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The set of values of a territory’s suitability constitutes aAbstract
spatial distribution model. The model is constructed by ana-One of the objectives of forestry planning is to set out criteria
lyzing the presence/absence of a forest type in its current areafor a territory’s reforestation oriented towards the reduction of
of distribution, and the values of the potentially influentialfragmentation and the conservation of biodiversity. This
environmental variables excluding anthropogenic factors.objective may be attained by establishing for each forest type

With one such model for each type of forest, a potentialappropriate suitability models, which express the suitability
area of distribution can be delimited, where the environmentalof each point of the territory for the growth of each forest
factors present suitable values for the implantation and growthformation. The suitability models may be constructed by
of the forest. The present area of distribution is usually signifi-utilizing spatial analysis methods, which relate the current
cantly less than the potential area, because the forest has beenpresence/absence of forest type to a set of environmental
artificially cleared from zones where it was present in the past:variables. On the basis of maps of diverse environmental
the distribution models allow these areas to be delimited invariables, we elaborated suitability models for the forests
order to appropriately orient future reforestation plans.present in the study area using logistic regression and weights-

Once the potential distribution models have been defined,of-evidence techniques integrated into a geographic
each place in the territory will be represented by a set of suit-information system. Combining the suitability models for each
ability values, one for each type of forest. From this set of val-forest type using simple comparison operators allowed us to
ues, one determines which type of forest presents the greatestconstruct a potential vegetation map to use as an objective
suitability value at each point and constructs a potential vegeta-orientation to the forestry potential of the territory.
tion model.

The above process is carried out under the hypothesis thatIntroduction
the present forest distribution is a sufficient sample of theForestry planning in a territory is an attempt to resolve a set of
potential distribution. If there is only a remnant of some forestproblems, including forest conservation and restoration. In a
type, it will be impossible to construct a sufficient sample or tozone such as the Iberian Peninsula, where forests have been
generate an adequate model.steadily eliminated over centuries, two of the major aims of

In the following, we will describe the methods used inany forestry zoning plan are to reduce fragmentation of the for-
elaborating potential vegetation models for the Liébana basinest and to conserve its biodiversity.
in the Cantabria Autonomous Community (northern Spain).To achieve these goals requires basic territorial informa-

tion of good quality (Lund and Iremonger, 2000). This informa-
tion includes the present distribution of vegetation, and a set of Materials and Methods
climatic, lithological, etc., data which together constitute a

Study Areaspatial information system. The information stored in this sys-
The Cantabria Autonomous Community is located in the northtem will allow one to develop a variety of models, including
of Spain, and is 5330 km2 in area (Figure 1). The territory pre-those which permit decisions to be taken on an objective and
sents sharp topographical and phytogeographical contrasts. Tomethodologically robust basis.
elaborate the models, it was divided into homogeneous zonesThe information that is put into the information system has
which coincide with the main river catchment areas. The zoneto allow one to determine the suitability of each point of the
presented here is the catchment area known as Liébana, situ-territory for the growth of each type of vegetation. This suitabil-
ated in the west of Cantabria. It is 629 km2 in area, 11.8 percentity is expressed on a scale between the values zero and unity
of the total area of Cantabria. Henceforth, all data mentioned(incompatible/ideal). The value of the suitability depends on a
will refer to this catchment area.set of physical and biological factors that favor or limit the

implantation of each forest type. With a knowledge of the suit-
Database Collectionability of the territory, it is then possible to make decisions on
The models were elaborated from the following maps:which reforestation actions to take on an objective basis and

with rational criteria. ● Vegetation map, from the Earth Sciences Department of the
Universidad de Cantabria, which covers 180 classes of vegeta-
tion, of which 18 are forest;
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The above variables were chosen because they are potential
predictors of the vegetation distribution in a mountainous
zone, and because they had already been completely mapped
or could be estimated by diverse means. On the other hand,
other factors (such as rainfall and temperature) could not be
used due to the lack of complete and reliable data, even though
their potential influence is important.

All the digital terrain models were generated with a 50-m
cell size.

Data Analysis
The data were analyzed following a mixed procedure con-
sisting of two quite distinct methods: logistic regression and
weights of evidence. Logistic regression was used to create a
preliminary model using the quantitative environmental fac-
tors as independent variables. A weights-of-evidence method
was then used to adjust the results of the preliminary model to
the associations observed with the lithological classes, the only
nominal (non-quantitative) factor included in the analysis.

