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Abstract

Exposure characterization is a central step in Ecological Risk Assessment (ERA). Exposure level
is a function of the spatial factors linking contaminants and receptors, yet exposure estimation mod-
els are traditionally non-spatial. Non-spatial models are prone to the adverse effects of spatial depen-
dence: inflated variance and biased inferential procedures, which can result in unreliable and
potentially misleading models. Such negative effects can be amended by spatial regression modelling:
we propose an integration of geostatistics and multivariate spatial regression to compute efficient
spatial regression parameters and to characterize exposure at under-sampled locations. The method
is applied to estimate bioaccumulation models of organic and inorganic micropollutants in the tis-
sues of the clam Tapes philipinarum. The models link bioaccumulation of micropollutants in clam
tissue to a set of environmental variables sampled in the lagoon sediment. The Venetian lagoon case
study exemplifies the problem of multiple variables sampled at different locations or spatial units: we
propose and test an effective solution to this common and serious problem in environmental as well
as socio-economic multivariate analysis.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Ecological Risk Assessment (ERA); Spatial analysis; Multivariate spatial regression; Geostatistics;
Edible organisms; Contaminated sediment; Sampling
0198-9715/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compenvurbsys.2005.09.003

* Corresponding author. Tel.: +1 403 220 7355; fax: +1 403 282 6561.
E-mail addresses: bertazzs@ucalgary.ca (S. Bertazzon), mikhr@unive.it (C. Micheletti), critto@unive.it

(A. Critto), marcom@unive.it (A. Marcomini).

mailto:bertazzs@ucalgary.ca
mailto:mikhr@unive.it
mailto:critto@unive.it
mailto:marcom@unive.it


S. Bertazzon et al. / Comput., Environ. and Urban Systems 30 (2006) 880–904 881
1. Introduction

The estimation of exposure levels both in abiotic (sediment) and biotic (tissue) media
is a central step in Ecological Risk Assessment (ERA), to estimate the ecotoxicity risks
posed by chemicals (US-EPA, 1992). Although, in general, regulatory guidelines empha-
size that exposure conditions are a function of spatial factors linking contaminants and
receptors (e.g., distribution of sources, distribution of contaminants, and size and loca-
tion of habitats) (US-EPA, 1998), exposure estimation methods frequently assume a con-
tinuous and static exposure to contaminants, described by statistics such as mean or
Upper Confidence Limit of the mean (UCL) 95% (Linkov, Burmistrov, Cura, & Bridges,
2002). Even though such estimation methods are conservative, they ignore site-specific
conditions that can and should be accounted for in risk assessment. For organisms such
as clams, living in association with contaminated sediments, bioaccumulation of organic
and inorganic chemicals is likely to be the primary source of risk (Bertazzon, Carlon,
Critto, Marcomini, & Zanetto, 2000). The pollutant bioavailability is affected by local
sediment characteristics, e.g., organic matter fraction (Griffin, 1991; Mahony et al.,
1996).

Non-spatial models are prone to the adverse effects of spatial dependence in the data,
primarily an inflated model variance. Not only does a large variance hamper the reliability
of the estimates, it also inflates inferential procedures, with the result that irrelevant vari-
ables may appear to be statistically significant. Estimates derived from such models are
consequently not only unreliable, but potentially misleading. The use of explicitly spatial
analytical techniques in the environmental sciences and specifically in ERA is still fairly
uncommon (US-EPA, 1998), nevertheless, these techniques have the ability to overcome
these major flaws of standard, non-spatial procedures.

Our proposed method for exposure characterization hinges on spatial regression, which
provides efficient parameter estimates (i.e., minimal error variance) by taking into account
the spatial dependence in the data. The development of our model is based on a prelimin-
ary geostatistical analysis (i.e., Kriging), which serves two purposes: to aid in producing an
accurate spatial interpolation of the sample points, and to assist in estimating the extent
(range) of the spatial dependence in the data. Our exposure analysis is conducted within
a GIS (Geographic Information Science) framework, which allows us to integrate different
spatial analytical techniques and to effectively visualize our results, enhancing the potential
of ERA as a planning and management tool. The goal of this study is the definition and
calibration of spatial bioaccumulation models as a step in the development of an ERA
framework that explicitly considers the role of spatial factors in the estimation of expo-
sure. Our multivariate bioaccumulation regressions (one for each organic and inorganic
micropollutant) model the relationship between bioaccumulation in clam tissues and the
environmental characteristics of the sediment. We demonstrate how the coefficients esti-
mated by the regression models can be used to characterize exposure at locations where
only sediment variables are known.

We chose a complex case study, characterized by local anomalies and inconstant spatial
variability, and by scarcity and clustering of the sampled data: such characteristics, which
tend to hamper the validity of statistical models, are rather the norm than the exception in
applied ERA. The case study allows us to demonstrate the value of the proposed method:
the integration of spatial analytical techniques, to obtain efficient estimation of variables in
sampled and under-sampled areas.
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Section 1.1 describes the study region and data. Section 2 presents the methods applied:
exposure characterization (Section 2.1), and spatial analysis, i.e., geostatistics and multi-
variate spatial regression (Section 2.2). Section 3 illustrates the application of spatial ana-
lytical tools to the case study, discussing the choice of techniques and the underlying
hypotheses. Results of geostatistics, spatial regression, and a coefficient-based estimation
of exposure at under-sampled locations are also presented in Section 3. A discussion of the
methods, case study, and results is presented in Section 4.

1.1. Study area, background, and data

The Venetian lagoon, ca. 550 km2, hosts a great variety of natural habitats; both the
historical center of Venice and the surrounding lagoon (Fig. 1) are UNESCO world her-
itage sites. Due to its strategic importance as a natural defence and a privileged harbour
for the Republic of Venice, a conscious effort to preserve the lagoon began in the Middle
Ages: man-made transformations that took place over several centuries have enhanced
and at the same time endangered the diversity of the natural environment. Early manage-
ment practices were mainly of hydraulic nature, aimed at preserving the lagoon from
becoming either eroded or filled with river-borne material; these activities culminated in
major river diversions in the 16th century and are still on-going. In the early 20th century
a chemical industrial plant, Porto Marghera (the second largest of its kind in Europe)
was established on the edge of the lagoon; as a consequence, large amounts of organic
and inorganic pollutants have been discharged in the lagoon, resulting in sediment
contamination.

