
Remote Sensing of Environment 112 (2008) 3668–3679

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse
Regional mapping of human settlements in southeastern China with multisensor
remotely sensed data

Dengsheng Lu a,⁎, Hanqin Tian a, Guomo Zhou b, Hongli Ge b

a School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
b School of Environmental Technology, Zhejiang Forestry University, Lin'An, Zhejiang, China
⁎ Corresponding author. Tel.: +1 334 844 1062; fax: +
E-mail address: LUDS@auburn.edu (D. Lu).

0034-4257/$ – see front matter © 2008 Elsevier Inc. Al
doi:10.1016/j.rse.2008.05.009
A B S T R A C T
A R T I C L E I N F O
Article history:
 Mapping human settlemen

Received 6 November 2007
Received in revised form 16 May 2008
Accepted 24 May 2008

Keywords:
Human settlements
Regional mapping
ETM+
MODIS NDVI
DMSP-OLS
Partial unmixing
Regression model
Southeastern China
ts from remotely sensed data at regional and global scales has attracted
increasingly attention but remains a challenge. The thresholding technique is a common approach for
settlement mapping based on the DMSP-OLS data. However, this approach often omits the areas with small
proportional settlements such as towns and villages and overestimates urban extents, resulting in
information loss of spatial patterns. This paper explored an integrated approach based on a combined use
of multiple remotely sensed data to map settlements in southeastern China. Human settlements for selected
sites were mapped from Landsat ETM+ images with a hybrid approach and they were used as reference data.
The DMSP-OLS and Terra MODIS NDVI data were combined to develop a settlement index image. This index
image was used to map a pixel-based settlement image with expert rules. A regression model was
established to estimate fractional settlements at the regional scale, which the DMSP-OLS and MODIS NDVI
data were used as independent variables and the settlement data derived from ETM+ images were used as a
dependent variable. This research indicated that a combination of DMSP-OLS and NDVI variables provided a
better estimation performance than single DMSP-OLS or NDVI variable, and the integrated approach for
settlement mapping at the regional scale was promising. Compared to the results from the traditional
thresholding technique, the estimated fractional settlement image in this paper greatly improved the spatial
patterns of settlement distribution and accuracy of settlement areas. This paper provided a rapid and
accurate approach to estimate fractional settlements from coarse spatial resolution images at the regional
scale by combining a limited number of medium spatial resolution images. This research is especially
valuable for timely updating settlement databases at regional and global scales with limited time, labor,
and cost.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Human settlements are the places where human beings live, work,
and recreate, including cities, towns, and villages (Ridd & Hipple,
2006). The size, pattern, and spatial distribution of human settlements
are a fundamental data source for evaluating impacts of urbanization
on environments and for urban management and planning (Milesi
et al., 2003a; Pauleit et al., 2005). Human settlements are also closely
related to population distribution and economic growth, thus they are
an important data source for demographic–economic related studies
(Meyer & Turner, 1992). With increasing pressure of population and
economic growth, the conversion rate of vegetation or agricultural
lands to human settlements has been increased sharply during past
decades, especially in developing countries such as China (Liu et al.,
2005a,b). The urbanization causing many environmental problems,
such as vegetation loss, air pollution, water shortage and contamina-
1 334 844 1084.
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tion, and urban heat island, has been recognized as an important
factor affecting the functions of terrestrial ecosystems and climate
change (Pickett et al., 2001; Goldewijk & Ramnakutty, 2004; Zhou
et al., 2004; Foley et al., 2005; Kaufmann et al., 2007). Hence, timely
mapping human settlement, especially at regional and global scales,
has considerable significance and has already attracted attention in
the past decade (Elvidge et al., 1997a, 2001; Sudhira et al., 2004; Ridd
& Hipple, 2006).

The urban landscape is a complexity consisting of different land
covers, such as trees, lawns, impervious surfaces, and water. In
remotely sensed data, especially in coarse spatial resolution images,
many different land covers may be mixed in a pixel. This problem
often induces difficulty in extracting settlements from remotely
sensed data. Previous research for mapping human settlements is
often based on high or medium spatial resolution images (e.g.,
IKONOS, Landsat TM/ETM+) for individual cities (Lu & Weng, 2006;
Ridd & Hipple, 2006). Although many techniques, such as different
per-pixel based classification approaches and spectral mixture
analysis, have been used for mapping settlements or impervious

mailto:LUDS@auburn.edu
http://dx.doi.org/10.1016/j.rse.2008.05.009
http://www.sciencedirect.com/science/journal/00344257


3669D. Lu et al. / Remote Sensing of Environment 112 (2008) 3668–3679
surface areas from medium spatial resolution images (Wu & Murray,
2003; Yang et al., 2003; Lu &Weng, 2006; Powell et al., 2007), they are
not suitable for regional or global settlement estimation because of
the mixed pixel problems and complex landscape. However, mapping
human settlements at regional and global scales has become an urgent
task because of the increasing pressures from rapid urbanization and
associated environmental problems. If high or medium spatial
resolution images are used at the regional or global scale, the cost
for image purchase, and the time and labor required for processing
and interpreting these images could become prohibitive. The frequent
cloud conditions in a large area also make it difficult to collect a large
number of good-quality images within the same year. It is imperative
to develop new approaches to timely and accurately map settlements
in a large area with coarse spatial resolution images; however, no
suitable approaches are available for mapping settlements at regional
and global scales. Hence, this research aims to develop a new
approach to map human settlements at the regional scale with the
integration of coarse and medium spatial resolution images.

