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Research Article
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Carlos, 6627—Pampulha, 31270-901, Belo Horizonte, MG, Brazil

{Brazilian Agricultural Research Corporation (EMBRAPA), Naticonal Centre for

Environmental Monitoring (CNPMA), PO Box 69, 13820-000 Jaguariúna, SP, Brazil
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Regionalization is a classification procedure applied to spatial objects with an

areal representation, which groups them into homogeneous contiguous regions.

This paper presents an efficient method for regionalization. The first step creates

a connectivity graph that captures the neighbourhood relationship between the

spatial objects. The cost of each edge in the graph is inversely proportional to the

similarity between the regions it joins. We summarize the neighbourhood

structure by a minimum spanning tree (MST), which is a connected tree with no

circuits. We partition the MST by successive removal of edges that link dissimilar

regions. The result is the division of the spatial objects into connected regions

that have maximum internal homogeneity. Since the MST partitioning problem

is NP-hard, we propose a heuristic to speed up the tree partitioning significantly.

Our results show that our proposed method combines performance and quality,

and it is a good alternative to other regionalization methods found in the

literature.

Keywords: Regionalization; Constrained clustering; Graph partitioning;

Optimization; Zone design; Census data analysis

1. Introduction

In a significant number of geographical applications, such as socio-economic,

health, and census data analysis, data are organized as a large set of spatial objects

represented by areas. Examples of these spatial objects include census tracts, health

districts, and municipalities. In many circumstances, it is desirable to group a large

number of spatial objects into a smaller number of subsets of objects, which are

internally homogeneous and occupy contiguous regions in space. This procedure is

called regionalization, which results in new areas (called regions) with a more
comprehensive geographic extent. The idea of regionalization applied to socio-

economic units (also called the zone design) was pioneered by Openshaw (1977).

Grouping a set of homogeneous areal units to compose a larger region can be useful

for sampling procedures (Martin 1998). Regionalization is especially valuable for
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dealing with large data sets of areal units, removing fine-scale variations and

preserving relevant patterns. If properly carried out, it can produce entities that are

more useful for spatial pattern discovery than the original data set (Openshaw and

Alvanides 1999).

There are three types of regionalization techniques proposed in the literature. The

first is a two-step procedure that applies a non-spatial clustering algorithm, followed

by a neighbourhood-preserving classification. The second uses the geographical

coordinates of the location as extra attributes in the clustering procedure (Haining

et al. 2000). In these two techniques, the clustering procedure is not constrained by

the neighbourhood relationship between the areal units, being introduced either as a

second step in the method or as an indirect constraint when using coordinates as

attributes. Therefore, the resulting clusters may not properly depict the inherent

spatial patterns of the data set (Openshaw and Wymer 1995). In the third approach,

the neighbourhood relationship between the spatial objects is used explicitly in the

optimization procedure. The best-known approach to regionalization of socio-

economic units based on the latter approach is the AZP algorithm (Openshaw and

Rao 1995). While the original AZP algorithm used ‘Monte Carlo’ optimization,

Alvanides et al. (2002) developed an alternative implementation of AZP using

simulated annealing.

In this paper, we follow the third approach, aiming for an efficient regionalization

procedure. We represent the objects by a graph, and our proposed algorithm prunes

the graph to get contiguous clusters. The advantage of graph-based techniques is to

make spatial adjacency an essential part of the clustering procedure. The challenge

for graph-based regionalization techniques is twofold: to bring down the

computational cost of the optimization procedure and to reduce the sensitivity on

the choice of the initial position for tree partitioning. To address these questions, we

present a technique for graph-based regionalization in two steps. In the first step, we

create a minimum spanning tree (MST) from the neighbourhood graph. This MST

represents a statistical summary of the neighbourhood graph. Then, we employ a

heuristic to prune the MST and obtain a set of spatial clusters. In the paper,

section 2 presents a review of the literature. Section 3 describes the proposed

method, showing how to build the MST and describing how to partition the tree

efficiently. In section 4, we apply the method on a case study on the city of São

Paulo. Section 5 presents a performance analysis in comparison with the AZP

method.