The process therefore was sequential: initially a logisticFigure 1. Geographical location of the study zone (Canta-
model was established and then the estimated probabilitiesbria, northern Spain)
were modified by means of the weights-of-evidence model. A
flow diagram of the process is presented in Figure 3, and the
methodological basis of the two methods will be explained in
the following two sections.● Lithological map, from the Instituto Tecnológico y Geominero

of Spain, with 78 lithological classes; and
Logistic Multiple Regression (LMR)● Topographical map, from the Army Geographic Service of
Logistic multiple regression has been used as a forecastingSpain, with a contour interval of 20 meters.
method to generate probability models in a variety of fields.
Examples are epidemiology (Thomson et al., 1999), geological

The Dependent Variables: The Forest Maps prospecting (Agterberg, 1992), silviculture (Wilson et al.,
The vegetation map was digitized and integrated into a geo- 1996), and wildlife conservation (Mladenoff et al., 1999).
graphic information system. From that, six maps were con- The method fits our purposes well because the dependent
structed representing the presence/absence of each of the variable is dichotomous (presence/absence) and the model
forests existing in the zone: admits non-Gaussian independent variables. Also, the values

(1) Bf: oligotrophic beech wood (Fagus sylvatica, Blechno spi- of the logistic function vary smoothly from 0 to 1, so that it is
canti-Fageto S., 89.6 km2); well-suited to generating a probability model (Jongman et al.,

(2) Cf: eutrophic beech wood (Fagus sylvatica, Carici sylvaticae- 1995).
Fageto S., 11.9 km2); The introduction of a spatial component into the LMR to

(3) Cq: holm oak wood (Quercus rotundifolia, Cephalanthero lon- generate cartographic models is recent, and is usually inte-gifoliae-Querceto rotundifoliae S., 53.2 km2);
grated into geographic information systems as a development(4) Liqpe: arid durmast oak wood (Quercus petraea, Linario trior-
tool. Guisan et al. (1998) use LMR in the ArcInfo GIS (ESRI Inc.)nithophorae-Querceto petraeae S., 44.6 km2);
to generate a model of the distribution of a plant species, Carex(5) Liqpy: moist durmast oak wood (Quercus petraea, Luzulo hen-
curvula, in the Swiss Alps. A similar study, applied to aquaticriquesii-Querceto petraeae S., 59.5 km2); and

(6) Mf: eutrophic durmast oak wood (Quercus petraea, Mercuri- vegetation, was performed by van de Rijt et al. (1996) using the
alidi perennis-Fraxineto excelsioris S., 12.6 km2). GRASS GIS (U.S. Army Construction Engineering Research

Laboratory).The forests were defined according to the criteria given in
The logistic model for the dependence of the probability ofDı́az-Gonzalez and Fernández-Prieto (1994). The maps with

presence, P(i), on the value of n explanatory variables isthe present distribution of each forest type are shown in Figure
2. P(i) � 1/[1 � exp �(b(0) � b(1) � x(1) � b(2) � x(2) (1)

The Independent Variables: Construction of the Digital Terrain Models (DTM) � … � b(n) � x(n))]
The digital terrain models that represent the independent vari-

where P(i) is the probability of presence of the forest type;ables were constructed from the topographical map:
x(1),..., x(n) represent the values of the environmental vari-

● altitude: the digital elevation model (DEM) was constructed using ables; and b(1), ..., b(n) represent the corresponding coeffi-Delaunay’s triangulation algorithm (Peucker et al., 1978), fol-
cients. The statistical forecast of the spatial distribution of alowed by a transform to a regular grid structure with a 50 m
species is based on the hypothesis that its present area of distri-cell size.
bution is representative of its response to the environmental● slope: the digital slope model (DSM) was constructed from the

DEM by applying Sobel’s operator (Horn, 1981). factors.
● potential insolation: the models were constructed by simulation The results for each point of the terrain vary between the

from the DEM, analyzing topographical shading (Fernández- extreme values zero (incompatible) and unity (ideal).
Cepedal and Felicı́simo, 1987) as a function of the sun’s trajec- The values of the logistic regression coefficients were cal-
tory for standard date periods (Heywood, 1964). The result is culated from stratified random samples over the areas of pres-
an estimate of the amount of time that each point of the terrain ence and absence of each type of forest. To avoid biases, thereceives direct solar radiation, with a 20-minute temporal reso-

samples were balanced to have the same number of positivelution and 50-m spatial resolution
and negative cases (Narumalani et al., 1997).● distance from the sea: a model elaborated as an estimator of the

The logistic equation was applied to the whole territory tooceanic-continental gradient in the territory, given that other
climatic data were not available (see below). generate the preliminary probability models.
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Figure 2. Present distribution of the six forest types in the study zone according to the vegetation map elaborated
by the Universidad de Cantabria. (a) Bf, oligotrofic beech wood (Fagus sylvatica). (b) Cf, eutrophic beech wood
(Fagus sylvatica). (c) Cq, holm oak wood (Quercus rotundifolia). (d) Liqpe, arid durmast oak wood (Q. petraea). (e)
Liqpy, moist durmast oak wood (Q. petraea). (f) Mf, eutrophic durmast oak wood (Q. petraea).