Through the bioaccumulation process, chemical pollution represents a stressor for the
ecosystem, particularly for organisms living in contact with sediments. Moreover, the bio-
accumulated chemicals in organisms that live in the sediment are likely to be biomagnified
through the food chain, reaching higher concentrations in species at the top level. This
raises concerns with respect to human health, since some of those organisms (e.g., clams,
as well as other shellfish) are subject to human consumption. Further concerns arise when
economic factors are considered, because most edible species are valuable economic
resources: the Venice lagoon is, presently, the main producer of clams (Tapes philipinarum)
in Europe. In this context, several environmental management options, such as the regu-
lation of contaminant concentration in industrial and municipal discharge and the defini-
tion of lagoon zones for fishing and aquaculture, are still open.

For the definition and calibration of bioaccumulation models of pollutants in clam tis-
sues, clam data (dependent variable), as well as sediment data (independent variables) were
collected. Clam data were obtained from two sources. Dataset A (23 sample points) was
collected as part of a project managed by Consorzio Venezia Nuova and funded by the
Venetian Water Authority (Magistrato alle acque); for this project, ‘‘Mapping the pollu-
tion of the lagoon bed’’ (1999), data were collected on the concentration of metals
(mercury, arsenic, lead, cadmium, copper, zinc, nickel, chromium), as well as organic
micro-pollutants (polychlorodibenzo dioxins and furans -PCDD/Fs-, polychloro biphe-
nyls -Total PCBs-, and the sum of dioxin-like polychloro biphenyls congeners -PCBdl-)
in the superficial sediments of the lagoon (15 cm depth) and in the tissue of clam (T. phil-

ipinarum). Dataset B (30 sample points) consists of data on metal concentrations in clam
tissue, collected by the Health Authority of the Veneto Region in 1997. After verifying
their homogeneity by means of exploratory analyses, datasets A and B were merged,



Fig. 1. Overview of the lagoon; clam and sediment sampling stations.
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resulting in 53 samples for metals, and 23 samples for organic micropollutants. It should
be noted that most of the sampling stations are located in the north and central-south
lagoon, where clam farming is currently practiced or planned (Fig. 1). For sediment data,
95 sampling stations are used, which provide information on both metals and organic
micropollutants. These samples were also selected by the Venetian Water Authority due
to the high quality of the data: the sample plan is consistent and certified by Quality Con-
trol and Quality Assurance procedures for sampling and analysis (sample points do not



Table 1
Descriptive statistics of pollutant concentration in clam tissues

Pollutants (mg/kg, w.w.) Mean Standard
deviation

Minimum Maximum Kurtosis Sample size

Metals
Arsenic, As 3.8 1.3 1.5 7.4 0.5 53 (A + B sets)
Cadmium, Cd 0.12 0.084 0.008 0.33 �0.45
Chromium, Cr 0.31 0.07 0.15 0.47 �0.27
Mercury, Hg 0.05 0.02 0.02 0.11 0.45
Nickel, Ni 0.79 0.36 0.17 1.87 0.97
Lead, Pb 0.28 0.18 0.05 0.97 3.8
Copper, Cu 1.58 0.4 0.89 3 2.3
Zinc, Zn 15.3 4.26 7.7 29.5 1.6

Organic compounds
Sum of dioxin like
PCBs congeners

1017 720 51 2555 �0.83 23 (A set)

Total PCBs 5.33 3.5 0.4 13 �0.99
PCDD/Fs 7.8 12.4 0.53 59 14
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include industrial canals, which would represent an artificial environment whose sediment
and contamination characteristics are not comparable with the natural conditions of the
lagoon bed). The selected sampling stations are representative of the entire environment,
including habitats characterized by different end-uses and environmental characteristics
(e.g., contamination, hydrodynamic, etc.). It should be emphasized that small sample sizes
and clustered sampling stations are frequent occurrences with this type of data, where col-
lection and analysis are very expensive, and collection campaigns are conducted infre-
quently and for different purposes.

Selected descriptive statistics of the database used for analysis are presented in Table 1.
The software used is Statistica 5 (kurtosis statistic is estimated anchoring the result around
zero).

Generally, for purpose of risk assessment, concentration of mixtures of PCBs and
PCDD/F congeners in both biotic and abiotic environmental matrices are expressed in
Toxicity Equivalents (TEQ) (Im et al., 2004; Van den Berg et al., 1998). However, the
TEQ is an expression of toxicity, rather than one of congener bioaccumulability, and
for this reason the estimation of regression models based on TEQ can be misleading.
Moreover, the analysis of data on individual congener concentrations shows that the
relative contribution of individual congeners (in percentage over the sum of congener
concentrations) is similar in sediments and clams, suggesting a direct relation between
sediments and clams. Once the regression models have been estimated for each congener,
the estimated values of congener tissue concentrations can be converted to TEQ to com-
plete the risk assessment procedure.

2. Methods

2.1. Exposure characterization

Our primary objective is the characterization of benthic organism exposure based on
site-specific estimation of bioaccumulation. Our method involves the calibration of a multi-
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variate spatial regression model, which will be used to extrapolate estimate values for un-
sampled locations within the lagoon.

Pollutant bioavailability is a prerequisite for the occurrence of bioaccumulation, and
generally only the dissolved fraction of pollutants is fully bioavailable. The main factors
that affect bioavailability are: pollutant concentration in the sediment; physical–chemical
properties of compounds; sediment characteristics, such as total organic carbon fraction
(TOC), fine particle (diameter < 0.063 mm) fraction (ff), and pH; and organism biological
characteristics, such as body weight (W) and lipid fraction (L).