2. Regionalization approaches: a review of the literature

There are three main approaches to regionalization. The first approach is a two-step

algorithm. In the first step, a conventional clustering procedure is performed using

non-spatial attributes. In the second step, objects in the same cluster with no spatial

contact will be split, forming different regions. This solution enables a quick

evaluation of spatial dependence among objects. However, this method does not

capture the spatial adjacency condition directly, resulting in limited capacity to

capture spatial patterns. Another inconvenience of this approach is the lack of

control on the resulting regions. Data sets with a low spatial autocorrelation will

result in more regions than is desirable (Haining et al. 2000).

The second approach used in regionalization considers both the geographical

position and non-spatial features of those objects. The clustering algorithm uses the

coordinates of the area’s centroid as extra attributes, and measures similarity

798 R. M. Assunção et al.
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between objects as a weighted mean of nearness in the feature space and nearness in

the geographical space. To work well, the algorithm needs a choice of weights

that produces connected clusters. The analyst has to perform the procedure several

times, trying different weights until they obtain the connected regions. This

weighted means approach is used by the regionalization method of the SAGE

(Spatial Analysis in a GIS Environment) system (Haining et al. 2000). SAGE

employs an iterative k-means clustering procedure whose objective function has

three terms: (1) homogeneity: similarity in the feature space; (2) compactness:

nearness in the geographical space, based on centroid coordinates; (3) equality:

similarity of values of a selected attribute in the resulting clusters (population, for

example). SAGE employs the equality measure to produce balanced regions for a

given attribute, to allow proper comparisons across resulting regions. Typical

control attributes are total population or population at risk for a given disease.

Martin (1998) uses a similar approach to produce output areas for the analysis of

UK census data.

Openshaw et al. (1998) criticize the weighed means regionalization algorithm,

since the three conditions (homogeneity, compactness, and equality) are not strictly

comparable. According to them, a better and simpler strategy would be to select

homogeneity as the sole basis for the objective function. Compactness and equality

are constraints, and should not be combined with homogeneity measures. Instead,

compactness and equality should be handled by defining their expected values (e.g.

minimum population within a region).

The third approach includes algorithms that use adjacency relations as constraints

to the clustering procedure. The AZP (Automatic Zoning Procedure), proposed by

Openshaw (1997), is an example. This method starts with performing a random

partition of n objects in k regions. Then, through trial and error, it seeks to

reallocate objects over regions to minimize an objective function, subject to the

adjacency constraint. Improvements to AZP led to the ZDES automatic zoning

system (Alvanides et al. 2002). Since the AZP algorithm is computationally

expensive, it is useful to consider other techniques that use the adjacency relations of

the objects and are computationally efficient. This interest leads to the authors’

proposal, described in the next section.

3. Regionalization through graph partitioning

3.1 General strategy

In this section, we describe our strategy for transforming the regionalization

problem into a graph partitioning problem. We refer to the algorithm as SKATER

(Spatial ‘K’luster Analysis by Tree Edge Removal). We use a connectivity graph to

capture the adjacency relations between objects, as shown in figure 1(a). In the

graph, each object is associated with a vertex and linked by edges to its neighbours.

The cost of each edge is proportional to the dissimilarity between the objects it joins,

where we measure dissimilarity using the values of the attributes of the neighbouring

pair. By cutting the graph at suitable places, we get connected clusters. In this way,

we transform the regionalization problem in an optimal graph partitioning problem.

Since optimal graph partitioning is an NP-hard problem, we need a heuristic

applicable to large spatial data sets to achieve suboptimal solutions in acceptable

time. For a general discussion on heuristics for graph partitioning for other types of

application, see Even et al. (1997) and Karypis and Kumar (1998).

Regionalization techniques for socio-economic geographical units 799
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Our proposal is to limit the complexity of the graph by pruning edges with high

dissimilarity. The pruning produces a reduced graph that defines a smaller class of

possible partitions and whose edges join similar areas. In the reduced graph, further

removal of any edge splits the graph into two unconnected subgraphs. To carry out

this idea, we take our reduced graph to be a minimum spanning tree (MST), defined

in the next section and shown in figure 1(b). After creating the MST, we obtain

clusters by partitioning the tree. Since the optimal solution for partitioning an MST

is also an NP-hard problem, we propose a heuristic procedure for tree partitioning

that produces good-quality clusters at acceptable computational costs. We describe

the method in detail below.

