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A B S T R A C T   

Pampa biome in the last years has gone through a process of change in land use, chiefly due to the conversion of 
grassland vegetation for agriculture of grains and silviculture. The main objective of this work is to analyze 
processes of Land-Use and Land-Cover (LUCC) in the Brazilian Pampa Biome, mapped from Multitemporal data 
of MODIS sensor, including the main processes of landscape transformation. The period studied was 2000 and 
2014, and MODIS-EVI images and night DMSP-OLS images were used for generation of land use and cover maps, 
through decision tree classification. IBGE census sectors’ limits were used. To investigate the processes of 
landscape transformation of Pampa Biome, environmental variables were used including geomorphometric data, 
landscape metrics and climate data and socioeconomic variables. Local (GWR) and global linear regression 
models were used in addition to procedures for spatial clustering (SKATER algorithm). Reduction of around 25% 
of grassland class in 15-year interval was verified, from 10,252,740 ha to 7,676,208 ha. On the other hand, 
agriculture areas like Soybean class obtained 145.56% increase in their total area, from 855,087 ha in 2000, to 
2,099,837 ha in 2014. Silviculture class also presented increase of over 167% of its total area. The main factors in 
the global regression model that negatively contributed to grassland degradation process are: population density, 
height against the closest drainage (HAND Model) and degradation patches in the grassland. Factors that posi-
tively contributed are: population residing in domiciles, average of number of residents in domiciles, Soybean 
expansion patches and distance from Soybean expansion process. It was concluded that orbital data along with 
geoprocessing techniques provided tools for monitoring changes in land use and cover.   

1. Introduction 

The growing demand for land resources (food, water, fuel) along 
with unsustainable environmental practices resulted in growing envi-
ronmental degradation of major natural ecosystems, threatening both 
the capacity to produce food and the ecologically fragile environments 
(Nellemann et al., 2009). 

Agriculture is one of the major agents for land-use and land-cover 
(LUCC) (Cassman et al., 2005). Despite the importance of agriculture, 

because it is one of the main suppliers of food for human population 
(Smith & Mcdonald, 1998), agricultural expansion to natural ecosystems 
leads to the loss of ecosystem services, like necessary habitat to keep 
biodiversity, carbon storage, mitigation of floods, soil fertility, water 
quality, among others (Defries et al., 2004; Foley et al., 2005; Gibbs 
et al., 2010; Lambin & Meyfroidt, 2011). Therefore, understanding 
landscape transformations introduced by men provide reliable subsidies 
like, for example, monitoring of such activities over time, become 
essential for governmental entities’ decision making. 
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Pampa Biome, which includes a portion of the South of Brazil, the 
whole Uruguay territory and the northeast portion of Argentina, has an 
area of approximately 176.496 km2 (Allen et al., 2011). It is one of the 
largest and richest pasture zones worldwide, with huge diversity of 
species and unique co-existence of several C3 and C4 plants with pres-
ence of characteristic grasses and presenting diversity of around 2200 
species (Boldrini, 2009). Lately, however, a trend of change of land use 
in this biome has been observed, particularly through the conversion of 
grassland vegetation to grain agriculture (especially Soybean cultiva-
tion) and silviculture (Nabinger et al., 2009). In this Biome, therefore, 
studies on LUCC processes’ dynamics and monitoring are important. 

Studies from several parts of the world point to the feasibility of the 
use of satellite images for LUCC dynamics monitoring (Friedl et al., 
2002; Liu et al., 2011; Zhou et al., 2013). In Brazilian biomes, some 
works are outstanding for using remote sensing and geoprocessing to 
analyze processes of land use transformations with focus on deforesta-
tion. Espindola et al. (2012) analyzed deforestation rates in Amazonia 
and assessed the factors that influenced such processes. Grecchi et al. 
(2014) used geotechnologies to assess the impacts of agricultural 
expansion over time in the Brazilian Cerrado and analyzed the influence 
of indicators of vulnerability to erosion. In upper Uruguay river basin, 
Freitas et al. (2013) analyzed the processes of land use and cover, linking 
environmental and socioeconomic variables from 2002 to 2008. 

More specifically in the Brazilian portion of Pampa Biome, several 
remote sensing studies analyzed time series with high temporal resolu-
tion focusing on the agrometeorological relation of the system (Jacóbsen 
et al., 2003; Scottá & Fonseca, 2015; Wagner et al., 2013). Jacobsen 
et al. (2003) observed that the pattern of variation of NDVI values 
throughout the year are similar to that of availability of sun radiation 
and air temperature, presenting maximum values in summer and min-
imum values in winter. Wagner et al. (2013) observed the negative 
trends in time series MODIS-EVI and NDVI for the period from 2000 to 
2011, associated to the combination of water deficit occurrence in 
shallow soil with overgrazing. Scottá & Fonseca (2015) associated aerial 
biomass data in local scale with data in regional scale of NDVI from 
SPOT/Vegetation sensor. 

However, studies on the monitoring and dynamics of LUCC processes 
in the Brazilian Pampa Biome are still scarce, chiefly in the last two 
decades, where the landscape is suffering the process of conversion of 
grassland vegetation into agricultural areas, particularly Soybean 
cultivation. In this sense, the present work seeks to contribute to the 
advance of knowledge on the main processes of land use in Pampa 
Biome and identify which variables have more influence in landscape 
changes. The guiding hypothesis is that LUCC changes can be mapped 
using techniques for digital classification of images that express time 
variation in vegetation indices, and that there are variables that induce 
changes (socioeconomic, climatic, metric of landscape and geo-
morphometric), which can be described with local and global regression 
models. 