For instance, hydrophobic pollutants are strongly associated with organic matter (i.e.,
total organic carbon) and fine particle fraction (e.g., clay). These properties suggest that an
increase in fine fraction and organic matter content in the sediment will result in decreased
bioavailability of hydrophobic compounds (US-EPA, 1998). Inorganic pollutant bioavail-
ability is affected by metal speciation, depending mainly on the oxidation state and pH of
the sediment (Mountouris, Voutsas, & Tassios, 2002). Biological factors, such as body
weight and lipid fraction in organism tissues, are also expected to affect bioaccumulation:
weight is an indicator of body growth, which implies dilution of pollutants present in tis-
sues; a greater lipid fraction involves a larger amount of accumulated hydrophobic pollu-
tants (Gobas, 1993).

In kinetic bioaccumulation models, the uptake and elimination rates are estimated by
applying allometric equations that link the bioaccumulation of pollutant in an organism
to the organism�s weight (Mendez, Giudice, Pereira, Inocente, & Medina, 2001), as shown
in (1):

Cb ¼ aW b ð1Þ
where Cb is the pollutant concentration in the organism�s tissues, W is the organism�s
weight, and a and b are regression coefficients.

This type of model focuses on assessing the organism�s uptake and elimination rate,
whereas the focus of this paper is on the relationship between bioaccumulation and envi-
ronmental properties; therefore, we prefer a model formulation that focuses on such rela-
tionships. Pollutant concentration in the sediment is expected to be the main factor
affecting the organism�s exposure: it should be the most significant variable and present
a positive sign. Conversely, total organic carbon (TOC), fine fraction (ff) and pH, which
tend to reduce pollutant bioavailability, are expected to be negatively correlated with bio-
accumulation. We consider multivariate spatial regression models the most appropriate
tools, because they provide reliability of estimation parameters (Section 2.2.2), and direct
estimation of bioavailability, by integrating exposure with uptake through several path-
ways (water, sediment, food).

Exposure characterization based on pollutant residuals in organism tissues has been
employed with increasing frequency (Munns et al., 1997), also supported by the recent
acquisition of residue-effect relationships (Jarvinen, Nordling, & Henry, 1983; Montanes,
Van Hattum, & Deneer, 1995; Serrano, Hernandez, Pena, Dosda, & Canales, 1995).

2.2. Spatial analysis

By the term spatial analysis we refer to a set of methods developed by quantitative
geographers in order to address the properties of spatial data, particularly those that have
an adverse effect on models and estimates. Perhaps the most critical of such properties is
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spatial dependence, informally described as ‘‘near things tend to be more related than dis-
tant things’’ (Tobler, 1979): the presence of spatial dependence in a dataset increases the
variance of most statistical techniques, hampering the reliability of the estimates.

Spatial analytical techniques are based on a set of assumptions on the spatial distribu-
tion of the phenomenon under consideration, often referred to as a spatial process (Gat-
rell, 1983). Most spatial analytical techniques, including spatial regression, assume that the
spatial process under examination is (1) stationary (Section 2.2.1) and (2) isotropic. In less
formal terms, these assumptions require that the effect of distance be (1) constant over the
entire study area and (2) direction-invariant. Additionally, multivariate techniques, such
as spatial regression, assume these properties for all the spatial processes involved, each
process represented by one (dependent or independent) variable. Both assumptions (1)
and (2) are rarely met by empirical data, and variables in our study area are no exception.

Indeed, the Venetian lagoon is a complex environment, where a number of factors affect
the spatial variability of the sediment and its properties: varying bed depth, discontinuities
such as channels and islands, currents, tide, river mouths and winds; a wide range of
human activities, including industrial productions, fishing and fish farming, as well as
commercial, recreational, and public transit navigation. All these factors, in turn, impact
on the distribution and representativity of any data sample. Primarily, it should be noted
that data collection and analysis is expensive and collection campaigns are conducted
infrequently and for different purposes. Additionally, the apparent irregularities in the spa-
tial distribution of the sample reflect in part local anomalies (e.g., islands or channels), and
in part environmental conditions, i.e., samples are clustered in areas that are suitable for
clam fishing and/or farming. All these elements have an impact on the properties of the
sample, i.e., spatial dependency and stationarity, and ultimately affect the properties of
the regression models. Paradoxically, all these features, which may appear as shortcomings
of one case study, are common in applied environmental analyses: they do hamper the
properties of the regression models and the inferential procedures, but they do, at the same
time, point to some of the shortcomings of the currently available analytical tools. It
should be reiterated that, even though the assumptions about spatial dependency may still
be too simplistic, the inclusion of any kind of assumption on spatial dependency brings the
model one step closer to reality than the conventional practice of ignoring spatial depen-
dency entirely.

2.2.1. Geostatistics: Kriging

Geostatistics is a branch of applied statistics that focuses on the spatial context and the
spatial relationships among data. It provides tools for the quantification and exploitation
of spatial autocorrelation, and algorithms for data interpolation and uncertainty quanti-
fication (Isaaks & Srivastava, 1989). A unique aspect of geostatistics is the use of spatial
variables that describe phenomena with a geographical distribution (e.g., sediment concen-
tration of pollutants). Even though such phenomena (or spatial processes) exhibit various
degrees of spatial continuity, it is not always possible to sample them at every location.
Therefore, unknown values must be estimated from data taken at specific locations that
can be sampled: geostatistical procedures can be used to estimate values of a surface at
the nodes of a regular grid from irregularly spaced data points.

One of the spatial analytical techniques employed in this work is a geostatistical inter-
polator: Kriging. Unlike in standard inverse distance weighted interpolators, Kriging
weights are based not only on the distance among points, but also on their attribute.
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The ordinary Kriging estimator is a weighted average of the data values. The weights are
obtained as a solution to a system of linear equations; this system is derived by placing two
constraints on the estimator: (1) it should be unbiased, (2) the variance of the estimation
error should be minimal. The calculation of the Kriging weights is based upon the estima-
tion of a semivariogram model, described by (2):

cðhÞ ¼ 1

2
Var½zðsþ hÞ � zðsÞ� ð2Þ

where h is a vector and h P 0 (Haining, 1997). The estimation of a semivariogram model
relies on two important assumptions: that the quantity c(h) exists and is finite for all
choices of h and s, and that it does not depend on s. The latter property is known as intrin-
sic stationarity. The Kriging estimator is unbiased and has minimum error variance. The
ordinary Kriging estimator is presented in (3):

Zðx; yÞ ¼
Xn

i¼1

wizi ð3Þ

where n is the number of considered measures, zi are the corresponding attribute values,
and wi are the weights (Isaaks & Srivastava, 1989).