3.2 Definition of an MST

In this section, we define a minimum spanning tree and discuss the conditions for its

uniqueness. Consider a set of areal spatial objects O with a set of attributes {A1, …, An}.

All objects have an attribute vector x5(a1, …, an) where a1 is a possible value of the

attribute A1. The topology of the set determines a connectivity graph G5(V, L) with a

set of vertices V and a set of edges L. There is an edge connecting vertices vi and vj if

areas i and j are adjacent (figure 1(a)). We associate a cost d(i, j) with the edge (vi, vj) by

measuring the dissimilarity between objects i and j using their attribute vectors xi and xj.

The dissimilarity measure is context-dependent. When the attributes have comparable

scales, such as when they are measured in standard deviation units, a usual choice is the

square of the Euclidean distance between the attribute vectors xi and xj:

d i, jð Þ~d xi, xj

� �
~
Xn

l~1

xil{xjl

� �2
: ð1Þ

A path from node v1 to node vk is a sequence of nodes (v1, v2, …, vk) connected by

edges (v1, v2), …, (vk21, vk). A graph G is connected if, for any pair of nodes vi and vj,

Figure 1. (a) Connectivity graph. (b) Minimum spanning tree.

800 R. M. Assunção et al.
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there is at least one path connecting them. A spatial cluster is a connected subset of

nodes. Our aim is to partition the graph G into C disjoint spatial clusters G1, … GC,

where their union is G, and each is a connected subgraph. This is an NP-hard

optimization problem whose objective function is based on a measure of within-

cluster homogeneity.

A circuit is a path where the first and the final nodes are the same, and a tree is a

connected graph with no circuits. A spanning tree T of a graph G is a tree containing

all n nodes of G, where any two nodes of G are connected by a unique path, and the

number of edges in T is n21. The removal of any edge from T results in two

disconnected subgraphs that are spatial clusters candidates. A minimum spanning

tree is a spanning tree with minimum cost, where the cost is measured as the sum of

the dissimilarities over all the edges of the tree. The minimum spanning tree is

unique if the costs between any node and all its neighbours are distinct (Aho et al.

1983). Should the dissimilarity measure use categorical attributes, many edges would

have the same cost, and this could lead to more than one minimum spanning tree. In

spatial applications involving socio-economic units, we expect the attributes to be

random variables with continuous variation, resulting in a unique minimum

spanning tree for the usual choices of dissimilarity measures. The algorithm used to

build the minimum spanning tree makes this point clear.

3.3 MST generation

In this section, we describe the algorithm for building the minimum spanning tree.

We build the MST in a recursive way, based on Prim’s algorithm (Jungnickel 1999).

Given a connectivity graph G5(V, L) with a set of vertices (V) and a set of edges (L),

the algorithm starts with one T1 tree, containing only one vertex. At each iteration,

we add a new edge and a new vertex to the tree. In iteration n, the Tn tree contains all

n vertices of V and a subset Lm of L with n – 1 edges. The sum of costs associated

with edges in Lm is minimal. The steps for MST generation are:

N Step 1: Choose any vertex vi in the complete set of vertices (V), setting

Tk5T15({vi}, w)

N Step 2: Find the edge of lowest cost (l9) in L that connects any vertex of Tk to

another vertex, vj, belonging to V but not to Tk.

N Step 3: Add vj and l9 to the tree Tk, creating a new tree Tk + 1.

N Step 4: Repeat Step 2 until all vertices have been included in the tree (Tn).

Figure 2 shows the procedure for MST construction, showing the first three and the

last iteration. If more than one edge of lowest cost could be inserted in step 2 of the

algorithm, the MST would not be unique. In these cases, the MST would be

dependent on the choice of the vertex vi (Step 1) and of the order of evaluation of the

links costs in the Step 2. However, as explained above, in the graphs associated to

socio-economic data, this is unlikely to happen.

3.4 MST partitioning

This section describes the partitioning algorithm for breaking up the MST into a set

of contiguous clusters. Using the MST, we transform the regionalization problem

into a tree partitioning problem. To make a partition of n objects in k regions, it is

necessary to remove k – 1 edges from the MST. Each resulting cluster will be a tree,

with all vertices connected and no circuits (cf. section 3.2). To make a partition of n

Regionalization techniques for socio-economic geographical units 801
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objects in k trees, we use a hierarchical division strategy. Initially, all objects belong

to a single tree. As we remove edges from the original MST, a set of disconnected

trees appears, and each tree in this set has a univocal correspondence with a region.