The objective of this work is to analyze processes of land use and 
cover in the Brazilian Pampa biome and identify the main processes of 
landscape transformation and their driving factors. Seven processes of 
LUCC changes were studied in the study area (urbanization, regenera-
tion, silviculture expansion, Soybean expansion, grassland degradation, 
forest degradation and intensification). The work comprised two stages: 
the first stage was LUCC classification with MODIS and DMSP-OLS im-
ages for years 2000 and 2014 and identification of main processes of 
landscape transformation. The second stage was the investigation of 
LUCC processes using environmental variables, which include geo-
morphometric data, landscape metrics, climate data and socioeconomic 
variables, made with global and geographically weighted regression 
(GWR), in addition to spatial clustering procedures (SKATER). 

2. Methodology 

2.1. Study area 

The area studied comprises the limits of Pampa biome as defined by 
the Brazilian Institute of Geography and Statistics (IBGE), in Rio Grande 
do Sul state, located in the far south of Brazil, totaling an area of 
16,579,332 ha and total population of 5,373,216 inhabitants, corre-
sponding to 50.24% of Rio Grande do Sul state total population (Fig. 01). 

According to Köppen classification (Alvares et al., 2013), in most 
Pampa Biome Cfa climate (rainy subtropical with hot summers) prevails 
and only Serra do Sudeste region, with higher altitudes (~400 m alti-
tude), presents Cfb type climate (rainy subtropical with mild summers). 

2.2. Classification of land use and cover change and data preparation 

For the assessment of land use and cover change in Pampa biome, the 
period studied was 2000–2014. The year 2000 was chosen as reference 
because it was the period when MODIS sensor time series obtained its 
first images. To analyze changes in the studied area two land use maps 
were generated from TERRA satellite images, MODIS sensor, MOD13Q1 
product, collection 6, containing compositions of images of 16 days as 
EVI vegetation indices, with spatial resolution of 250 m. For each year 
(2000 and 2014), 23 MODIS images were used. 

Categories of land use and cover were listed in nine classes for Pampa 
Biome: Agriculture areas (rice, soybean and mosaic of cultures), forest, 
grassland, beaches and dunes, water, urban area and silviculture. The 
classification stage considered small differences and specific character-
istics of each region, adopting a classifier exclusively trained to work on 
each of them. 

The classifier used was Decision Tree (AD) for land use and cover 
classes (water, beaches and dunes, forest, silviculture and grassland), 
and MODIS time series filtered with Timesat, comprising 23 images of 
EVI vegetation index. The decision trees tested were built with algo-
rithm C4.5 (QUINLAN, 1993) in MatLab® environment. Imput data of 
classifier were the time series itself and the training samples of land use 
and cover classes, extracted from polygons selected in Landsat images, 
which, for presenting 30 m spatial resolution made possible the visual 
identification and delimitation of classes. 

For Water, Beaches and Dunes, Forest, Silviculture and Grassland 
classes, the classifier used was Decision Tree (DA), while for agricultural 
classes (Rice, Soybean, and Mosaic of Cultures) a cultivation mask was 
generated and decision tree classifier was used within this mask and, 
finally, for Urban Area class, a combination of night images (Defence 
Meteorological Satellite Program - Operational Linescan System-DMSP-OLS) 
and EVI were used, according to methodology proposed by LIN et al. 
(2014). 

Having finished LUCC maps for years 2000 and 2014, the next stage 
was quantification and analysis of LUCC transformations in the last 15 
years. For such, cross tabulation of LUCC maps of 2000 and 2014, 
quantification and mapping of areas of LUCC classes that presented 
gains or losses and identification, for example, of advance in soybean 
culture and silviculture on grassland areas were made. Through dia-
grams and tables generated by the Land Change Modeler - IDRISI Taiga 
(LCM) module, spatial transformations occurred in Pampa biome in the 
last 15 years were analyzed and quantified. 

The process of validation of accuracy of LUCC maps of years 2000 
and 2014 was made based on reference samples selected in Landsat 5/ 
TM (2000) and Landsat 8/OLI (2014) images for all classes of MODIS 
classification. As statistical analysis the global accuracy (EG) and Kappa 
(k) index were used. 

The procedure for cross tabulation of maps of years 2000 and 2014, 
allowed the identification of 29 transitions of LUCC of interest in this 
study. Later, the 29 transitions were grouped in 7 processes (Fig. 02) 
using similar grouping methods according (Batistella & Valladares, 
2009; Freitas et al., 2013). These methods for clustering the processes 
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were adapted to meet specific demands of the area studied: (1) Urban-
ization, defined as any LUCC for Urban Area class; (2) Regeneration, 
defined as the transition of agriculture class to Forest class; (3) Expan-
sion of silviculture, characterized by transitions occurred from any 
LUCC classes to silviculture class; (4) Expansion of soybean, defined as 
transitions occurred from any class (except for silviculture) to Soybean 
class; (5) Grassland degradation, defined as changes in Grassland class to 
LUCC classes for agriculture and silviculture purposes; (6) Forest 
degradation, defined as changes in Forest class to LUCC classes for 
agriculture purposes; and (7) Intensification, characterized as changes in 
silviculture class to agriculture areas, defined as change in technology in 
agriculture production process, including high levels of mechanization 
and use of fertilizers and other inputs in order to improve productivity 
per area unit of monocultures. 