In this research, southeastern China was selected as the study area
because of its rapid urbanization since the early 1980s. Landsat ETM+
(Enhanced Thematic Mapper Plus) images were used to map
settlements in the selected sites at the local scale. Defense Meteor-
ological Satellite Program's (DMSP) Operational Line-scan System
(OLS) (hereafter, DMSP-OLS) and Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) were used to map pixel-based settlement
images. A regression model, which was established with the
combination of ETM+ derived settlements, DMSP-OLS, and MODIS
NDVI (Normalized Difference Vegetation Index) data, was used to
estimate fractional settlements for the entire study area.

2. Background

The DMSP-OLS uses two instruments (i.e., visible-near infrared and
thermal infrared telescopes) to provide both daytime and nighttime
images of the Earth (Elvidge et al., 1997b). The visible-near infrared
telescope is sensitive to radiation from 0.40–1.10 µm, and the thermal
infrared telescope is sensitive to radiation from 10.0–13.4 µm and 190
to 310 K. A telescope pixel is 0.55 km at fine mode and 2.7 km at
smooth mode. Low resolution values are the mean of pixel values at a
window size of 5 by 5 at finemode (http://www.ngdc.noaa.gov/dmsp/
sensors/ols.html). Time-series analysis of collected images within a
calendar year is used to distinguish stable lights produced by cities
and towns from ephemeral lights arising from fires and lightings, and
to remove clouds. The time-series data sets are then composed to
generate a city-light image with spatial resolution of 1 km. Much
previous literature has described the characteristics of the DMSP-OLS
data (e.g., Imhoff et al., 1997a,b; Elvidge et al., 1997a,b,c, 1999). The
DMSP-OLS nighttime image (city lights or stable lights) reflects the
existence of human activities. The intensity of the city's nighttime
lighting is closely related to population density and economic
conditions (Elvidge et al., 2007). Therefore, the DMSP-OLS data are
often used to map urban areas or human settlements (Elvidge et al.,
1997b; Imhoff et al., 1997a,b; Milesi et al., 2003a; Gallo et al., 2004)
and to estimate demographic and socioeconomic variables (Welch,
1980; Sutton et al., 1997; Lo, 2001, 2002 Sutton et al., 2001; Sutton,
2003; Amaral et al., 2005, 2006). More applications of DMSP-OLS data
were summarized by Elvidge et al. (2007).

Two kinds of data formats in the DMSP-OLS images are often used.
One is the percent occurrence, or the percentage of time during a grid
cell which was lit in the building of the composite (Imhoff et al.,
1997b); and the other is the digital number ranging from 0 to 63
(Elvidge et al., 1999). A common application of the DMSP-OLS data is
to map urban areas or human settlements with the thresholding
technique (Imhoff et al., 1997a,b; Lawrence et al., 2002). A challenge of
this technique is to determine appropriate thresholds. No general
rules are available for guiding the selection of threshold values. In
previous research, when the pixel values of DMSP-OLS stable-light
image ranged from 0 to 100%, Imhoff et al. (1997a) used a threshold of
89% to detect urban areas in the continental U.S.; and Amaral et al.
(2005) used a threshold of 30% to extract a binary image with the
nighttime light area and background in the Brazilian Amazonia. When
the pixel values of DMSP-OLS image appeared as digital numbers (DN)
ranging from 0 to 63, a threshold of 50 was regarded as optimal in
southeastern U.S. (Milesi et al., 2003b). In reality a single threshold
could significantly overestimate urban areas, but could omit a large
number of towns and villages with a relatively small proportion of
settlements. The significant differences of energy availability and
consumption, levels of economic development, and density of
settlements in a regional or global scale may result in significantly
different pixel values in the DMSP-OLS imagery (Small et al., 2005).
Thus, the urban distribution derived from a single threshold technique
may produce a large error in the spatial pattern. Some previous
research has recognized this problem and has used multiple thresh-
olds to map settlements at three levels, for instance, urban (N94%),
peri-urban (8–94%), and unpopulated places (b8%) in Egypt (Lawrence
et al., 2002), or urban (N89%), suburban (25–88%), and rural (b24%) in
U.S. Historical Climatology Network (Owen et al., 1998). Depending on
the levels of economic development, Henderson et al. (2003)
identified the optimal threshold of 92% for San Francisco, USA, 97%
for Beijing, China, and 88% for Lhasa, China. Sutton et al. (2001) used
three thresholds of 40%, 80%, and 90% for mapping urban areas based
on the level of gross domestic product (GDP) per capita in the world.