At each iteration, one of the trees is split into two by cutting out an edge, until we

reach the number of clusters previously stipulated.

The partitioning algorithm produces a graph G* that contains a set of trees T1, …

Tn where each tree is connected but has no common edges or vertices with the other

trees. At the first iteration, G* has only one tree, which is the MST. At each

iteration, we examine the G* graph, and take out one edge that will divide the tree Ti

into two trees Ti
1 and Ti

2. This is the same as splitting a connected region into two

subregions. We select the edge that brings about the largest increase in the overall

quality of the resulting clusters. The quality measure is the sum of the intracluster

square deviations, which needs to be minimized:

Q Pð Þ~
Xk

i~0

SSDi, ð2Þ

Figure 2. Construction of the minimum spanning tree.
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where P is a partition of objects into k trees; Q(P) is a value associated with the

quality of a P partition; and SSDi is the sum of square deviations in region i.

The intracluster square deviation SSD is a measure of dispersion of attribute

values for the objects in a region. Homogeneous regions have small SSDs values.

Thus, the smaller the Q(P), the better the partition. The intracluster square

deviation SSD is:

SSDk~
Xm

j~1

Xnk

i~1

xij{xj

� �2
, ð3Þ

where nk is the number of spatial objects in tree k; xij is the jth attribute of spatial

object i; m is the number of attributes considered in analysis; and x̄j is the average

value of the jth attribute for all objects in tree k.

At each iteration, we have to remove an edge from the graph G* that contains a

set of trees T1, … Tn. To do this, we compare the optimum solutions for each of the

trees T1, … Tn. The solution that best subdivides a tree T is the optimum solution

SR
� , according to an objective function:

f1 ST
l

� �
~SSDT{ SSDTazSSDTbð Þ, ð4Þ

where: ST
l is the arrangement produced by cutting out the edge l from the tree T, and

Ta and Tb are the two trees produced by diving T after cutting out the edge l.

At each iteration, we divide the tree Ti that has the highest value of the objective

function f1 STi
�

� �
. The idea is to get the greatest improvement of quality at each step.

Starting from an MST, we produce the clusters as follows:

N Step 1: Start the graph G*5(T0) where T05MST.

N Step 2: Identify the edge that has the highest objective functionSTo
� .

N Step 3: While #(G*),k (desired number of clusters), repeat steps 4 and 5.

N Step 4: For all trees in G*, select the tree Ti with the best objective function

f1 STi
�

� �
.

N Step 5: Split Ti into two new subtrees and update G*.

Figure 3 shows the method, with the first three iterations. In the first iteration,

there is only one tree in G* (the MST). Then, we select the best objective function

STo
� and divide the tree by cutting out the edge matching STo

� . This originates two

new trees, T1 and T2. By repeating the pruning, we will create an optimal partition of

the MST. However, the exhaustive comparison of all possible values of the objective

function is expensive computationally. To speed up the choice, we propose a

heuristic described in detail in the next section.

3.5 A heuristic for fast tree partitioning

In this section, we describe a heuristic procedure that speeds up MST partitioning.

In section 3.4 above, we described the MST partitioning algorithm. We pointed out

that, for each subtree, we need to find the edge that best subdivides it. At each

iteration, the algorithm chooses the edge that maximizes the objective function

(equation (4)). However, we made no mention of the computational demands

involved in choosing the best solution. In fact, choosing the best edge to partition
each subtree is computationally demanding. In the exhaustive case, we would need

to examine all the arrangements leading to k clusters, and select the edge that leads

to the optimal solution. This is an NP-hard problem that leads to a combinational

Regionalization techniques for socio-economic geographical units 803
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explosion. Therefore, this section describes an efficient heuristic that approximates

the optimal solution at acceptable speeds.

Taken as an optimization problem, the search for the edge that best subdivides a

tree equals the search for the best candidate within a solution space S:

S~ S1, S2, . . . , Sn{1f g, ð5Þ

where the Sl candidate is the removal of edge l from the tree. The algorithm searches

for an optimum solution by analysing the neighbours of candidates already visited.