The processes presented were used as dependent variables, while 
predictive independent variables were socioeconomic, climatic, land-
scape metrics and geomorphometric factors. 

2.3. Processing of geomorphometric, socioeconomic and environmental 
variables 

The unit analysis used was IBGE census sectors’ limits of the year 
2010. The study area presents 1766 census sectors, which 37 were 

removed for lack of census information, with 1729 sectors remaining. 
The present work used variables from different sources, including 

social, educational, economic, geomorphometric, climatic, road 
network and hydrographic data (Table 01). Geomorphometric data, as 
HAND model (Rennó et al., 2008), slope an elevation were obtained 
from SRTM (Shuttle Radar Topographic Mission) Digital Elevation Model 
(DEM), with spatial resolution of approximately 30 m. Socioeconomic 
data used were those from the last census made in Brazil, in 2010. Cli-
matic data were obtained from WorldClim - Global Climate Data (http:// 
www.worldclim.org/), with spatial resolution of 1 km. For the genera-
tion of maps of road and hydrographic network distances, the contin-
uous vector cartographic base of Rio Grande do Sul was used, in scale 
1:50.000 (Hasenack & Weber, 2010). Landscape metrics, as the number 
of patches (polygons) of processes analyzed, were processed in GIS 
environment. 

The next stage was the creation of a spatial database to aggregate all 
information and to perform geoprocessing operations in independent 
variables. The contiguous census sectors classified as urban by IBGE 
were re-classified and aggregated in one single sector, in order to reduce 
the number of sectors in urban areas, since the number of census sectors 
classified as urban is very high, with reduced dimension (<1 ha), and are 
not compatible with MODIS sensor spatial resolution. 

2.4. Global OLS (Ordinary least squares) and local GWR 
(Geographically weighted regression) regression models 

The preparation of models begins with the procedure of selection of 
independent variables. In the set of independent variables there may be 
variables that have little influence in the set of dependent variables 
(processes). IBM SPSS Statistics 20 software was used for selection of 
variables and proposition of regression model to be used. For such, the 
best subset (Neter et al., 1996) procedure was used with R2 and adjusted 
R2 criteria, through backward stepwise method with significance level 
equal to 0.05. 

After the selected of the best set of variables, the global regression 
model (OLS) was executed, generating 7 regression models. Equation (1) 
used in OLS model is defined as follows: 

yk = βk0 +
∑

βkjxij + εk (1)  

where Yi is the variable of localization response i, β0is the intercept, βk is 
the parameter estimated by independent variable k, Xik is the value of 
independent variable k in localization i and εiis error. To assess the 

Fig. 01. Localization map of the area of study.  

Fig. 02. Matrix of transition used to identify processes occurred in Land-Use 
and Land-Cover (LULC) maps from 2000 to 2014. Abbreviations: (1) Urbani-
zation (2) Regeneration (3) silviculture expansion (4) Soybean expansion (5) 
Grassland degradation (6) Forest degradation (7) Intensification. ARR (rice) 
SOJ (soybean) MOS (mosaic of cultures) CAM (Grassland) FLO (forest) PRA 
(beaches and dunes) URB (urban area) AGU (water). 
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spatial dependence of OLS models, the spatial autocorrelation of re-
siduals was analyzed using Moran’s I test, based on the null hypothesis 
of no presence of spatial autocorrelation in residuals. Tests were used to 
assess the need of using spatial regression techniques for the 7 different 
processes of LUCC based on these tests indicating the presence of spatial 
autocorrelation in models. 

The Geographically Weighted Regression – GWR (Brunsdon et al., 
1996) technique was used to model spatially heterogeneous processes 
(not stationary), that is, processes that vary (in mean, median, variance, 
etc.) in the regions. A regression model was adjusted for each region of 
the set of data (census sectors) using the geographic localization of the 
other observations to weight estimates of parameters, in order to 
localize local variations of variable existing in the study area. According 
to Fotheringham et al. (2002), given a global regression model (OLS), 
the equivalent expression for GWR (local) is given by: 

yi = β0(ui, vi)+
∑

k
βk(ui, vi)xik + εk (2) 

The above expression shows that the model parameters, represented 
by function βk (ui, vi) vary according to values of (ui, vi), which represent 
the geographic coordinates latitude and longitude of each census sector 
(i), resulting in a distinct model for each region of the study. Thus, the 
GWR model makes regressions locally using the centroid of polygons of 
the nearest census sectors, based on Euclidian distance between points. 
It is worth mentioning that the assumptions of the classical linear 
regression model (OLS) remain for GWR. 

In the present study the GWR4 version developed by the National 
Center for Geocomputation, from the National University of Ireland 
Maynooth was used, the weighting function used was Gaussian based on 
the minimization of Akaike Information Criterion (AIC), with variable 
size Kernel. For each of the 7 LUCC processes, GWR and OLS models 
were compared using the best subsets procedure, based on AIC, which is 
the most appropriate measure to compare models (Fotheringham et al., 
2002). To estimate the spatial dependence of residuals in GWR regres-
sion models Moran’s I test was applied. 

2.5. Spatial clustering of land use and vegetation cover processes 

For generation of spatial clustering of LUCC processes SKATER al-
gorithm was used (Assunção et al., 2006), from software Terra View 
4.2.2. The 1729 polygons of IBGE census sectors were used to generate 
spatial clustering. SKATER spatial clustering algorithm uses the concept 
of minimum generating tree. 