The Weights-of-Evidence Method (WE) ence and absence, respectively, in the zone, using the 50- by
50-m cell as sampling unit. The totals f�i represent the area ofMethods based on weights of evidence have a relatively long

history. “Les profils écologiques” were defined in the 1960s each lithological class in the total area.
Next, the odds are calculated for each lithological class.(Godron, 1965) as a quantitative method to analyze the associa-

tion between the presence of certain types of vegetation and The odds are defined as the ratio between the probability of
presence and the probability of absence of the forest type inthe values of environmental variables. An ecological profile is

defined as “a frequency distribution of a species as a function each lithological class. For the lithological class i,
of the states of a variable” (Gauthier et al., 1977).

Tests for the statistical significance of ecological profiles O(i) �
f1i/f � i
f2i/f � i

�
f1i
f2i

. (2)were developed at that time with the limitation of the small
sample size that was usually available, because they were con-
structed from hand-collected vegetation inventories (Daget et Finally, the weight W+ (positive weight of evidence) is cal-
al., 1972). culated for each class from the expression

The main development in these methods has been the
adoption of a more explicit spatial point of view, in integrating W�(i) � ln

O(i)
O(�)

� ln
f1i/f2i
f1�/f2�

, (3)them into geographic information systems, and in certain
changes in the statistics associated with the construction of the
profiles. Although the most recent work has been on geological i.e., each weight is calculated from the a posteriori to a priori

odds ratio for each lithological class (Agterberg and Bonham-topics (Agterberg, 1992; Bonham-Carter, 1994; Agterberg and
Bonham-Carter, 1999), the basic methods are similar. Carter, 1999). A high presence of the forest type in a specific

lithological class increases the a posteriori odds relative to theIn the context of the present work, the weights-of-evidence
(WE) method represents a simple procedure to assign a weight a priori odds, which is general for the whole of the working

zone, thereby increasing the value of W+. If there is no associa-W+ to each forest/lithology combination, where W+ may be used
as a non-parametric measure of association (positive or nega- tion between the vegetation and the lithological class, the value

of W+ will be null (ln 1 � 0). Positive associations will showtive). The process of assigning the weights begins with the con-
struction of a table of presence/absence frequencies for each values of W+ � 0, and negative associations W+ � 0.

The set of values of W+ for a forest type is called theforest type versus each lithological class, as is shown in Table 1.
Marginal totals f1 � and f2 � represent the totals of pres- weighted profile, and may be used as a measure of the positive
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between 0 (incompatible) and 1 (ideal). The value of the area
under the ROC curve is an estimator of the goodness of fit of the
model to the test data. A value of unity for AUC indicates an
exact model which describes the data with no error. A value of
0.5 indicates a random model. One sees that there are values
that define excellent models (Cq, Mf), while the model for
Liqpe is only mediocre.

It must be emphasized that the fit estimated by means of
the area under the ROC curve refers exclusively to the results of
the logistic model, before correcting the probabilities for the
lithology. This latter process notably improves the fit of the
model, even though our assessment of the improvement was
only subjective.

The Weights-of-Evidence Model
The weighted profiles were used to quantify the association
between the forest types and the lithological substrate. The
lithology was the only nominal variable considered (the rest
were quantitative), and for some of its values it has to be con-
sidered as a blocking (or exclusion) variable, i.e., those values
are directly incompatible with some of the forest types.
Although logistic regression allows nominal factors to be intro-
duced as independent variables, the results showed that the
method is incapable of reproducing the exclusion phenome-
non. The final model was therefore a mixed one, and the
weighted profiles were used to adjust the LMR suitability esti-
mates to the influence of the lithology.