In order to model the variogram, some key features of the empirical variogram are
identified that reflect the properties of the spatial process under examination; the process
of assessing such properties is known as structural analysis (Davis, 2002). For the present
application, the most important model feature is the range, or the distance at which an
increase in the separation distance between pairs no longer causes a corresponding
increase in the average squared difference between pairs of values and the variogram
reaches a plateau (Isaaks & Srivastava, 1989). We interpret the range as an indicator of
the extent of the spatial dependence in a process, and use this value in spatial regression
models, to define the contiguity threshold that discriminates between spatially dependent
and independent observations (Section 2.2.2). Semivariograms and Kriging were com-
puted in GS+ 5.1 (Gamma Design Software, 2001).

2.2.2. Spatial regression analysis

Spatial regression analysis is designed to address the property of spatial dependence,
which is commonly present in spatial processes (Anselin, 1998), tending to inflate the var-
iance of standard regression estimates. Even though the concurrent presence of spatial
dependence and spatial non-stationarity is common in applied analysis, current regression
methods can be grouped in two major categories: spatial autoregressive methods (Anselin,
1988), which specifically address spatial dependence, but typically disregard non-stationa-
rity; and geographically weighted methods (Fotheringham, Brundson, & Charlton, 2002),
which address non-stationarity but typically disregard spatial dependence. In our context,
estimates of independent variables at un-sampled locations depend strongly on a stationa-
rity assumption. Additionally, it is our goal to estimate exposure values in under-sampled
areas using the coefficients of a regression model, which contradicts the emphasis of geo-
graphically weighted regression on microscale local relationships. Therefore, we deem spa-
tial autoregressive models most appropriate for this work. Exploratory spatial analyses on
our data support this choice: spatial autocorrelation tests confirmed the presence of spatial
dependence in most variables, while Monte Carlo simulations indicated that the null
hypothesis of stationarity cannot be rejected.
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Spatial dependence implies a redundancy of information that increases the variance
(uncertainty) associated with the parameter estimates. The presence of spatial dependence
in the data affects the model properties by introducing non-null off-diagonal elements in
the variance matrix: in the presence of variance larger than the minimum, parameter esti-
mates are inefficient. Large parameter variance inflates classical inferential tests, resulting
in a more frequent rejection of the null hypothesis. As a consequence, inefficient parameter
estimates are not only unreliable, but potentially misleading. A solution to this problem is
provided by spatial regression, through the estimation of an inverse of the variance matrix.
The core of the model is an autoregressive procedure, which accounts for the influence on
each observation of a number of neighbouring points, weighted by a contiguity matrix.
One of the most delicate steps of spatial regression analysis is the specification of an appro-
priate contiguity, or neighbourhood, matrix (Bertazzon, 2003). The spatial regression
equation is described by (4).

Y ¼ Xbþ qWY þ e ð4Þ
where q is the autoregressive parameter and W represents the contiguity matrix. In its
simplest form, W is a binary structure, while some more complex specifications include
various types of weights that describe distance decay effects (Bailey & Gatrell, 1995).

There are several ways of specifying spatial contiguity (Getis & Aldstadt, 2004). In this
study, we propose the use of a semivariogram (Section 2.2.1), as a model of spatial depen-
dence. The semivariogram provides a threshold, or range of spatial dependence, which is
used here to define the matrix W as a tool to discriminate between spatially dependent and
independent observations. As summarized in (5), observations separated by a distance not
greater than the range are defined as spatially dependent, and observations located at a
greater distance are defined as independent.

wij ¼ 1 if dij 6 r

wij ¼ 0 if dij > r
ð5Þ

where r is the semivariogram range, and dij is the distance between observations i and j.
While this method is common in geographical analysis, alternatives include spatial models
directly based on a variogram-like model for the correlation matrix (Grondona & Cressie,
1991). The regression analysis was performed in Splus 6 and S+SpatialStats 1.5.

3. Application and results

3.1. Kriging interpolation and semivariogram ranges

Geostatistical analysis plays an essential role throughout this study: after using Kriging
to interpolate and estimate sediment values, semivariogram ranges are used to define con-
tiguity matrices in spatial regression models; finally, Kriging is used again to interpolate
regression model predictions and visualize their results, in order to provide a continuous
representation of contaminant distribution from punctual experimental values (Jarvis,
Stuart, Baker, & Morgan, 1999; Juang & Lee, 1998; Leonte & Schofield, 1996; Nathanail,
Ferguson, & Brown, 1998).

Spatial regression analysis assumes that observations on all variables are taken at the
same spatial locations. Datasets that satisfy this assumption are rare in environmental
as well as in socio-economic research, and in our case study, most of the clam sampling
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stations do not coincide with the sediment sampling stations (Fig. 1). Given the larger size
of the sediment sample (95 observations vs. 53 observations for metals in clam tissues and
23 for organic pollutants in clam tissues), the distance between clam samples and sediment
samples in general is relatively small. Prior to the specification of the regression model, a
preliminary Kriging interpolation was performed, to estimate the values of the sediment
variables at the clam sample locations. The use of interpolated values for explanatory vari-
ables induces an additional element of variability in the regression model, since the esti-
mated values may include interpolation errors. Estimated variables are stochastic by
construction, and their use in a regression model violates one of the fundamental assump-
tions of the model (i.e., independent variables should be non-stochastic). In general, mea-
surement error in explanatory variables may result in non-zero correlation between the
variable and the error term, which in turn results in biased and inconsistent estimates.
The classical solution to this problem is the use of instrumental or proxy variables, chosen
for their high correlation with the explanatory variables and uncorrelated with the error
term (Gujarati, 2003). Identifying proxy variables is often a problem, and certainly no
such data was available for our work. We chose to use estimated values, and the implica-
tions of this choice are discussed in Section 3.2.