We start by evaluating the solution Si at the current vertex and the solutions in its

neighbourhood. Figure 4 shows how we do the expansion by neighbourhood in the

solution space. In the example, Si has four neighbours: Sj, Sk, Sl, and Sm. We

Figure 4. Expansion by neighbourhood of a Si solution.

Figure 3. Partitioning of the MST.
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evaluate all five solutions, and keep track of the solution with the highest objective
function f1(Si) (cf. equation 2).

After finding out the best solution in a given neighbourhood, the next step is to

select a vertex for expanding our search for even better solutions. Contrary to

common sense, the proper choice is not necessarily the vertex with the highest value

of objective function. The main problem with all optimization techniques is to avoid

choosing solutions that are local maxima, instead of the desired global maximum,

by also examining candidates that do not bring an immediate improvement to the

objective function. To do this, we use a second objective function, f2, which selects
solutions that will divide the tree into two groups that are more homogeneous and

balanced. The f2 function prevents the generation of subtrees that are very uneven in

size. Its value for a vertex is the smaller of two differences between the SSD value of

the current tree and SSD values of the two subtrees resulting from cutting out this

vertex:

f2~min SSDT{SSDTað Þ, SSDT{SSDTbð Þ½ �: ð6Þ

A good choice for the starting-point can reduce the iterations needed for the

search strategy to find the optimum solution. Considering the character of

hierarchical division methods, a satisfactory starting-point is a vertex located in

the centre of the tree. To find out the central vertex, we go over all edges until we

identify the edge that best splits the tree into two subtrees of similar sizes. Then, we

continue with the optimization using the two objective functions. The stopping

condition (SC) of the exploration strategy is the maximum number of iterations
without growth in the value of f1. In summary, the optimization heuristic is:

N Step 1: Start from the central vertex, Vc. Insert solutions associated to edges

incident in Vc in the list of potential solutions, Sp. Set n*5n50 and f1(S*)50.

N Step 2: Evaluate solutions in Sp and store them in the list L.

N Step 3: Update the information on best available solution. Select the solution Sj

in Sp with the highest objective function f1(Sj). If f1(Sj).f1(S*), then S*5Sj and

n*5n.

N Step 4: Set n5n + 1. Based on the balancing function f2(Sj), select in the list L a

solution that will have its neighbourhood expanded, originating a new list of

potential solutions Sp.

N Step 5: Check the stopping condition (n2n*.SC). If it is false, go back to Step

2. Otherwise, choose S* as the best available solution and finish.

In this procedure, we assume:

N S* is the best interim solution, which on completion will represent the chosen

solution;

N n is the number of iterations;

N n* is the last iteration where an improvement of the objective function f1 has

occurred;

N Sp is the list of potential solutions in the current iteration;

N L is the list of candidates that have been evaluated but not yet expanded;

N Sj is the best solution in the current list of potential solutions Sp. We identify
this solution after considering all solutions in Sp.

N SC is the stopping condition for the search, defined as the number of iterations

without improvements in f1.

Regionalization techniques for socio-economic geographical units 805
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To show the behaviour of the heuristic, we present one experiment where we

chose a vertex far from the best solution as the starting-point. Figure 5 presents a

bar chart with the values of the f1 objective function. We note a local maximum,

which was reached in the seventh iteration. Six additional iterations were necessary

before the value of the objective function started to increase again. We found the

optimum solution at the fourteenth iteration. In this experiment, the stopping

condition was eight iterations without any improvement in the f1 objective function.

In the experiment, an MST vertex far from the ideal solution was the seed of the

exploration procedure. With this choice, we intended to show how the search

strategy escapes from local maxima. In a real case, we should select a starting-point

that reduces the iterations needed to find an optimum solution. Considering the

character of hierarchal division methods, a good starting-point is a vertex located in

the centre of the tree. Our tests show that adopting a central vertex as starting-point

reduces the number of evaluations to find the best solution.

3.6 Performance impact of the heuristic

This section discusses the performance impact of the proposed heuristic, compared

with the exhaustive search method. The data set has 415 municipalities in the

Brazilian state of Bahia, which were grouped in 20 regions based on three attributes.