The variables used for generation of LUCC processes clustering were 
the coefficients estimated by independent variables (β) in local regres-
sion models (GWR). The generation of clusterings was used for better 
visualization of results for the different variables of LUCC processes, 
with plotting in maps of diagrams as bars for each coefficient estimated 
by the GWR model. The number of 5 spatial regions for each process was 
adopted, according to methodology by Freitas et al. (2013). For the 
Urbanization ULLC process spatial clustering was not made in this stage 
of the work because it does not present spatial dependence in OLS model 
residuals. 

3. Results and discussion 

3.1. Changes in land use 

Global Accuracy (EG) was 89.71% and Kappa (k) 0.8778 for year 
2000 and Global Accuracy (EG) of 90.09% and (k) 0.8857 for year 2014. 
In both maps, the major accuracy were for Urban Area class and the least 
accuracy were for silviculture class. The major spectral similarities in 
LUCC maps were limited to silviculture, grassland and Forest. The 
mistaken allocation of points (pixel) made by the classifier, chiefly in 
classes with vegetation cover, proves the spectral and temporal simi-
larity and the difficulty to classify them. 

Table 01 
Independent variables used in analyses of global (OLS) and local (GWR) 
regression models.  

Type Variable Initials Description  

HAND HAND Height Above the Nearest 
Drainage (m)  

Slope SLOPE Slope (degrees) 
Geomorphometric Elevation ELEV SRTM data (spatial 

resolution 30m)  
Annual 
Precipitation 

P_YRS Annual Precipitation (mm) - 
Worldclim data (spatial 
resolution 1 km) 

Climate Seasonality of 
Precipitation 

C_YRS Seasonality of Precipitation 
(coefficient of variation) 
(mm) - Worldclim data 
(spatial resolution 1 km)  

Soybean expansion 
patches 

P_1 Number of patches 
(polygons) for the soybean 
expansion process  

Grassland 
degradation 
patches 

P_2 Number of patches 
(polygons) for the grassland 
degradation process  

Silviculture 
expansion patches 

P_3 Number of patches 
(polygons) for the 
silviculture expansion 
process  

Intensification 
patches 

P_4 Number of patches 
(polygons) for the 
intensification process  

Forest degradation 
patches 

P_5 Number of patches 
(polygons) for the forest 
degradation process 

Density/Area Regeneration 
patches 

P_6 Number of patches 
(polygons) for the 
regeneration process  

Average monthly 
income 

V009 Nominal average monthly 
income of people 10 years 
old or older ($) 

Economic Average monthly 
income variance 

V010 Nominal monthly income 
variance of persons 10 years 
old or older ($)  

Percentage of 
young people 

<14A (Population 0–14 years old/ 
Total population with 
known age) * 100  

Percentage of 
adults 

15_59 (Population 15–59 years 
old/Total population with 
known age) * 100  

Percentage of 
elderly people 

>60A (Population >60 years old/ 
Total population with 
known age) * 100  

Resident 
population in 
households 

V002 Residents in permanent 
private households or 
population residing in 
permanent private 
households  

Average number of 
dwellers in 
households 

V003 Average number of 
residents in permanent 
private households  

Population density P_DE Resident population/Area 
(km2) 

Demographic Total population P_TO Total resident population 
Education Illiteracy rate ILL_R (Population 10 years old or 

over who can not read and 
write a simple ticket in the 
language they know/Total 
population of this age 
group) * 100  

Distance from roads D_ROA Distance from roads (m)  
Distance from 
hydrography 

D_RIV Distance from hydrography 
(m)  

Distance from 
soybean expansion 

D_1 Distance from soybean 
expansion (m) 

Euclidian Distance from 
grassland 
degradation 

D_2 Distance from grassland 
degradation (m) 

Distance Distance from 
silviculture 
expansion 

D_3 Distance from silviculture 
expansion (m)  
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LUCC maps for years 2000 and 2014 (Fig. 03) are the basis to identify 
the main areas where processes of transformation of land use and cover 
change. The north region of the area studied, located in the middle 
plateau, near Tupanciretã municipality, presented large changes, mainly 
conversion of grassland class to soybean class. This region is charac-
terized for presenting altitudes above 350 m, relief with low declivity 
and more fertile soils when compared to other areas of Pampa Biome. 
According to Moreira & Medeiros (2014) as of 1985, soybean was 
consolidated supported by the modernization of the agriculture sector in 
Rio Grande do Sul north-center and northwest, occupying traditional 
livestock areas. Therefore, in the north region of Pampa Biome, near 
Tupanciretã municipality, the process of soybean expansion occurred 
later, when compared to Rio Grande do Sul northwest region. 

It is also possible to identify soybean expansion in other areas, as 
along Jacuí river and at Southeast of Pelotas city, traditional places for 
cultivation of irrigated rice in meadow areas. Serra do Sudeste, region 
with sharper slopes, shallow soils, and less fertility, when compared to 
other regions, is suffering great changes in its landscape in the last 15 
years, particularly the conversion of grassland vegetation (grassland 
class) to silviculture areas. 

Table 2 compares the values obtained in the 2000 and 2014 classi-
fication, and the reduction of grassland class and increase in agriculture 
classes (soybean, rice and mosaic of cultures) and silviculture class can 
be observed. The reduction in grassland class is very expressive, with 
reduction of approximately 25% of its total area in only 15 years, from 
10,252,740 ha to 7,676,208 ha. Soybean class, on the other hand, in the 
same time interval, obtained increase of 145.56% of its total area, from 
855,087 ha in 2000, to 2,099,837 ha in 2014. Silviculture class also 
increased more than 167% of its total area, mainly distributed in Serra 
do Sudeste and coastal strip. Beaches and Dunes classes presented dif-
ferences between the years studied, however practically stable due to 
the area magnitude and MODIS sensor resolution. 