The parameters of the semivariogram models for the independent variables are pre-
sented in Table 2, while diagrams are plotted in Fig. 2. These models were chosen based
on RSS (Residual Sum of Squares) provided by GS+ software. In all cases the model was
assumed to be isotropic; we performed block Kriging, assuming a circular search radius,
with a range equal to the semivariogram range, and a maximum number of 6 neighbours.

Of the environmental variables, fine fraction (ff) and pH are best fitted by an exponen-
tial model, characterized by an almost negligible nugget effect, and similar range values;
total organic carbon is fitted by a spherical model, with a more prominent nugget effect,
and a larger range. Two of the three organic compounds (PCBdl and PCDD/Fs) are fitted
Table 2
Semivariogram models

Sediment variables C0 C + C0 Range Model

Metals
Arsenic 4.30 40.84 14,800 Sph.
Cadmium 0.04 0.32 30,180 Exp.
Chromium 0.10 186.10 6150 Exp.
Copper 0.10 115.70 9390 Exp.
Lead 0.10 258.60 5450 Sph.
Mercury 0.05 0.22 20,700 Exp.
Nickel 5.62 36.81 7950 Exp.
Zinc 2020.00 8820.00 15,230 Sph.

Organic compounds
Sum of dioxin like PCBs 0.42 1.92 5940 Exp.
Total PCBs 24.10 121.53 13,286 Linear
PCDD/Fs 0.27 1.33 8040 Exp.

Sediment characteristics
Total organic carbon 0.09 0.48 12,020 Sph.
Fine fraction 1.00 693.50 6960 Exp.
pH 0.01 0.07 5610 Exp.



Fig. 2. Variogram diagrams for environmental variables, organic and inorganic compounds.
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by exponential models, and Total PCBs by a linear model; all the organic compounds
present a non-negligible nugget effect. For six of the eight metals, the best model is expo-
nential, while a spherical model best fits arsenic and lead. Metals tend to present low nug-
get values, with the exception of zinc and mercury and, to a lesser extent, cadmium and
arsenic.

Exponential models suggest a gradual increase of the semivariance as a function of dis-
tance, implying that spatial dependence declines at a steady rate with increased distance.
This trend is particularly evident in the cadmium and mercury models, which almost
approach a linear function; a similar trend is noticeable in the spherical model of zinc.
The spherical model of lead presents the most abrupt transition from presence to absence
of spatial autocorrelation, while a smoother transition is associated with the larger ranges
of zinc and arsenic. The differences in model (e.g., exponential, spherical, linear) and range
for the pollutants (i.e. pollutant sediment concentration) and the environmental variables
(i.e. pH, TOC, ff), suggest that there are some environmental processes affecting the distri-
bution of pollutants. The main factors could be the type of source (e.g., point or diffuse,
natural or artificial), the rate of water exchange in lagoon zones (i.e., confinement degree),
and the transport of resuspended sediment (Facca, Sfriso, & Socal, 2002). All these factors
simultaneously determine the pollutant distribution in the lagoon environment. For
instance, a point source of an organic pollutant (e.g., a river mouth) in combination with
a confined area may produce a high sediment concentration in a limited zone of the
lagoon, resulting in a short range value and a steep model. On the contrary, a diffuse
source of the same pollutant, such as atmospheric deposition (Guerzoni, Rossini, Molin-
aroli, Rampazzo, & Raccanelli, 2004), may lead to a more homogeneous distribution of
pollutant concentration in sediments. Finally, sediment re-suspension and transport dis-
tribute over the whole lagoon the organic pollutant adsorbed to organic matter and fine
fraction.

Range values represent an indication of the extent of the spatial dependence in each
variable, and for this reason they will be used in defining the contiguity matrix for the spa-
tial regression models. Typically, the range of the dependent variable should represent the
spatial dependence of the spatial process of interest; in this case study, the range of the
variogram of each pollutant in the sediment is used instead of the range of the pollutant
in the clam (dependent variable), which can only be estimated on 23 points for organic
compounds, and on 53 points for inorganic compounds. However, ranges of clam and sed-
iment variables present a considerable consistency for organic compounds; specifically, for
PCDdl the range is 5940 m for the sediment, and 6460 m for the clam.

3.2. Spatial regression

One spatial regression model is calibrated for each micropollutant: the model specifica-
tion and the expected sign and significance of explanatory variables are discussed in Sec-
tion 2.1. For inorganic micro-pollutants in clam (IMPc) the model includes sediment
contaminant (SC), total organic carbon (TOC), fine fraction (ff), and pH:

IMPc ¼ b0 þ b1SCþ b2TOCþ b3ff þ b4pHþ e ð6Þ
For organic micro-pollutants in clams (OMPc), in addition to the above explanatory

variables, the model includes biological characteristics of the organisms, i.e., body weight
(W) and lipid fraction (L).
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OMPc ¼ b0 þ b1SCþ b2TOCþ b3ff þ b4pHþ b5W þ b6Lþ e ð7Þ

To fully take into consideration the cross-correlations among independent variables, a
backwards model selection procedure was applied, and variables were retained or dis-
carded based on the values of their t-statistic (Legendre et al., 2002). The estimation
method used in S-plus is maximum likelihood: in addition to the standard output we pro-
vide a more intuitive goodness-of-fit index, a pseudo-R2 (Anselin, 1993), computed as the
squared correlation between observed and estimated values of the dependent variable. The
pseudo-R2 index is important in Ecological Risk Assessment, because it is used by the
United States Environmental Protection Agency (US-EPA) to assess regression models:
regression models for bioaccumulation processes are considered acceptable by the US-
EPA (2000) when R2 exceeds 0.20 in value.

The application of spatial regression analysis evidenced a considerable difference in
goodness-of-fit between inorganic pollutant models and organic pollutant models. Two
of the three organic pollutant models present pseudo-R2 values above 0.5, and the signif-
icance of explanatory variables and the sign of their coefficient are generally consistent and
interpretable. The eight inorganic pollutant models present values consistently below 0.25;
the set of significant variables varies across models, and the signs of the coefficients are
inconsistent. In conclusion, the inorganic pollutant models give inconsistent results, con-
tradictory with the expectations, making their interpretation difficult. Regression models
for the bioaccumulation of organic pollutants are presented in Table 3.