Figure 3. Flow chart of the process of generating the proba- The lithological classes were the following (simplified):
bility models and the potential vegetation model. A: boulders; B: slide deposits; C: slope detritus; D: gravels;

E: coluvial deposits; F: quartzites; G: sandstones; H: shales;
I: siliceous conglomerates; J: sandstones with conglomerates;
K: limestones; L: stratified sandstones; M: silt; and N: micro-
crystalline limestones.TABLE 1. SCHEME OF THE FREQUENCY TABLE USED TO CONSTRUCT THE

WEIGHTED PROFILES Figure 4 shows the results in detail for the Liqpe forest.
From the values shown in Figure 4, one has the following

Lithology Liqpe/lithology relationships:
Forest Class 1 Class 2 … Class n Total

Presence f11 f12 … f1n f1�
Absence f21 f22 … f2n f2�
Total f�1 f�2 … f�n f��

or negative association of the forest type to each lithological
class. As will be seen below, the weights of evidence were used
to raise or lower the probability obtained from the logistic
model, adapting it to the new predictor (the lithological class).

Results
The Logistic Model
We generated a logistic model for each of the six forest types

Figure 4. Weighted profile for the Liqpe forest. The lithologi-present in the study zone. The coefficients and the values of
cal classes are shown along the horizontal axis, and thethe area under the ROC (Receiver Operating Characteristic)
values of the “positive weight of evidence” W+ along thecurve are listed in Table 2.
vertical axis.The above results allow suitability models to be con-

structed for each forest type. These models give values

TABLE 2. VALUES OF THE LOGISTIC MODEL COEFFICIENTS FOR EACH FOREST TYPE. THE VALUE OF THE AREA UNDER THE ROC CURVE IS AN INDICATOR OF THE

GOODNESS OF FIT OF THE MODEL (SEE TEXT )

forest altitude slope insol � 12 insol � 12 distance constant ROC area

Bf 0.0530 �0.0035 �0.0633 0.0383 �0.1588 11.3901 0.78
Cf 0.0403 �0.0019 �0.0648 0.0932 0.1804 �16.3152 0.85
Cq �1.2305 0.0625 0.1480 0.0622 �0.0632 9.5052 0.96
Liqpe �0.1952 �0.0040 0.0816 0.0007 �0.1327 11.0672 0.68
Liqpy �0.4954 0.0141 0.1598 0.0383 �0.1183 10.3771 0.84
Mf �0.3732 �0.0527 0.1330 �0.1936 0.2960 �17.4117 0.93
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Figure 5. Probability (suitability) maps for the six forest types present in the study zone, as determined from their corresponding
logistic models: 0.0 to 0.25 (light gray), 0.26 to 0.50 (gray), 0.51 to 0.75 (dark gray), and 0.76 to 1.00 (black). (a) Bf,
oligotrofic beech wood (Fagus sylvatica). (b) Cf, euktrophic beedh wood (Fagus sylvatica). (c) Cq, holm oak wood (Quercus
rotundifolia). (d) Liqpe, arid durmast oak wood (Q. petraea). (e) Liqpy, moist durmast oak wood (Q. petraea). (f) Mf, euktrophic
durmast oak wood (Q. petraea).

TABLE 3. VALUES OF W+ ACCORDING TO LITHOLOGICAL CLASS AND FOREST TYPE.● Absent in the lithological classes A, D, E, K, L, M, and N.
● A strong positive association with the classes F and I. THE SYMBOL (—) REPRESENTS INCOMPATIBLE CLASSES, WHERE THE FOREST

TYPE WAS ABSENT● The less significant associations are with the classes H, C, and
J (positive) and B and G (negative).

Lithology Bf Cf Cq Liqpe Liqpy Mf
The numerical values of the complete set of profiles are listed

A — �0.41 �2.78 �1.62 — —in Table 3.
B �0.88 — �0.65 �0.40 �0.08 �0.65
C �0.71 �1.24 �0.46 �0.39 �0.46 �1.55

The Mixed Probability Model D �0.39 �2.42 — �1.01 �1.64 �0.25
The probability maps given by the logistic model were then E �0.99 — �1.54 — �0.53 —
modified using the values of W+ corresponding to each litho- F �0.49 �0.35 �0.71 �1.38 �0.16 —

G �0.39 �1.44 �0.08 �0.29 �0.18 �0.26logical class as weights. Correction of a preliminary model by
H �0.20 �2.14 �0.08 �0.60 �0.27 —weighting with other criteria is a frequently used procedure in
I �0.22 �2.49 �0.09 �1.23 �0.44 �1.79constructing mixed decision systems (Bonham-Carter, 1994).
J �1.61 — — �0.14 �0.67 —The probability values are raised for positive associations and
K �1.81 �1.84 �0.42 �2.48 �2.31 �1.21lowered for negative associations. They are set to zero for the
L �1.23 �1.87 �0.80 — �0.53 �2.78cases of incompatible lithological classes. This procedure M �0.90 �2.21 �1.89 — — �1.29

guarantees that the lithology will be treated as a blocking vari- N — — — — �0.69 �3.71
able when the case arises, an aspect that is hard to achieve with
the logistic model.