The analysis of gains and losses per class showed (Fig. 04-A) that in 
grassland class, 98.02% of the total reduction of its area in 15 years is 
associated to anthropic activities as agriculture and silviculture. Soy-
bean was responsible for more than 30.1% of the total conversion of 
grassland vegetation, with more than 777,645 ha, advancing on the 
grassland class, the Mosaic of Cultures class with 31.33% (807,337 ha), 
reminding that this class represents areas destined to agriculture, but in 
the specific years of classification (2000/2001 and 2013/2014 harvests) 
they were not being used for this purpose. They are areas of agriculture 
use that alternate irrigated rice and fallow with grassland or rotation of 
cultures with dry farming. Therefore, this class may contain areas with 
soybean cultivation, which reinforces the idea that the expansion of 
soybean areas is advancing on grassland vegetation. According to the 
classification data, soybean expansion advances chiefly on grassland 
class, 62.47% of the new areas cultivated occur on grassland class 
(Fig. 4-B). 

Other anthropic activity responsible for the reduction in grassland 
class is silviculture, with approximately 520 thousand hectares con-
verted from grassland class to silviculture. By analyzing Fig. 04-C, we 

can observe that practically the whole advance of silviculture class was 
on grassland vegetation areas, more specifically, 93.56% of the total 
advance was on areas from grassland class. It is worth highlighting that 
in 2004 the government of Rio Grande do Sul state, in order to provide 
development to the half South of the state and expand silviculture 
production, issued public policies to attract investments from silvicul-
ture sector companies. The socioeconomic goal would be to transform 
the conservative economic matrix, income concentrated, historically 
and culturally pastoral, into a region of wood and cellulose production 
(Binkowski, 2009). 

The expansion of new areas from silviculture class can drastically 
change the landscape of Serra do Sudeste region, since the advance of 
this activity has occurred in predominantly grassland areas. According 
to information available by IBGE (2017), with regard to wood, firewood 
and charcoal production, data indicate that there was significant in-
crease in the last 15 years in Pampa Biome, with gradual increase at each 
year. 

Fig. 05 illustrates how much LUCC classes were changed in the 15- 
year interval (2000–2014) in each census sector. Generally, processes 
of grassland degradation, soybean expansion and silviculture expansion 
are the most important processes of transition analyzed, with regard to 
the size of the area converted. It is important to highlight that Ibirapuitã 
APA (environmental protection area), located at southwest of the area 
studied was important for the conservation of grassland vegetation, 
because it hindered the advance of soybean and silviculture expansion. 
Soybean expansion was larger in the north portion and along Jacuí river, 
and forest degradation, on the other hand, was larger in the west portion 
and along Jacuí river. 

3.2. Models of global and local regression 

In this stage results of global and local regression models (GWR) are 
presented for each LUCC process. First, the regressive coefficients of 
each variable for each process are shown (Tables 3 and 4). Only the three 

Fig. 03. Pampa Biome’s LUCC map for years 2000 and 2014.  

Table 2 
Comparison of values between the classified map for 2000 and the 2014 map, for 
Pampa Biome, values in hectares.  

Class 2000 2014 Difference 
(ha) 

Difference 
(%) 

Water 411,746 405,649 − 6096 − 1.48 
Urban Area 103,980 127,232 23,252 22.36 
Rice 879,256 1,075,861 196,604 22.36 
Grassland 10,252,740 7,676,208 − 2,576,532 − 25.13 
Soybean 855,087 2,099,837 1,244,749 145.56 
Silviculture 331,694 887,428 555,734 167.54 
Forest 2,226,523 1,731,016 − 495,507 − 22.25 
Beaches and 

dunes 
97,802 111,231 13,429 13.73 

Mosaic of 
cultures 

13,34,161 2,378,527 1044365 78.27 

Total 16,492,994 16,492,994    
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main processes (grassland degradation, soybean and silviculture 
expansion) will be discussed in this stage, since they are the main 
transformers in terms of area converted in Pampa Biome. For better 
understanding, the estimator (β) of each variable was divided by the 
standardized error, and the importance of each variable in LUCC pro-
cesses’ global regression model is calculated. 

The global regression model for soybean expansion process indicated 
that the topographic factor presents strong association with this process. 
Elevation data presented a positive correlation in the model (11.66), 
which makes sense, if we consider that soybean expansion presents the 
highest values of converted area in the north portion, with higher alti-
tudes. Another factor was slope, with negative association (− 1.93), since 
census factors with flatter terrains favors mechanized agriculture. Ac-
cording to Rudel & Ropper (1996), places with flatter topography favors 

deforestation, and countries or regions with small extensions of forests 
or with forest remains in general have large proportion of their forests in 
mountainous areas, with less economic attractive to be deforested, 
particularly for agriculture, due to high slopes and soil poor quality. 

Another topographic factor with negative correlation (− 3.52) for the 
model was the HAND model, which represents the vertical altitude 
against the nearest drainage. Studies indicate that soybean expansion in 
Rio Grande do Sul half south is also advancing to meadow areas, 
traditional in irrigated rice cultivation in the state (Mengue et al., 2016; 
Santos et al., 2014), with flood flat lands of Jacuí and Ibicuí rivers and 
the areas surrounding Lagoa dos Patos, which corroborates the results 
obtained. 