These attributes measure the percentage of municipality area with three land cover

types: crops, pasture, and woods. We used two different values for the stopping

condition (SC515 and SC530). Higher values of the stopping condition SC result in

better-quality partitions, at a higher computational cost. Table 1 presents results,

comparing the exhaustive search (where no heuristic is applied) with the heuristic

using two different stopping conditions.

Figure 5. Values of the objective function during exploration of the solution space in the
experiment.

Table 1. Performance comparison of MST partitioning methods.

Exhaustive
search

Heuristic with
SC530

Heuristic with
SC515

Q(P)—partition quality 380.22 380.22 390.88
Number of evaluations 8060 1818 1121
Relative performance (no

optimization5100)
100 31 17
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Table 1 compares the quality of the resulting partitions, the number of evaluations

and the relative performance. The quality measure is the sum of the intracluster

square deviations, which needs to be minimized (equation (2)). The exhaustive

search produces the best quality, at a large performance cost. The heuristic

procedure with SC530 also achieves an optimal quality, at 30% of the running time

of the exhaustive search. The heuristic with SC515 approximates the optimal

quality at 17% of the running time. The execution time in table 2 does not include

time spent for MST generation, which is the same for all three cases. We also

provide the number of evaluations performed by each method. An evaluation is the

set of all operations in one loop of the MST partitioning algorithm described in

section 3.4. Each evaluation selects one possible edge to be removed.

4. Applying SKATER: a case study in São Paulo

In this section, we show how to apply the SKATER algorithm for a case study in the

city of São Paulo, Brazil. The study has two parts: the first study shows results

without restrictions in the regionalization procedure. The second part shows how

SKATER can incorporate restrictions. The data for the study consist of the ‘Social

Exclusion/Inclusion Map of the City of São Paulo’ (Câmara et al. 2004). Based on

data from the 1991 census and the legal division of São Paulo into 96 districts, the

social exclusion/inclusion map has four socio-economic indexes: income distribu-

tion, quality of life, human development and gender equality. The indexes are

normalized in a continuous scale of [21, 1].

The first study involves obtaining eight homogenous regions for São Paulo,

starting from the 96 districts and using the four socio-economic indicators of the

Social Exclusion/Inclusion Map. We used the SKATER algorithm as described in

the previous section. Figure 1(a) shows the districts map and the connectivity graph,

and figure 1(b) shows the MST. The tree partitioning requires cutting out seven

edges (figure 6(a)). The result of the unrestricted regionalization (shown in

figure 6(a)) has great variations in the number of districts of each region. The

north-eastern region has one district only and has 12 408 inhabitants, which is 0.12%

of total population in the municipality. The larger region next to it has 36 districts

with a population of 3 533 082 inhabitants, which is 36.6% of the total population.

For many applications, this unbalance is not convenient. Therefore, we need to add

restrictions to the regionalization procedure. In studies involving rare events, for

example, it may be necessary to establish minimum values for the population at risk

in the resulting clusters, for resulting rates to be representative.

A simple way to add restrictions to SKATER is to set upper and lower limits for

certain attributes of a region. If a solution is off limits, it will be considered invalid.

Thus, the search strategy includes both a condition of homogeneity of regions and a

condition for minimum or maximum value of attributes in a region. We performed a

Table 2. Comparison of AZP and SKATER for different numbers of objects.

No. objects

Skater AZP

Q(P)% Time%Q(P) Time (s) Q(P) Time (s)

96 5.046 10 7.0584 92.2 0.715 0.108
415 403.32 216 408.072 2588.6 0.988 0.083
853 3.141 889 3.1874 9206 0.985 0.097
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D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
] 

at
 2

2:
19

 2
1 

O
ct

ob
er

 2
01

4 



second regionalization procedure with a constraint of a minimum population of

500 000 inhabitants for a region. The result is shown in figure 6(b). Regions are more

balanced in population, which now varies from 651 513 to 2 543 743 inhabitants.