Although previous research with the threshold-based approach
has advanced the understanding of settlement mapping from DMSP-
OLS data, there remain some problems with the threshold-based
approach. First, selecting an appropriate threshold is difficult and
seems subjective. No single threshold is appropriate in a large area
because of the different levels of socioeconomic development.
Secondly, a large uncertainty may be generated by the mixed pixel
problem and the impacts of background such as ephemeral light, low-
level illumination, and glint of light into adjacent water bodies. Finally,
a large number of small settlements may be lost, and the spatial
pattern information is reduced significantly. Elvidge et al. (2007)
summarized eleven specific shortcomings of the DMSP-OLS data. Fig.1
clearly illustrates some important problems (see the Methods section
for the data collection) by examining the images among DMSP-OLS,
Terra MODIS color composite, and Landsat ETM+ color composite
(assigned near infrared, shortwave infrared, and visible bands as red,
green and blue). For instance, rivers, lakes, and forests within or
nearby Hangzhou, China had similar high DN values to the settlements
in the DMSP-OLS image. However, water bodies and forests had
significantly different spectral features with settlements inMODIS and
ETM+ color composites. On the other hand, medium- and low-
intensity residential areas had DN values of less than 50, thus, they
would be lost when a threshold approach was used, resulting in
significant underestimation of settlements. Obviously, the threshold-
based technique cannot accurately map the spatial pattern of
settlements.

3. Methods

3.1. Study area

Southeastern China has experienced rapid urbanization since the
early 1980s. The selected study area covered 10 provinces and two
metropolises — Shanghai and Hong Kong (Fig. 2). The study area
accounted for 15.7% of the total area in China, but the population and
gross domestic product (GDP) accounted for 44.2% and 54.3%
according to the China Statistical Yearbook in 2006 (Bureau of
Statistics of China, 2006a) [Note: these percentages did not include
Hong Kong with a population of 6.91 million and GDP of $253.1 billion
in 2006 according to Wikipedia record (http://en.wikipedia.org/wiki/
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Fig. 1. A comparison of human settlements appeared inDMSP-OLS,MODIS, and Landsat ETM+ images (Note: a—DMSP-OLS false color image based on sliced DNvalues; b—DMSP-OLS DN
with black and white image; c — Landsat ETM+ color composite; and d — MODIS color composite (assigning near infrared, shortwave infrared, and visible bands as red, green and blue).
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Hong_Kong)]. There are three megacities with more than five million
inhabitants, 23 megacities (this number accounts for 45.1% in China)
with a population ranging from 1 to 5 million, and 35 cities
(accounting for 37.2%) with a population between 0.5 to 1 million in
this study area, according to China City Statistical Yearbook in 2006
(Bureau of Statistics of China, 2006b).

3.2. Data collection and preprocessing

DMSP-OLS stable light, Terra MODIS surface reflectance, multi-
temporal MODIS NDVI, and Landsat ETM+ images were used in this
research and their major characteristics were summarized in Table 1.
All the selected data sets were acquired in 2000. The DMSP-OLS
nighttime-lights data with 1 km spatial resolution were downloaded
from the National Geophysical Data Center (NGDC) [http://www.ngdc.
noaa.gov/dmsp/global_composites_v2.html (last access on August 7,
2007)]. The DMSP-OLS image has DN values ranged from 0 to 63. The
selected DMSP-OLS image was a composite based on time-series
archived DMSP-OLS images in the calendar year of 2000. A detailed
description of DMSP-OLS data is found in Elvidge et al. (1997b, 1999).
The stable light data with geographic (Lat/Lon) projection were
reprojected to Albers Conical Equal Area projection and the nearest
neighbor resampling algorithm was used during the reprojection
procedure.

TerraMODIS surface reflectance (MOD09A1) and NDVI (MOD13A2)
images were downloaded from the USGS (United State Geographic

http://en.wikipedia.org/wiki/Hong_Kong
http://www.ngdc.noaa.gov/dmsp/global_composites_v2.html
http://www.ngdc.noaa.gov/dmsp/global_composites_v2.html


Fig. 2. Study area —southeastern China covering 10 provinces, Shanghai, and Hong Kong by overlaying a boundary layer at provincial level.
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Survey) (Global Visualization Viewer). Previous literature has detailed
the description of developing MOD09A1 and MOD13A2 products
(e.g., Justice et al., 2002). The MODIS data (including surface
reflectance and multitemporal NDVI images) with sinusoidal
projection were reprojected to Albers Conical Equal Area projection.
A bilinear interpolation algorithm was used to resample MODIS
surface reflectance images with their original spatial resolution of
463 m into a pixel size of 1 km by 1 km, and the nearest neighbor
resampling algorithm was used to resample multitemporal MODIS
NDVI images for keeping the pixel size of 1 km by 1 km during the
reprojection procedure.