Demographic factors also present direct relation with soybean 
expansion, with census sectors with young population (<14Y) showed 

Fig. 04. Cross tabulation for Grassland (A), Soybean (B) and Silviculture (C) classes from 2000 to 2015, values in hectares.  

Fig. 05. Change for all LUCC processes occurred from 2000 to 2014 for each census sector.  
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negative correlation (− 2.09). One hypothesis for this case is that in rural 
census sectors, the adult population is greater and the young population 
would be more concentrated in urban centers, like Porto Alegre 
Metropolitan Region (RMPA). Educational factors like illiteracy (ILL_R) 
presents positive relation with soybean expansion (1.68), indicating that 
soybean expansion advances to sectors or regions where schooling is 
lower, which reflects a character of less economic development with 
lands less valued. 

Another important factor for the global regression model of soybean 
expansion was the climate factor, with annual precipitation presenting 
positive relation (6.76), showing that the areas where soybean is 
advancing are located in areas with higher precipitation. It makes sense, 
since the expansion is more concentrated in the north region with 
highest rainfall volumes, around 1800 mm/year. Seasonality of pre-
cipitation, on the other hand, presents negative relation (− 7.45). One of 
the reasons is that new soybean areas are located where precipitation 
variation is low, more stable, in Pampa Biome’s central and north re-
gions, while the west border and south region, next to the city of Pelotas, 
precipitation variation is very high, not favoring soybean cultivation. 

Proximity to degraded areas’ factors, like distance from soybean 
areas (D_1) presented strong negative relation with soybean areas 
(− 9.08), showing that nearer areas or areas in the frontiers of agricul-
tural areas already consolidated are more favorable to soybean 
expansion. 

For the process of grassland degradation, demographic factors pre-
sented negative relation, chiefly the population density variable 
(− 4.33). Maybe the most mentioned and controversial variable, as 
vector of degradation of forest areas, is population or population 
growth, or, also, the notion of ‘demographic pressure’ (Alves, 2004). It 
happens due to a strong association of demographic factors and degra-
dation of forest areas, found in global and regional models, usually di-
minishes or even disappears when other independent variables are 
added. In several regional models, it happens because demographic 
density is highly correlated to the road network, proximity to urban 
markets, soils’ quality and spatial distribution of economic activities. 
Thus, the high correlation between demographic density and degrada-
tion of forest areas may be only reflecting the effect of other factors on 
forest degradation (Kaimowitz & Angelsen, 1998). In Pampa biome, low 
values of population density are associated to rural census sectors, 
particularly those located in west and south frontiers. 

It is important to highlight, regarding topographic factors, that 
HAND model data presented negative correlation in the regression 
model (− 2.73), indicating that grassland degradation in the period 
studied is strongly associated to low elevation areas, like meadow areas 
and areas close to the main water systems. 

Proximity to grassland degradation patches’ factor presented higher 
negative relation to the model (− 25.86). Factors of landscape structure, 
like the number of patches of soybean expansion processes, silviculture 
expansion and intensification presented positive values in the model. 
Census sectors with high number of patches presented higher amount of 
grassland degradation. According to Vélez-Martin et al. (2015), 
ecological problems associated to the suppression of grassland can be 
more severe when the reduction in area is followed by fragmentation of 
remaining patches in the landscape. When there is a high number of 
smaller grassland patches, the contact surface between grassland species 
and surrounding environments is larger. It is the so called edge effect. 
Fig. 06 compares the classification of grassland class of year 2000–2014. 
Pixels’ frequency of grassland class nearer soybean areas with distances 
of up to 1250 m is twice superior, and the hypothesis for this phenom-
enon is that forest patches are much more fragmented, thus increasing 
the proximity to soybean areas. 

Factors presenting positive relation in the global model for grassland 
degradation process are: population residing in domiciles (1.89), 
average of number of residents in domiciles (1.76), number of soybean 
expansion patches (3.75) and distance from soybean expansion process 
(4.64). 

The global regression model of silviculture expansion process indi-
cated that the topographic factor presented positive association with 
slope, with higher positive correlation in the model (10.92). Silviculture 
expansion is concentrated in Serra do Sudeste, in undulating topography 
with moderate slopes. The expansion of new silviculture areas occurs in 
areas with sharper slopes, like Serra do Sudeste; maybe that is why the 
slope factor presented positive influence in the global regression model. 

Economic data, like monthly average yield, indicated positive rela-
tion (2.52) showing the census sectors with higher income levels pre-
sented direct relation with silviculture expansion. One justification that 
may sustain this parameter is that the highest levels of income in the 
region reflects a higher demand for agricultural and forest products and 
higher availability of resources to invest in activities turned to silvicul-
ture. The educational variable (illiteracy rate) presented negative rela-
tion with silviculture expansion (− 2.45), indicating that census sectors 
with higher schooling have positive with the process, corroborating the 
silviculture relation with more developed regions. 

The annual precipitation climate factor presented negative relation 
(− 1.23) in the model because Serra do Sudeste region, where silvicul-
ture expansion is larger, presents lower average (1426 mm/year) when 
compared to the north region. Proximity factors like distances from 
roads presented positive relation (3.86) with global regression model, 
census sectors with high rates of silviculture expansion in the period 
studied are more distant from the main highways or when the road 
network is less dense. The relation with proximity to grassland degraded 
areas presented strong negative relation (− 16.35) in the model, indi-
cating that new silviculture areas are occupying remaining areas of 
grassland vegetation. 