5. Comparison between SKATER and AZP

In this section, we compare the SKATER and the AZP algorithms. We selected

AZP, since it is a well-known algorithm and has been used for regionalization of the

UK Census (Openshaw and Rao 1995, Openshaw and Alvanides 2001, Alvanides

et al. 2002, Martin 2003). The AZP algorithm is also a constrained classification

procedure of the same type as SKATER. We recognize that there is no decisive way

to compare two classification methods, because performance is dependent on the

characteristics of the data set used in the study. Nevertheless, we can detect some

trends with well-selected experiments. We compared SKATER with AZP in a series

of experiments with different arrangements of number of objects, number of

attributes, and resulting regions. The grouping condition used by the two algorithms

in the two experiments was the internal homogeneity of the regions. We used three

data sets in the comparison: (1) 96 districts of the municipality of São Paulo; (2) 415

municipalities of the Brazilian state of Bahia state; and (3) 853 municipalities of the

state of Minas Gerais. The attributes used in the experiments were socio-economic

variables.

We implemented the AZP as described in Openshaw and Rao (1995). We used the

same stopping condition for both methods in all experiments (SC510). In our tests,

the AZP method has been shown to be sensitive to the choice of the initial partition,

changing the quality of resulting partitions in a significant way. This fact suggests

that this method has a tendency to converge to local maxima. This problem has been

pointed out in Openshaw and Rao (1995). Following their suggestion, we performed

the AZP method five times for each experiment, using different initial partitions. We

took the best value of the five runs as the partition quality for the AZP method.

Figure 6. (a) Unrestricted regionalization. (b) Population-restricted regionalization.
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We compared SKATER and AZP for processing speed and quality of the

resulting partitions. We tested three cases: different number of objects, different

number of attributes, and different number of resulting regions. The first experiment

used the three data sets that have a different number of objects (96 for São Paulo,

415 for Bahia, and 845 for Minas Gerais). The number of resulting clusters and the

number of attributes were the same (20 clusters and three attributes). The results are

shown in table 2. The second experiment used the same data set (415 municipalities

of state of Bahia) and same number of resulting regions (20), and varied the number

of attributes (three, six, and nine attributes). The results are shown in table 3. The

third experiment used the same data set (415 municipalities of Bahia state) and same

number of number of attributes (three), and varied the number of resulting clusters

(20, 40, 60). The results are shown in table 4.

The criterion for quality comparison was the homogeneity of the resulting

regions, measured by equation (2), where a smaller value is better. SKATER was

superior to AZP in all tests. The relation among the partition quality values

[Q(PAZP)/Q(PSKATER)] varied between 0.678 and 0.988, and the average value was

0.856. The processing speed of SKATER was much superior to AZP, ranging from

to a gain of 10 to almost 30 times. The relative gain in processing speed of SKATER

over AZP improved as the number of attributes increased (Table 3). The relative

advantage in performance of SKATER over AZP also increased with the number of

resulting clusters (table 4).

6. Conclusion

In this paper, we present SKATER (Spatial ‘K’luster Analysis by Tree Edge

Removal), an efficient method for regionalization of socio-economic units

represented as spatial objects, which combines the use of a minimum spanning

tree with combinational optimization techniques. The main algorithm has a fast

convergence towards a best-cost solution. The algorithms that use tree partitioning

Table 3. Comparison of AZP and SKATER for different numbers of attributesa.

No. objects

Skater AZP

Q(P)% Time%Q(P) Time (s) Q(P) Time (s)

3 403.3 216 408.1 2588.6 0.988 0.083
6 806.6 225 869.8 3904.4 0.927 0.058
9 1210.0 234 1324.4 6011.0 0.914 0.039

aData set: 415 municipalities of the state of Bahia with 20 clusters.

Table 4. Comparison of AZP and SKATER for different numbers of clustersa.

No. objects

Skater AZP

Q(P)% Time%Q(P) Time (s) Q(P) Time (s)

20 403.3 216 408.1 2588.6 0.988 0.083
40 245.7 256 314.0 4316 0.782 0.059
60 172.9 274 254.9 7988 0.678 0.034

aData set: 415 municipalities of the state of Bahia with three attributes.
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heuristics are much faster without any quality degradation. In comparison with the

well-known AZP regionalization method, SKATER produces good-quality results

and is significantly faster. The algorithm also allows restrictions to be included in

the regionalization procedure. In cases where homogeneity of regions is an

important need, it produces a good-quality partition in a short time. We consider

SKATER to be a good choice for regionalization, especially when applied to large

data sets. The algorithm is available as open-source software, as part of the open-

source GIS library TerraLib (http://www.terralib.org), and is included in the

TerraView visualization and analysis GIS (http://www.terralib.org/terraview).
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