Six scenes of Landsat ETM+ images were selected within the study
area. The ETM+ six reflective bands (e.g., visible, near infrared, and
shortwave infrared) with 28.5 m spatial resolution were used in this
research (the thermal band and the panchromatic band were not
used). All selected ETM+ images with the Universal Transverse
Mercator (UTM) coordinate systemwere reprojected to Albers Conical
Equal Area projection. The nearest neighbor algorithm was used to
resample the ETM+ images into a pixel size of 25 m by 25 m.

The strategy for mapping human settlements at the regional scale
based on a combination of medium and coarse spatial resolution
Table 1
Remotely sensed data used in research

Sensor Resolution Acquisition date

DMSP-
OLS

The annual image product with the
grid cell size of 1 km by 1 km was
developed from the time-series
DMSP-OLS images with nominal
spatial resolution of 0.55 km. The
selected DMSP-OLS image has DN
values ranging from 0 to 63.

A cloud-free composite developed
from all available archived DMSP-OLS
data for the calendar year of 2000.

MODIS Spatial resolution of 500 m for
MODIS surface reflectance image
(MOD09A1). Band 5 was not used due
to the strip problem.

8-day composite, acquired in Sept 13–
20, 2000 (MODIS mosaic image based
on images of h27v05, h27v06,
h28v05, and h28v06 scenes).

Spatial resolution of 1 km for
multitemporal MODIS NDVI images
(MOD13A2).

16-day composite; multitemporal
NDVI mosaic images were collected
between April and October 2000.

Landsat
ETM+

Six reflective bands with 28.5 m
spatial resolution (thermal and
panchromatic bands were not used in
this research).

Path/row: Acquisition date
119/39: Oct 11, 2000
120/37: Sep 16, 2000
122/41: Sep 14, 2000
122/44: Sep 14, 2000
124/45: Oct 30, 2000
122/37: Sep 14, 2000
images is illustrated in Fig. 3. The ETM+ images were used to map
settlements at the local scale with a hybrid approach. A combination
of MODIS and DMSP-OLS data was used to mask out the pixels with
non-settlement land covers. Regression models were then established
to calibrate the settlement results at the regional scale.

3.3. Settlement mapping from Landsat ETM+ images

Accurate settlement mapping from the selected ETM+ images is a
prerequisite because this data set is used as a reference for establish-
ing regression models and for accuracy assessment. In reality,
settlement is a complex combination of different impervious surface
materials. Previous research has indicated the difficulty in separating
settlements from other land covers based on spectral signatures with
traditional per-pixel based classification approaches (Lu & Weng,
2004; 2005). One possible approach is to incorporate land surface
temperature to separate dark-color impervious surfaces from water
based on their differences in land surface temperature (Lu & Weng,
2006). However, the relatively coarse spatial resolution in thermal
images (e.g., 120 m in TM thermal band vs. 28.5 m in TMmultispectral
bands) often resulted in overestimation of impervious surfaces (Lu &
Weng, 2006). Therefore, in this research, we developed a hybrid
approach, which consisted of matched filtering (partial unmixing),
expert rules, stratification, and unsupervised classification, to map
settlements from the ETM+ images.

The matched filtering approach is used to find the abundance of a
user-defined endmember with the partial unmixing technique, which
maximizes the response of the selected endmember and suppresses
the response of the background (Boardman et al., 1995). This approach
provides a rapid way to detect the specific material based on the
matches to the selected endmember spectra. The resultant image from
matched filtering appears as a gray-scale image representing the
relative degree of match to the selected spectra. A detailed description
of the match filtering approach is provided in Boardman et al. (1995).
In this research, settlement endmembers was selected on the ETM+
image through visual interpretation of the ETM+ color composites.
Because of the complexity of settlement materials, it is difficult to
identify one settlement to represent all settlements in the study area.
Thus, three types of settlements, i.e., settlementswith high-, medium-,
and low-spectral signatures, were selected.Matched filteringwas then
used to unmix the ETM+ six reflective bands into fraction images based
on the selected settlement endmembers. A comparative visual analysis
of the three fraction images indicated that the settlement endmember
having medium spectral features provided the best results; and thus,



Fig. 3. Framework of developing fractional settlements at regional scale with the combination of medium and coarse spatial resolution images.

Fig. 4. Relationship between DMSP-OLS DN and fractional settlements in a grid cell of
1 km (note: the fraction value of settlements in a pixel was derived from Landsat ETM+
images. This graph was based on the 800 samples which were randomly selected from
the settlement images developed from Landsat ETM+ images and the corresponding
DMSP-OLS DN image).
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this fraction image was further examined. Analysis of samples of
settlements showed that a threshold of 0.1 was optimal to extract the
settlement information from the selected fraction image. Thus, a
binary image for the initial settlements was produced based on the
rule: if a pixel value in the fraction imagewas greater than 0.1, assigned
1 (settlements) to this pixel, otherwise, assigned 0 (non-settlements)
to the pixel.