Table 4 shows that the best performance of the local model (GWR) 
for all processes compared to the global model is demonstrated by R2 

values significantly higher and lower AICc values. Through the use of 
GWR it was possible to identify the existence of spatial variations in 
predictive variables, allowing for the analysis on non-stationary re-
lations among processes and independent variables. The important 
advantage of GWR process was the capacity to explore the spatial 
variability in relations of LUCC processes and explanatory variables 
through the mapping of local coefficients’ parameters variation. 

GWR, though offering many advantages when compared to the 
global model, requires that some parameters, like kernel bandwidth, 
used for spatial definition of neighbors (census sectors) have to be 
carefully analyzed due to their significant impact on the analysis results. 
In general, very small kernel bandwidth result in highly localized pa-
rameters’ estimates and present high level of variation in the study area. 
On the other hand, when the kernel bandwidth is very high (for 
example, larger than the size of the study area), local regression results 
may be identical to those of a global regression (Wheeler & Tiefelsdorf, 
2005). In the present work, the adaptive Gaussian method was used to 
choose the best kernel bandwidth for the GWR in LUCC processes ranged 
from 112 to 129 km. 

In Fig. 07 GWR results are shown, where R2 presents the degree of 

Fig. 06. Distance in meters of grassland areas mapped with MODIS sensor 
against soybean areas for years 2000 and 2014. 
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adjustment of the model for LUCC processes. One can observe that 
census sectors in red and orange are the regions where the model pre-
sents the best adjustments. For soybean expansion process (A), the best 
adjustments of the model occur in south, central and north portions, 
where R2 ranges from 0.02 to 0.86. In the local model of grassland 
degradation process, on the other hand, the best adjustments are locate 
in the far north portion, bordering Argentina, at the south and along 
Jacuí river, where R2 ranged from 0.54 to 0.87. For the silviculture 
expansion process, the best adjustments of the model were concentrated 
in Serra do Sudeste, in the southwest-northeast portion, while in east 
and west portions the model did not explain well based on independent 
variables, and the variation was from 0.01 to 0.93. 

When coefficients (β) of global and local parameters are compared 
(Table 03) it is possible to notice that they are very similar, but when 
local regression data are analyzed, the differences are very significant 
among the different regions in Pampa Biome area, revealing the 
important advantage of using local models to explain phenomena that 
are peculiar to each region. due to the large amount of independent 
variables in the GWR model for each LUCC process, in the next section 
the results of local parameters are synthesized by clustering the regions, 
using the SKATER method, in order to analyze the existing variability in 
the area of study. 

3.3. Spatial clustering (SKATER) of local parameters 

The analysis of spatial clustering generated by the SKATER method 
(Fig. 08) for all LUCC processes shows that some clusters are similar, 
mainly between soybean expansion process and grassland degradation 
at the north portion of the area of study. In the region bordering Uruguay 
and at west Argentina, spatial clusters formed large groups with large 
areas, explained by the fact that this region presents some similar 
characteristics like average size of agricultural areas and relief (mildly 
undulating). 

The soybean expansion process exhibited different parameters in the 
GWR model for the different spatial clusters, which shows that there is 
large variability of independent variables in the area of study for this 
process. In the north portion (clusters 4 and 5), the factors that 
contribute most positively are annual precipitation, distance from 
silviculture expansion, HAND model and the mean of the number of 

residents in domiciles. Factors that contribute negatively, on the other 
hand, are slope, precipitation variation coefficient, and distance from 
soybean expansion and distance from grassland degradation. Spatial 
cluster 2, located in the lower portion of the relief, when compared to 
clusters 4 and 5, presented other factors. Positively, the main factor is 
the number of grassland degradation patches, negatively, we have 
annual precipitation, precipitation variation coefficient, distance from 
soybean expansion and distance from grassland degradation. Spatial 
cluster 1 is the largest in area size in east-west direction and does not 
present significant variable for the regression model. Spatial cluster 3, 
on the other hand, located in the far end of the state, presents some 
highly important factors for the soybean expansion model, and the main 
positive factors are slope and annual precipitation, while negative fac-
tors are the HAND model and the distance from soybean expansion 
process. 

The grassland degradation process presented patterns of spatial 
clustering similar to those of soybean expansion process. Clusters 1 and 
2 presented as positive factors the resident population and distance from 
soybean expansion process, and as negative factors precipitation varia-
tion coefficient and distance from grassland degradation. The variable 
with greater change between the two clusters was resident population, 
while in cluster 1 this variable presented strong negative relation, in 
cluster 2 it presented positive relation because census sectors located in 
clustering 2 are more populated. Spatial cluster 3 has the largest area 
among clusters and its main positive factor is the resident population 
and the number of grassland degradation patches. Cluster 4 comprises 
large portion of RS coastal area and also RMPA, a region where grass-
land vegetation degradation process started much earlier, marked by the 
strong presence of irrigated rice cultivation in flood flat lands of the 
main existing drainage systems. 

Silviculture expansion process presented very distinct patterns of 
spatial clustering: two large clusters (1 and 2) dividing the area of study 
in two east-west portions, and other three smaller clusters near Serra do 
Sudeste, with higher concentration of silviculture expansion. In cluster 1 
and 2 there is practically no variable with significant weight for the 
regression model. Spatial cluster 3, located near Encruzilhada do Sul 
municipality, presents as positive factor the silviculture expansion, the 
annual precipitation and as negative factor the distance from grassland 
degradation process and distance from silviculture expansion. Cluster 4, 

Fig. 07. Distribution of results of local adjustments of R2 GWR among LUCC processes and independent variables.  
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Table 03 
Parameters (β) estimated by regression models (mean of values) for global (OLS) and local (GWR) models.  