The most significant explanatory variables for Total PCBs and the sum of dioxin-like
PCB congeners (PCBdl) are sediment contaminant (SC), total organic carbon (TOC),
and fine fraction percentage (ff); for PCDD/Fs the significant variables are sediment con-
taminant and fine fraction. Regression models for organic compounds present relatively
high values of pseudo-R2 (greater than 0.5 for Total PCBs and PCBdl) (Table 3), suggest-
ing that the models are suitable predictors of exposure values. Indeed, in both PCB models
the sign and significance of coefficients are consistent with our expectations: total organic
carbon (TOC) and fine fraction (ff) are inversely correlated with bioaccumulation of
organic pollutants. The most significant explanatory variables are TOC and ff, consistent
with the chemical-physical characteristics of hydrophobic organic pollutants, since it is
known that the most important factor in controlling the bioavailability of hydrophobic
compounds is their adsorption of particulate matter. The role of biological variables (body
weight and lipid fraction) is generally negligible, and this can partly be ascribed to the
extreme variability of individual characteristics of organisms, also influenced by environ-
mental conditions (e.g., temperature and dissolved oxygen).

An appropriate estimation of the spatial dependence in the data is crucial for the spec-
ification of efficient spatial autoregressive models: the contiguity matrix, W, (Eq. (4))
translates the spatial dependence structure into the autoregressive model. For each spatial
regression model, the range of the semivariogram of the spatial process of interest (depen-
dent variable) should enter in the contiguity matrix (W) as the maximum distance para-
meter (w), or the threshold between autocorrelated and uncorrelated spatial units (Eq.
(5)). While this criterion provides an indication of the extent of the spatial dependence
in one variable (typically the dependent), it does not consider the spatial dependence in
any other variable, nor the cross-correlation among variables (Section 3.1). As the struc-
tural analysis (Section 3.1) indicates, ranges of pollutants vary substantially, and in some
cases they differ considerably from ranges of environmental variables (Table 2).



Table 3
Spatial regression models for organic micropollutants

Intercept Pollutant
in sediment

Total organic
carbon

pH Fine fraction Weight Lipid content pseudo-R2 Log likelihood

PCB dioxin-like Coeff. 2165.97 0.21 �223.47 �7.87

0.54 �174.90S.E. 257.7653 0.0327 52.3602 3.9314
(t value) 6.41 �4.27 �2.00
p(t) 0.00 0.00 >0.05 0.06 >0.05 >0.05

PCB total Coeff. 9.50 0.27 �1.46

0.52 �56.47S.E. 1.0404 0.0523 0.2785
(t value) 5.09 �5.26
p(t) 0.00 0.00 >0.05 >0.05 >0.05 >0.05

PCDD/F Coeff. 70.48 0.02 �0.73

0.22 �97.60S.E. 6.8796 0.0141 0.0809
(t value) 1.72 �8.89
p(t) 0.10 >0.05 >0.05 0.00 >0.05 >0.05
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To address such potential inconsistencies, we experimented with several w values, in
order to assess the robustness of the spatial regressions to variations in the specification
of the contiguity matrix. The results of this test on the PCBdl model are summarized in
Fig. 3, where a few selected indicators are compared. Residual standard error is an indi-
cator of the model variance, the autoregressive parameter, rho, is an indicator of the sig-
nificance of the autoregressive term, and the logarithm of the likelihood can be read as an
indicator of goodness-of-fit of the model. Values in Fig. 3 are standardized and scaled for
comparability.

The w value of 1500 m is the lowest for which the autoregressive model can be com-
puted in Splus; 12,020 m is the largest range of a variable (total organic carbon) in the
model. Additional experiments for w values up to 40,000 m show no substantial variation
in any of the indicators beyond 15,000 m.

Fig. 3 suggests that the model is robust to variations in the contiguity matrix, as vari-
ations in the w parameter have only minor effects on the autoregressive term and the error
variance, as well as on the model�s goodness of fit. This is true only for w values beyond a
threshold of approximately 6000 m, which can be reasonably interpreted as the range of
the pollutant (6460 m in clams, 5940 m in the sediment). The symmetric trends of the auto-
regressive parameter and the residual standard error also suggest that the autoregressive
model effectively reduces the variance in the model estimates. A local optimum (i.e., a min-
imum of the residual standard error and a maximum of the autoregressive parameter) can
be observed at approximately 6000 m, providing strong support for the use of the range of
the dependent variable as the distance threshold parameter in the contiguity matrix. A sec-
ondary local optimum at approximately 12,000 m can be related to the range of total
organic carbon (12,020 m), which is the most significant variable in the regression after
the contaminant in sediment. The backwards model selection procedure produces consis-
Fig. 3. Model summaries for varying distance threshold in the contiguity matrix.



Table 4
Correlation between model error and independent variable estimation error

Dioxins PCB total PCB dioxin-like

Correlation Spatial
regression
model residual

Correlation Spatial
regression
model residual

Correlation Spatial
regression
model residual

Kriging standard
deviation

TOC 0.05 TOC �0.38 TOC �0.37
ff �0.03 ff �0.43 ff �0.32
pH 0.04 pH �0.50 pH �0.40
Dioxins 0.03 PCB total 0.48 PCBdl �0.42
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tent results for w parameters above the 6000 m threshold; on the contrary, for w values
below 5807 m the fine fraction is not significant. These results suggest that w values equal
to or greater than the range of the dependent variable produce efficient and accurate mod-
els, and a marginally better model is obtained for a w value exactly equal to the range. Val-
ues of w lower than the range should be avoided.

As discussed in Section 3.1, sediment values at clam sampling stations were estimated
using Kriging interpolation, and this procedure may have induced non-zero correlation
between independent variables and model error. As we are not aware of formal inferential
procedures to test such correlation, we propose to assess this relationship by analyzing the
correlation between model errors and interpolation errors in the estimation of the local
values, where the latter error is represented by the Kriging standard error. Since all the
correlations (Table 4) are no greater than 0.5, we conclude that the estimated variables,
albeit stochastic, are independently distributed with respect to the model error. While in
principle this method constitutes a violation of the regression model assumptions, these
empirical results indicate that the use of these variables will not hamper the regression
estimates.