The confusion of some bright-color settlements with bare soils
and dark-color settlements with water made the initial settlements
overestimated. Therefore, removing non-settlement pixels in the
initial settlement image was required. In this research, the spectral
signatures of the initial settlement image were extracted from the
ETM+ reflective bands with an expert rule, i.e., if the pixel value
was 1 in the initial settlement image, extracted the spectral
signatures from the ETM+ six reflective bands, otherwise, assigned
0 to the pixel. The ISODATA unsupervised classification approach
was used to classify the extracted spectral signatures into 60
clusters. The cluster image was then overlaid on the ETM+ color
composite. The analyst was responsible to examine each cluster
and to assign each cluster as a settlement or other land cover. The
final settlement image was again overlaid on the ETM+ color
composite to visually examine the success, or not, in mapping the
settlements while removing all non-settlements in the image. This
procedure for settlement mapping was applied to all selected ETM+
images. The final settlement image was a binary format with 1
representing the settlement and 0 representing other land covers.
Finally, the settlement image with 25 m spatial resolution was
aggregated to generate proportional settlement values in a new
data set with a pixel size of 1 km by 1 km to match the same
spatial resolution with MODIS and DMSP-OLS data.

3.4. Spectral analysis of settlements from DMSP-OLS data

A total of 800 sample plots with a window size of 1 km by 1 km for
each plot were randomly selected from the fractional settlement
images which were developed from the ETM+ images. The sample
plots were linked to the DMSP-OLS image to extract the DN values for
examining the relationship between fractional settlements and
DMSP-OLS DN values. The fractional settlement values ranging from
0 to 1.0 were separated into 10 groups with an interval of 0.1. The
boxplot approach was used to examine DMSP-OLS DN features,
representing graphically the distribution of fractional settlements in a
pixel against the DMSP-OLS DN value. Fig. 4 shows the complexity of
the relationship between fractions of settlements and DMSP-OLS DN
values and indicates the problem using the threshold-based technique
in mapping settlements or urban areas because low DN values in the
DMSP-OLS image (1 km spatial resolution) could contain a certain
proportion of settlements in a pixel, as shown in Landsat images
(25 m spatial resolution here) (see Fig. 1). The DN values in the
DMSP-OLS image may range from 3 to 63, depending on the
proportion of settlements in a pixel. The majority of pixels with
fraction values of greater than 0.9 had DN values of greater than
50. Some pixels with fraction values ranging from 0.6 and 0.9 had
also DN values of greater than 50, but most of them had DN values
between 15 and 50. If the fraction values were in 0.1–0.5, the DN
values ranged from 3 to 30. This implied that similar DN values
could contain a significantly different proportion of settlements in
a pixel. This problem could result in a large uncertainty in
settlement estimation and loss of spatial information based on
DMSP-OLS data at the regional scale.

3.5. Pixel-based settlement extraction from Terra MODIS and DMSP-OLS
images

Previous research has indicated that the vegetation index, or
vegetation abundance, is closely correlated in a negative manner with



Table 2
Regression models developed from the combination of coarse and medium spatial resolution images

Regression method Variables used Best regression model (Y=a+bX1+cX2) R2 F test t test

a b c

Linear and nonlinear regression analysis DMSP FSM=−0.059+0.207Ln(DMSP) 0.645 916.4 −2.8⁎ 30.3
NDVImax FSM=1.267–1.321 NDVImax 0.587 716.0 44.4 −26.8
Settlement index FSM=0.657+0.241Ln(index) 0.664 995.5 79.8 31.6

Stepwise regression analysis DMSP, Ln(DMSP), DMSPnor, NDVImax, index FSM=0.469+0.136Ln(DMSP)−0.588NDVImax 0.686 550.4 6.9 12.6 −8.1

⁎0.005 level. Others at less than 0.0001.
Note: FSM represents fractional settlements; R2 represents coefficient of determination for evaluation of the regression model performance.

Table 3
Comparison of accuracy assessments among the selected models based on randomly
sampled 233 samples at pixel level

Methods R RMSE

DMSP-OLS 0.81 0.162
NDVImax 0.72 0.194
Settlement index 0.82 0.158
Both DMSP-OLS and NDVImax 0.83 0.156

Note: R represents correlation coefficient between estimate and reference data.
RMSE represents root-mean square error.
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impervious surfaces (Weng et al., 2004) and has been used for the
estimation of impervious surfaces (Gillies et al., 2003; Bauer et al.,
2004). However, bare soils are often a problem when using a single-
date vegetation index image. For example, in agricultural lands,
different seasons could have different surface covers such as grass,
crop, and bare soil. In order to better separate impervious surfaces, or
settlements, from bare soils, use of multitemporal NDVI can effectively
reduce the impact of bare soils. In a large area, an important role of
using multitemporal NDVI images is to remove the impact of cloud
contamination. Therefore, multitemporal NDVI images were used in
this research to generate a new NDVI composite (i.e., NDVImax) with
the maximum algorithm as expressed in Eq. (1).

