms that ignore elevation, with the worst
results produced by Thiessen polygon. It is note-
worthy that for several months, and on average
over the year, ordinary kriging yields smaller
prediction errors than linear regression of rainfall
against elevation.

2. Except for the period from June to September
which is characterized by low rainfall amounts
(Table 1), multivariate geostatistical algorithms
perform better than linear regression which disre-
gards the information provided by surrounding
climatic stations.

3. Among geostatistical algorithms that account for
elevation, simple kriging with varying local
means and kriging with an external drift yield
slightly better results than the more complex ordin-
ary cokriging.

To identify the factors that might be responsible for
these relative prediction performances, ratios of MSE
values have been plotted against parameters, such as
the relative nugget effect of the rainfall semivario-
gram, the relative nugget effect of the residual semi-
variogram, and the correlation coefficient between
rainfall and elevation. The first scattergram (Fig. 13,
left top graph) shows that the benefit of using ordinary
kriging instead of the inverse square distance method
(i.e. a larger MSE ratio Inv/OK) decreases as the
spatial dependence between observations weakens,
which is indicated by a larger relative nugget effect
for the rainfall semivariogram. Similarly, the benefit
of using a geostatistical approach (SKlm) instead of
linear regression to account for elevation decreases as
the spatial dependence between residual data weakens
(larger nugget effect for the residual semivariogram),
see Fig. 13 (right top graph).

The two middle graphs of Fig. 13 show the impact
of the strength of the correlation between elevation
and rainfall on the relative performances of ordinary
kriging versus cokriging (left graph) and ordinary
kriging versus linear regression (right graph). Note
that the smallest correlation coefficients observed
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Fig. 10. Experimental semivariograms of monthly rainfall before and after substraction of the local means provided by linear regression of
rainfall against elevation at the 36 climatic stations, with the model fitted using weighted least-square regression.



during the summer have not been taken into account
because they also correspond to negligible amounts of
rainfall, see Table 1. The gain of ordinary cokriging
versus kriging increases as elevation brings more
information on rainfall (higher correlation coeffi-
cient). The other graph indicates that ordinary kriging

performs better than linear regression (ratio smaller
than 1) when the correlation between elevation and
rainfall is moderate�r , 0:75� and so the information
from surrounding stations is worth integration. For
larger correlation coefficients, the elevation at the esti-
mation grid node screens the influence of rainfall data
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Fig. 11. Monthly rainfall maps obtained by ordinary kriging of 36 observations using the semivariogram models of Fig. 10 (left column).



at surrounding sites and so spatial information is less
valuable.

Goovaerts (1997, pp. 217–221), showed that the
contribution of the secondary information to the
cokriging estimate depends not only on the correlation
between primary and secondary variables, but also on
their patterns of spatial continuity. As the relative
nugget effect of the primary semivariogram increases,
the increasingly noisy primary data carry less infor-
mation and the secondary data have larger weight, in
particular when the cross semivariogram and the
semivariogram of the secondary variable have a
small relative nugget effect. As the semivariogram
of elevation has typically a small nugget effect (recall
Fig. 6), one can expect similar results, as confirmed by
the bottom graph of Fig. 13. The gain of ordinary
cokriging versus kriging increases as the spatial
dependence between observations weakens, which is
indicated by a larger relative nugget effect for the
rainfall semivariogram (as for the middle graphs
July and August results are not included).

5. Conclusions

Our results confirm previous findings (e.g. Creutin
and Obled, 1982) that for low-density networks of
raingages geostatistical interpolation outperforms
techniques, such as the inverse square distance or
Thiessen polygon, that ignore the pattern of spatial
dependence which is usually observed for rainfall
data: the mean square error of kriging prediction is
up to half the error produced using inverse square
distance. Prediction can be further improved if corre-
lated secondary information, such as a digital eleva-
tion model, is taken into account. This paper has
reviewed different ways to incorporate such exhaus-
tive secondary information, and cross validation has
shown that prediction performances can vary greatly
among algorithms.

The most straightforward approach consists of
deriving the rainfall value directly from the colocated
elevation through a (non)linear regression. By so
doing, one ignores however the information provided
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Fig. 12. Mean square error of prediction produced by each of the seven interpolation algorithms for monthly (Jan–Dec) and annual (Ann)
rainfall. Results are expressed as proportions of the prediction error of the linear regression approach.
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Fig. 13. Scattergrams between the ratio of mean square errors of prediction for different interpolation techniques and parameters, such as the
relative nugget effect of the rainfall semivariogram, the relative nugget effect of the residual semivariogram, and the correlation coefficient
between rainfall and elevation.



by surrounding climatic stations which is critical
when the correlation between the two variables is
not too strong and when the residuals are spatially
correlated. In this case study, ordinary kriging which
ignores elevation is in fact better than linear regres-
sion when the correlation is smaller than 0.75! An
easy way to account for both elevation and spatial
correlation is to interpolate the regression residuals
using geostatistics, that is to use simple kriging with
varying local means (SKlm). For most months SKlm
provides the smallest mean square error of prediction
and so performs better that the more sophisticated
kriging with an external drift (KED) that evaluates
the correlation between elevation and rainfall within
each search neighborhood. The last technique is cokri-
ging that interpolates the rainfall as a linear combina-
tion of surrounding rainfall observations and the
colocated elevation. This approach is the most
demanding because three semivariograms must be
inferred and jointly modeled, a task that is however
alleviated by the recent development of automatic
fitting procedures. Cokriged maps show less details
than the SKlm and KED maps that are greatly influ-
enced by the pattern of the DEM. In this case study,
the additional complexity of cokriging does not pay
off in that the prediction errors are not smaller than the
ones provided by SKlm and KED.

Further research should investigate whether other
environmental descriptors, such as the distance to the
sea or the slope orientation, allow one to explain a
larger proportion of the spatial variability displayed
by rainfall. Whereas cokriging and kriging with multi-
ple external drifts may become very cumbersome to
apply, SKlm provides an easy way to incorporate
several secondary variables and, for this data set, it
yields the best prediction. In this case study, account-
ing for elevation using multivariate geostatistical
algorithms (SKlm, KED and OCK) generally reduces
the OK prediction error as long as the correlation
coefficient is larger than 0.75. A similar correlation
threshold has been reported by Asli and Marcotte
(1995) who further concluded that the introduction
of secondary information in estimation seems worthy
only for correlations above 0.4. The benefit of multi-
variate techniques can therefore become marginal if
the correlation between rainfall and elevation (or
other environmental descriptors) is too small, as it
might be the case for rainfall accumulations during

shorter time steps. Besides the correlation between
elevation and rainfall it is also important to look at
their patterns of spatial continuity. Elevation data that
are moderately correlated with rainfall (i.e. a correla-
tion between 0.4 and 0.7) but exhibit a much smaller
relative nugget effect than the rainfall semivariogram
may still improve prediction using cokriging, in parti-
cular if the nugget effect of the cross semivariogram
between rainfall and elevation is small.
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