The logistic model probabilities P(i) were modified
according to the expression P�(i) � P(i) � k, where k depends on

The resulting models are shown in Figure 5, which clearlythe value of W+ (see Table 4). The values of k are subjective with
the goal of calibrating the probabilities according the weights of shows the different patterns of distribution of the forest

formations.evidence.
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TABLE 4. VALUES OF THE WEIGHTS k AS A FUNCTION OF THE VALUES OF W+ because they synthesize different types of knowledge about the
reality of the territory which are difficult to integrate in anyW+ k Lithology
other way. Until now, potential vegetation maps have been

�� 0.00 incompatible elaborated mostly by subjective methods, by means of the
��2.5 0.70 very unfavorable experience that an expert connoisseur of the terrain has of its
�2.5 to �1.5 0.80 unfavorable characteristics. The problems with this way of working are
�1.5 to �0.5 0.90 moderately unfavorable obvious: the maps will vary in quality according to the “qual-
�0.5 to �0.5 1.00 indifferent ity” of the expert, and above all they will not be repeatable
�0.5 to �1.5 1.10 moderately favorable

because there is no explicit method of elaborating them (an�1.5 to �2.5 1.20 favorable
algorithm).��2.5 1.30 very favorable

In contrast with this way of working, we have proposed a
method based on robust statistical operations and objective
cartographical territorial information. There exists an explicit
procedure to get to the final result, so that the entire flow ofThe Potential Vegetation Model
information is “visible.” As it is based on statistical methods,In the previous process, we generated six probability (suitabil-
the quality of the model may be evaluated by standard meas-ity) models, one for each type of forest present in the zone.
ures of goodness of fit.With these models we constructed a map in which each cell or

As in any model, the quality may be improved in two ways:place of the terrain is assigned the forest that presents the great-
by reducing the error in the independent variables or by intro-est probability. This was done by comparing the values cell by
ducing new variables that may contribute to explaining the spa-cell and selecting the forest with the maximum likelihood.
tial distribution of the forests. In this sense, the role of climateThe result of applying the process of evaluation is a model
variables is a priori important. We did not use the classical vari-which shows the type of forest with the greatest probability at
ables (rainfall, temperature, etc.) in the present work becauseeach place in the study area. It may be interpreted as a potential
there are very few meteorological observatories in the studyvegetation model (Figure 6).
zone, so that it would not have been possible to define the spa-
tial climatic variation with a resolution compatible with theDiscussion
other variables. To reduce the impact of this problem, we gener-Maps of potential vegetation are theoretical constructions
ated potential insolation models, which are able to describederiving from a hypothetical-deductive process. They may be
reasonably some microclimatic contrasts by evaluating theinterpreted as biologically reasonable hypotheses, based on
influence of hill shading in a terrain of such sharp relief.sets of evidence and underpinned by some of the prevailing

A difficult problem to solve is that caused by an insuffi-theoretical frameworks in ecology. Understood as hypotheses,
cient presence of forests at the present time. For instance, if ahowever, they can not be readily subjected to experimental
forest has been totally eliminated from zones that are lower intests, and in this sense lack one of the properties that is usually
altitude, the model will set those zones as being incompatible,required in the scientific method: that of being refutable or,
when they are not so in reality. For this reason, this type ofvice versa, verifiable.
model should only be developed in zones where there stillDespite the above considerations, potential vegetation
exists a sufficient sample of the original forests.maps represent a useful tool for environmental management

To put the potential vegetation model to use in territorial
management, one will have to take into account other variables
that are more specific to management: land ownership, current
regime of use, etc. In light of these variables, it will be possible
to define initiatives and zones of intervention rationally. For
instance, the reduction in fragmentation of the forest will be
directed at zones with a high potential and where there already
exist scattered fragments of the original forest. The priority
conservation zones will be those where the potential zone is
mostly occupied by forest today. Increase in diversity can be
actively encouraged in zones where there exists a high poten-
tial for more than one forest type, allowing complex spatial dis-
tribution patterns.
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