NDVImax ¼ MAX NDVI1; NDVI2; N ; NDVIn½ �; ð1Þ

where NDVI1, NDVI2, …, NDVIn are the multitemporal MODIS NDVI
images acquired during April and October in 2000.

Comparing the settlements from ETM+ images with corresponding
MODIS NDVI and DMSP-OLS data indicated that high fractional
settlements in a pixel had generally high DN values in the DMSP-
OLS image and had low values in the NDVI image. Different remotely
sensed data have their own characteristics and combined use of them
could provide more information than their individuals. Data fusion is
the most common approach to integrate multiple sensor data sources
(Lu & Weng, 2007), and the common data sources include SPOT,
Landsat, and radar (Yocky, 1996; Haack et al., 2002; Ban, 2003).
However, rarely has research examined the data fusion approaches for
multiple sensors of coarse spatial resolution images.

The 6-bit DMSP-OLS data (DN ranges within 0 and 63) often
resulted in data saturation in urban landscape (Elvidge et al., 2007)
and difficulty in separating different land covers. As shown in Fig. 4,
if no city lights exist in a land cover such as forest lands, bare soils,
and water bodies, the DMSP-OLS DN values are close to zero.
However, because of the different levels of economic development,
energy availability and consumption, the similar DN values in the
DMSP-OLS image could have a significantly different proportion of
settlements in a pixel. Therefore, the traditional thresholding
technique cannot be accurately used to map human settlements
from DMSP-OLS data, but the DMSP-OLS data can be used first to
mask out the non-settlement land covers such as forest, agricultural
lands, and water.

The 16-bit MODIS data (0–65,535) provided more detail informa-
tion for separating different land covers, but MODIS data cannot be
directly used for mapping human settlements because of the
complexity of settlement materials and the mixture of settlements
and other land covers in spectral signatures. In urban landscapes,
vegetation distribution is closely related to the patterns of settlements
(Weng et al., 2004), thus, the vegetation index can be used to estimate
human settlements (Bauer et al., 2004). However, non-vegetation land
covers, such as bare soils, water, and human settlements have similar
values in the NDVI image; thus, NDVI images are not suitable for
directly separating human settlements from water and bare soils.
Because of the complexity of human settlements and the mixed pixel
problem in the coarse spatial resolution image, the pixel-based
classification approach cannot accurately map human settlements
based on the MODIS NDVI images.

In theory, NDVI image have values ranging from −1 to +1. Because
of the coarse spatial resolution in MODIS NDVI, the land surface
covers, except largewater bodies, have data ranges between 0 and 1 in
the NDVImax image during the growing season. In order to match the
data range between NDVImax and DMSP-OLS data sets, it is necessary
to convert the DMSP-OLS DN values into a floating format with Eq. (2)
so that the data values can be in the range of 0 and 1.

OLSnor ¼ OLS−OLSmin

OLSmax−OLSmin
; ð2Þ

where OLSnor is the normalized value of the DMSP-OLS DN image.
OLSmin and OLSmax are the minimum and maximum values in the
DMSP-OLS image, i.e., 0 and 63 here.

Because of different characteristics between DMSP-OLS andMODIS
NDVImax data sets in separating settlements from other land covers as
discussed above, a combined use of both data sets could provide new
insights for mapping settlements at regional or global scale. Therefore,
we developed an index called human settlement index in this paper,
as expressed in Eq. (3).

Human settlement Index

¼ 1−NDVImaxð Þ þ OLSnor
1−OLSnorð Þ þNDVImax þ OLSnor⁎ NDVImax

ð3Þ

In general, higher proportion of settlements in a pixel should result
in a lower value in MODIS NDVImax and a higher value in DMSP-OLS,
thus generating higher value in this index. As different levels of
economic development and energy consumption affect the city lights,
as shown in Fig. 4, similar DMSP-OLS DN values could have
significantly different proportion of settlements in various regions.
However, in urban landscape, vegetation abundance is highly
correlated with impervious surface (Weng et al., 2004). Therefore,
incorporation of vegetation information into the city light data set can
reduce the effects of external factors such as economic development
levels on the DMSP-OLS DN values.

Sample plots with a window size of 1 km2 were selected based on
the ETM+ derived settlement images, and these plots were linked to
the settlement index image to extract the value for each sample. A
threshold was then identified, based on a comparative analysis of the
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samples of settlements and non-settlements, and used to extract the
initial pixel-based settlement image. The initial settlement image may
contain some non-settlement pixels because of the complexity of
urban landscapes and the confusion of settlements, bare soils, and
water bodies on the NDVImax and DMSP-OLS images. A similar
approach as used in ETM+ images for removing non-settlement pixels
was also used for MODIS data, that is, the initial settlement image was
a binary image with 1 representing settlement and 0 representing
other land covers. When the pixel value was 1 in the initial settlement
image, the value of MODIS surface reflectance was extracted,
otherwise, 0 was assigned to this pixel. The extracted MODIS surface
reflectance image for the initial settlementswas then classified into 80
clusters using the ISODATA approach. The analyst finally refined the
initial settlement image by removing the clusters of non-settlements
based on visually interpreting the clusters on the MODIS color
composite by assistance of ETM+ color composites.