We considered testing the regression model on a number of interpolations, based on dif-
ferent variogram models, to ensure the robustness of the model. Given the limited sample
size, however, we ere able to obtain only very few acceptable variogarm models, and t-tests
showed no significant difference among the respective interpolations.

A multiplicative, power specification of the bioaccumulation model is discussed in Sec-
tion 2.1. We believe a linear, multivariate specification, i.e., (Eqs. (6) and (7)), to be an
appropriate test of the relationships between bioaccumulation and environmental vari-
ables. Following the bioaccumulation literature (Heikens, Peijnenburg, & Hendriks,
2001; Perceval et al., 2002; Sonesten, 2003), a log–linear (log(y) = f(x)) and a log–log
model (log(y) = f(log(x))) on the SC (sediment contaminant) variable were also tested.
Table 5 summarizes the results of the linear, log–linear, and log–log models for PCBdl.

Variations in the pseudo-R2 are only minor, while fewer variables are significant in the
logarithmic models. Neither of the logarithmic specifications shows any appreciable
improvement over the linear model, therefore we preferred the latter, for its simplicity.

Fig. 4 presents the spatial distribution of the predicted bioaccumulation of PCBdl (the
23 clam sampling stations are also posted).

Fig. 4 provides some important insights: the spatial distribution of pollutant sediment
concentration suggests that the main source of the PCBdl in the lagoon is the industrial
area (Porto Marghera), located in the central lagoon. Secondary effects are played by



Table 5
Linear, log–linear, and log–log models for PCBdl

Intercept PCBdl in
sediment

Total organic
carbon

pH Fine fraction Weight Lipid content pseudo-R2 Log likelihood

Linear model Coeff. 2165.97 0.21 �223.47 �7.87

0.54 �174.90S.E. 257.7653 0.0327 52.3602 3.9314
(t value) 6.41 �4.27 �2.00
p(t) 0.00 0.00 >0.05 0.06 >0.05 >0.05

Log–linear model Coeff. 6.1815 0.0002

0.49 �28.17S.E. 0.2573 0.0001
(t value) 2.6658
p(t) 0.0148 >0.05 >0.05 >0.05 >0.05 >0.05

Log–log model Coeff. 3.5024 0.5893 �0.0151

0.56 �25.69S.E. 1.2345 0.1663 0.0072
(t value) 3.5428 �2.0892
p(t) 0.0022 >0.05 >0.05 0.0504 >0.05 >0.05
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Fig. 4. PCBdl bioaccumulation values predicted by the spatial regression model.
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the watershed contributions: two areas appear to be particularly affected: the first is
located in the south lagoon, near Chioggia, while the second is located in the north lagoon,
corresponding to the Dese and Sile river mouths. Clam bioaccumulation estimated by
regression models shows that the PCBdl reaches the highest tissue concentration in organ-
isms located in the south lagoon and in front of the industrial area. It is suitable also to
focus monitoring and sampling campaigns in these two areas, thickening the sampling
grid. This strategy may be particularly valuable in instances, such as our case study, where
data collection and analysis are expensive.
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The final step of our method is the use of the coefficients calculated by spatial regression
models to characterize exposure at under-sampled locations: we demonstrate this proce-
dure on the PCBdl model. Bioaccumulation of the PCBdl in clam tissue is a positive func-
tion of the pollutant concentration in the sediment, and a negative function of total
organic content (TOC) and fine fraction (ff).

PCBdlc ¼ 2165:97þ 0:21PCBdls � 223:47TOC � 7:87ff ð8Þ
Fig. 5. Coefficient-based estimation of PCBdl bioaccumulation values.
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The coefficients in Eq. (8) are used estimate exposure values at locations where only sed-
iment variables were sampled: this allows us to estimate exposure values directly from the
model (as opposed to interpolating values) for 95 sample points, since only sediment data
are necessary for this calculation. Fig. 5 shows PCBdl bioaccumulation values calculated
from Eq. (8) on sediment sample points (95 sediment sampling stations are also posted).
Fig. 6. Residuals of spatial regression model and of coefficient-based estimation.
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Due to the different spatial samples for the two sets of variables, we are not able to pro-
vide a quantitative assessment of the difference between the predictions in Figs. 4 and 5:
map calculations that compute the difference between the two surfaces are based on inter-
polated values, and statistical tests such as t or v2 tests would not account for the location
of values; therefore, we only present, in Fig. 6, a comparison of the residuals of the spatial
regression model and the residuals of the coefficient-based estimation at the 23 clam sam-
ple points -sediment values are, however, estimated (Section 1.1). In the background is a
Kriging interpolation of the observed data.

A comparison between the clam data surface, in the background of Fig. 6, and the coef-
ficient-based surface, derived only from sediment data, in Fig. 5, highlights the main dis-
crepancies between the spatial distributions of clams and sediment variables.

Figs. 4–6 present Kriging interpolations of spatial regression predictions, coefficient-
based predictions, and clam data, respectively: all these surfaces are represented using a
consistent classification, to facilitate their comparison.

4. Discussion

The contributions of our research can be summarized in two main directions. The first
is the demonstration of the application of spatial analysis in ERA as a more adequate tool
than standard methods; the experiment succeeds in producing meaningful and reliable
models that link organism bioaccumulation (receptor) not only to contaminants, but also
to the properties of the medium (sediment) where the bioaccumulation process takes place.
The second is the development of an integrated procedure to address the inadequacies of
sampling for multiple variables; the main result is the provision of a complete protocol to
estimate spatial parameters and characterize exposure at under-sampled locations; the
procedure is feasible within the assumptions of the spatial regression and geostatistical
methods.