3.6. Fractional settlement estimation with regression models

Mixed pixels have been recognized as a major problem affecting
the effective use of remotely sensed data in urban land-use/cover
classification (Fisher, 1997; Cracknell, 1998). It is especially true when
Fig. 5. A comparison of scatterplots based on estimates and reference data (note: the refere
models based on 233 samples at 1 pixel level; Regression models based on DMSP-OLS (a), N
coarse spatial resolution images such as MODIS and DMSP-OLS are
used for settlement mapping because of the complex urban land-
scapes. It is important to exclude the non-settlement fraction in a pixel
in order to accurately reflect the settlement areas and their spatial
patterns. Here we developed regression models for estimating
fractional settlements. The ETM+ derived fractional settlement data
set was used as a dependent variable. DMSP-OLS, normalized DMSP-
OLS, logarithmic DMSP-OLS, NDVImax, and human settlement index
were used as a single independent variable in linear and nonlinear
regression analysis, or as multiple variables in the stepwise regression
analysis. The coefficient of determination (R2) was used to evaluate the
regression model performance because it measured the percentage of
variation explained by the regression model. F test was used to
examine whether the regression model was significant or not, and t
test was used to examine whether the constant and beta values were
significant or not. The regression model whose F and t tests were
significant and whose R2 value was the highest was finally selected for
further analysis. The selected regression models were then used to
estimate the fractional settlements for the entire study area. In order
to develop regression models, a total of 800 sample plots with a pixel
size of 1 km2 were randomly selected based on the fractional
settlements from six ETM+ images. Approximately 70% of these
nce data were from ETM+ images and the estimates were from the selected regression
DVImax (b), human settlement index (c), and both DMSP-OLS and NDVImax(d)).
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samples were randomly resampled for developing the regression
models and the rest for accuracy assessment.

3.7. Evaluation of fractional settlement estimates

Accuracy assessment is an important part in evaluating the
modeling results. In this research, the root-mean square error
(RMSE) was used. Of the 800 samples, approximately 30% of the
samples were randomly selected for model assessment. Correlation
coefficients between estimates and the reference data, and their
scatterplots were used to examine the quality of model performance.
In addition, a comparative analysis of the spatial patterns of the
Fig. 6. A comparison of spatial patterns of the human settlement estimates among the selec
human settlement index (c), and both DMSP-OLS and NDVImax(d)).
estimated settlements from each selected regression model was
conducted to identify the suitable regression model for mapping the
spatial distribution of the fractional human settlements.

4. Results

4.1. Settlement mapping from Landsat ETM+ images

Settlements at selected sites were developed from ETM+ images
and used as reference data. Although no quantitative accuracy
assessment was conducted for the ETM+ derived settlement images,
a visual examination by overlaying the settlement images on
ted regression models (Note: Regression models based on DMSP-OLS (a), NDVImax (b),
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corresponding ETM+ color composites was conducted. The qualitative
evaluation showed the success using the hybrid approach formapping
settlements at selected sites. The fractional settlement values were
highest in urban areas, and then they were decreased gradually in
suburban and rural areas. Because of the complexity of the urban
landscape, settlement areas could be overestimated in the low-
intensity residential areas based on the pixel-based classification
approach (Lu & Weng, 2006). In this research, unsupervised
classification provided an alternative to separate low-intensity
residential areas from forests because the analyst can make use of
his/her knowledge about the study area and different spatial patterns
between forests and low-intensity residential areas. The hybrid
approach used in this paper has further improved the settlement
Fig. 7. Fractional settlements developed from a combination of DMSP-OLS, MODIS NDVImax, an
(the administrative boundary at the provincial level was overlaid on the human settlement
extraction performance based on previous research (Lu & Weng,
2006).