The choice of spatial regression models is supported by evidence of spatial autocorre-
lation in most dependent and independent variables. Comparing standard and spatial
regression models, we cannot prove conclusively the superiority of spatial regression mod-
els for the sample data: for example, standard errors of the regression coefficients and
residual standard errors do not consistently indicate a significant difference between the
variance of spatial models and standard models. We believe that such lack of consistency
may be largely attributed to the small size of our samples. An important result emerges
from the backwards model selection process: significant variables in spatial regression
models tend to be much more consistent throughout the various models, and coherent
with theoretical expectations, while erratic and less interpretable sets of variables result
significant in standard regression models. Additionally, environmental variables (TOC,
ff, and pH) tend to be more significant in spatial than in standard regression models.
For example, the significant variables in the spatial regression for PCBdl are SC, TOC,
and ff, with negative coefficients for TOC and ff and the largest (positive) t value for SC
(Table 3). The significant variables for the standard regression model are SC, ff, W

(weight), and L (lipid fraction), but both W and L present negative signs, large coefficient
(in absolute value), and associated large standard errors.

We can conclude that standard models tend to emphasize individual characteristics,
and it is the variability of such values across individuals that inflates coefficient standard
errors. This uncertainty in the relationship results in meaningless coefficients and signs,
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such as those suggesting that bioaccumulation is greater in smaller and leaner individuals.
On the contrary, spatial regression models emphasize the role of contaminants and other
characteristics of the environment (sediment) where the bioaccumulation process takes
place. The spatially autoregressive component of the model reduces the sample variability
by means of the spatial weights: such adjustment is produced on a spatial basis, which
allows the model to capture the effect of environmental processes interacting with bioac-
cumulation. Such spatial models present lower coefficient standard errors and represent
not only efficient (reliable) but also more effective predictive tools, capable of estimating
exposure solely from environmental factors. Thanks to these features, these spatial regres-
sion models can be employed to overcome sampling gaps (as in our case study), and, per-
haps more importantly, to identify areas of potential ecological concern for other species
exposed to the same factors.

The most meaningful and satisfactory spatial regression models are those for organic
micropollutants (Section 3.2). Spatial regression models for inorganic micropollutants (met-
als) can only be viewed as a preliminary step toward site-specific analyses, but their poor per-
formance suggests that additional variables may be necessary to explain the effective
bioavailability of metals. Bioavailability is affected by sediment characteristics such as con-
centration of iron, manganese and aluminum oxides (FeOx, MnOx, AlOx) (Bendell-Young
& Harvey, 1991; Bendell-Young, Chouinard, & Pick, 1994; Bryan & Langston, 1992; Jans-
sen et al., 1997), and acid volatile sulphide (Chapman, Wang, Janssen, Persoone, & Allen,
1998), all of which should be included as independent variables.

Non-coincident sampling of multiple variables at non-coincident locations is a common
occurrence in applied multivariate analysis; the difficulties induced in multiple regression
are comparable to the case of samples drawn from spatial units that do not overlap
exactly, more frequent in the social sciences (e.g., variables sampled at postal codes and
census enumeration areas). We address this issue by integrating an optimal spatial inter-
polator, i.e., Kriging, to estimate variable values at un-sampled locations that will be used
in the spatial regression model; we suggest complementing this procedure with a test to
assess the correlation between interpolation error and regression error, since the assump-
tion of a non-stochastic independent variable cannot be met. The entire integrated proce-
dure can represent an experimental protocol for exposure characterization, as well as for
other environmental and socio-economic applications. It is important to note that this
procedure is based on the assumption of stationarity of the spatial process; as discussed
in Section 2.2.2 we tested stationarity and spatial dependence, and consequently chose a
spatially autoregressive over a geographically weighted model.

This procedure results in a characterization of exposure at under-sampled locations
based on the use of coefficients calculated by spatial regression models. Assessing the dif-
ference between this method and the regression model is not possible with the available
data: therefore, we discuss a visual comparison of Fig. 4 (regression model) and Fig. 5
(coefficient-base estimate). The two maps appear overall consistent, as both identify the
main source of PCBdl in the industrial area (Porto Marghera), in the central lagoon;
the highest PCBdl values are estimated near the industrial area and in the southern tip
of the lagoon. Due to a finer sampling grid, the coefficient-based estimation generally pro-
duces more detailed results, e.g., in the south and south-central lagoon; additionally, esti-
mates of the coefficient-based model are less influenced by the values of individual points.
Negative signs (TOC and ff) and large coefficient values (TOC) do not seem to affect the
estimated values, which appear to be overall equally conservative. More accurate estimates
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are particularly important at the local level, supporting the value of this model as a plan-
ning tool for fishing and fish farming zones. The coefficient-based model highlights some
areas of potential concern, such as the south-east edge of the lagoon and the spots just
north of the city of Venice: such zones would not emerge from the direct application of
the regression model, as they are heavily under-sampled, as shown by the sampling sta-
tions posted on the maps. Conversely, lower contamination values in the north and
north-east lagoon are confirmed by the coefficient-based estimates, derived from a much
finer sampling grid. Due to its higher environmental quality, fishing and fish farming
should be promoted in this area.

Figs. 4 and 5 summarize the results of numerous spatial analysis applications. They
provide tools to estimate exposure levels at any location, as well as to identify and analyze
hot spots. Using these tools, pollutant sources can be identified and monitored, and appro-
priate sampling and monitoring campaigns can be designed, focusing on the most prob-
lematic areas. This strategy may reduce the cost of analysis and interventions, while
improving its effectiveness (World Bank, 1997).

5. Conclusion

Using the case study of contaminated sediments in the Venetian lagoon, we demon-
strate how geographic information can and should be used to improve traditional models
for the estimation of exposure values in Ecological Risk Assessment (ERA). A complete
protocol is proposed to integrate geostatistics and multivariate spatial regression analysis
to produces efficient and reliable models. The most meaningful models are obtained for
organic compounds: organism bioaccumulation (receptor) is linked not only to conta-
minants, but also to the properties of the medium (sediment) where the bioaccumulation
process takes place. Based on the assumption of stationarity of the spatial process, we
demonstrate how spatial regression coefficients can also be used to estimate exposure
values from environmental variables at under-sampled locations.

The explicit link between the organism and the characteristics of its environment, the
reliability of the estimates, and the provision of estimates for under-sampled locations
drastically enhance the practical value of spatial models and the feasibility of their use
as effective planning tools.
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