4.2. Evaluation of model estimates

A comparative analysis of the selected four regression models
(Table 2) indicated that all selected regressionmodels were significant
based on F test at less than 0.0001. The constant and beta values for
each regressionmodel were also significant based on t test at less than
0.0001, except the constant in the single DMSP-OLS based regression
model (significant at 0.005). Overall, the regression models, by using
both DMSP-OLS and NDVImax, either integrated as a settlement index
or as a combination of both variables, provided relatively higher R2
d Landsat ETM+ images in 2000 in southeastern China, highlighting three urban regions
image).
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values than by using single NDVImax or DMSP-OLS variable. This
implied that integration of both sensor data could generate a better
estimation performance than a single sensor data set. Except the
regression model based on a single NDVImax variable, the other three
regression models had similar performance and similar RMSE values,
as shown in Table 3. However, if we carefully examined the
scatterplots between the estimates and reference data (Fig. 5), we
can find their differences. For instance, the single DMSP-OLS based
regression model has the data saturation problem that it cannot
accurately estimate the fraction values when the fraction of settle-
ments in a pixel is greater than 0.8 (Fig. 5a). The single NDVImax based
regression model has a large variation, implying that this methodmay
produce a larger error for individual pixels than other selected models
(Fig. 5b). A comparison of Fig. 5c and d showed a similar performance,
but when the pixel had high proportion of settlements such as greater
than 0.8, the regression model based on human settlement index
appeared better estimation performance than that based on both
DMSP-OLS and NDVImax variables. All selected regression models have
the trend that overestimate the fraction values for those pixels with a
relative small fraction of settlements, such as less than 0.2. Overall,
Fig. 5 indicates that the regression model based on the human
settlement index may provide the best estimation results.

Fig. 6 provides an example showing the different spatial patterns of
fractional settlement images from the selected four regressionmodels.
The DMSP-OLS based model overestimated the number of pixels with
relatively high fraction values, such as greater than 0.45 (see Fig. 6a),
except the pixels with high fraction settlements due to the data
saturation problem as shown in Fig. 5a. In contrast, the NDVImax based
model underestimated the pixels with relatively high fractional
settlements, such as greater than 0.6 (Fig. 6b). The regression models
based on the human settlement index, or combined DMSP-OLS and
NDVImax variables provided similar spatial patterns, implying that
both regression models had similar estimation performance. Fig. 7
provides an example which was estimated using the regression model
based on both DMSP-OLS and NDVImax variables, showing the
fractional settlement image highlighting three megacities and their
surrounding areas in south, east, and central China. It indicated that
the core urban areas had higher fraction values than suburban and
Fig. 8. A comparison of (a) DMSP-OLS data with different data ranges and (b) pixel-based
rural areas, and the sites with small fractional settlements were
successfully mapped. As Fig. 8a indicated that no matter one single
threshold or multiple thresholds were used, the threshold technique
cannot accurately map the spatial patterns of different proportional
settlements. This research also showed that the fractional settlements
provided a more accurate area estimation and spatial distribution,
especially for the sites with a small proportion of settlement areas,
than the results derived from the per-pixel based approach (See
Fig. 8b). This is because per-pixel based approach significantly
overestimated the area amount for the pixels with relatively small
proportional settlements. Comparative analysis of Figs. 5 and 6
indicated that the regression models based on the human
settlement index, or a combination of DMSP-OLS and NDVImax

variables, provided better performances in the spatial patterns of
human settlement distribution than the regression models based
on a single DMSP-OLS or NDVImax variable.

5. Summary and conclusion

Regional or global mapping of human settlements is often based on
the DMSP-OLS data with the thresholding technique (Elvidge et al.,
1997a; Milesi et al., 2003a). However, different levels of economic
development often result in difficulty when selecting suitable
thresholds for mapping human settlements (Small et al., 2005).
Another challenge for settlement mapping from DMSP-OLS data is the
large number of mixed pixels, but previous research has not
considered this problem, resulting in loss of spatial information of
towns and villages because of their small proportion in a pixel. This
paper proposed an integrated approach for estimating fractional
settlements through the use of regression models. This approach has
proven successful for mapping fractional settlements through the
combined use of MODIS NDVImax, DMSP-OLS, and ETM+ images. The
MODIS and DMSP-OLS can be freely downloaded at the global scale,
thus the approach developed in this paper can be used to map human
settlements in other regions.

The complementary characteristics between DMSP-OLS and
MODIS data made the combined new data sets have more information
than each could do individually, as proven in this research. Two
settlement image derived from the human settlement image with a hybrid approach.
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methods have been explored in this research. One is to develop a new
image called human settlement index based on the integration of both
data sources, and the other is to use both data sets as explanatory
variables for use in a regression model. Both methods provided a
better performance in mapping spatial distribution of settlements
than the use of individual DMSP-OLS or MODIS data. More research is
needed in the future to explore the potential data fusion approaches
for better using multisensor data sources with coarse spatial
resolution images in regional and global settlement mapping.

In summary, this research has shown that the combined use of
medium and coarse spatial resolution images is promising in
settlement mapping at the regional scale. A combination of DMSP-
OLS and NDVImax provided a better estimation performance than
individual DMSP-OLS or NDVImax variable. The regression models
based on either human settlement index or both DMSP-OLS and
NDVImax variables greatly improved the spatial patterns of estimated
settlement distribution, especially for the sites with small or very
high proportional settlements in a pixel. This paper provided a new
approach for rapid and accurate estimation of human settlements at
the regional scale based on coarse spatial resolution images by
combining a limited number of medium spatial resolution images.
This research is especially valuable for timely updating human
settlement databases at regional and global scales with limited time,
labor, and cost.
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