Parameter Soybean Exp. Degr. grassland Silviculture Exp. Intensification Degr. Forestry Regeneration Urbanization  

OLS GWR OLS GWR OLS GWR OLS GWR OLS GWR OLS GWR OLS GWR 
Intercept 0.058 0.034 0.146 0.126 0.052 9,4e− 3 1,4e− 3 9,1− 4a 0.017 0.021 8,3e− 3 9,6e− 3 7,7e− 3 0.014 
HAND − 0.013 − 3,7e− 3 − 7,3e− 3 − 4,5e− 3       − 3,1e− 3 − 3,3e− 3 − 3,6e− 3 − 7,3e− 3 

SLOPE − 7.5e− 3 − 2,6e− 3   0.032 0.011a         

ELEV 0.028 7,4e− 3   − 5.7e− 3 0.014         
P_YRS 0.012 − 2,4e− 3   − 2,4e− 3 − 4,9e− 3 − 1,0e− 3 − 1,0e− 3     1,7e− 3 8,3e− 3 

C_YRS − 0.013 − 0.014 − 6,5e− 3 − 0.013   5,5− 4 3,8− 4 2,6e− 3 1,7e− 3a     

P_1   0.013 0.025a − 3,5e− 3 − 1,0e− 3a 1,9e− 3 2,6e− 3       

P_2 0.016 0.014     − 6,8− 4 − 1,1e− 3   3,1e− 3 4,2e− 3   

P_3 − 0.010 − 4,6e− 3a 4,0e− 3 1,2e− 3a     − 3,6e− 3 − 2,8e− 3a − 1,0e− 3 − 1,0e− 3a   

P_4   0.01 5,6e− 3a       − 1,3e− 3 − 9,5e− 4   

P_5     − 6,8e− 3 − 0.015a         

P_6   − 8,4e− 3 − 3,4e− 3a   − 9,3− 4 − 1,1e− 3 8,1e− 3 4,5e− 3     

V009     4,8e− 3 − 1,0e− 3a 4,5− 4 2,5− 4a − 3,8e− 4 2,1e− 4a   6,2e− 3 − 6,6e− 4a 

V010             − 2,3e− 3 − 5,4e− 3a 

<14A − 4,1e− 3 − 5,1− 4a           1,4e− 3 − 5,7e− 4a 

15_59   − 9,1e− 3 − 5,8e− 3     − 1,2e− 3 − 9,1e− 4     

>60A           − 1,1e− 3 − 7,3e− 4a − 1,9e− 3 − 7,0e− 4a 

V002   5,1e− 3 0.015           
V003 3,3e− 3 4,1e− 3 4,2e− 3 1,7e− 3 3,4e− 3 4,0e− 3 − 2,3e− 4 − 2,0e− 4       

P_DE   − 0.012 − 8,1e− 3   − 3,5e− 4 − 3,5e− 4     0.021 0.020 
P_TO             − 5,1e− 3 0.066 
ILL_R 3,3e− 3 3,2e− 3   − 4,7e− 3 − 2,1e− 3a     9,7e− 4 7,4e− 5   

D_ROA     8,2e− 3 1,6e− 3a   1,4e− 3 5,0e− 4   − 3,9e− 3 − 7,1e− 4a 

D_RIV  ‘       − 2,2e− 3 1,3e− 3 9,2e− 4 5,7e− 3   

D_1 − 0.019 − 0.037 0.012 0.01 0.029 0.029 − 6,6− 4 − 4,5− 4       

D_2 − 0.02 − 0.038 − 0.067 − 0.140 − 0.038 − 0.056   − 7,7e− 3 − 0.014 − 1,6e− 3 − 4,6e− 4 4,8e− 3 4,9e− 3 

D_3 5,6e− 3 0.021   − 0.010 − 0.059 − 3,8e− 4 − 4,3e− 4a 4,9e− 3 0.012      

a Parameters not significant according to statistics t for hypothesis β = 0 (α = 0.05). 
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Table 4 
Results of global (OLS) and local (GWR) regression models.  

Processes Model Regression R2 AICc DF N◦ Variables 

1 - Soybean Exp. Global OLS 0,4216 − 4325.86 1729 13 
GWR 0.8323 − 5511.18 1239.66 

2 - Degr. grassland Global OLS 0,3766 − 3315.73 1729 12 
GWR 0.7677 − 4177.80 1288.87 

3 - Silviculture Exp. Global OLS 0,3984 − 3977.57 1729 12 
GWR 0,8029 − 4866.42 1209.91 

4 - Intensification Global OLS 0,1056 − 12,987.88 1729 10 
GWR 0,2325 − 13,159.91 1657.90 

5 - Degr. Forestry Global OLS 0,2828 − 8171.63 1729 9 
GWR 0,7233 − 8831.07 1234.47 

6 - Regeneration Global OLS 0,2194 − 10,427.52 1729 8 
GWR 0,4654 − 10,693.62 1490.47 

7 - Urbanization Global OLS 0,2719 − 6528.85 1729 10 
GWR 0,7048 − 7272.50 1303.71  

Fig. 08. Map of spatial clusterings using local parameters obtained with GWR for LUCC processes.  
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located near Camaquã municipality, presents as positive factor the 
elevation and as negative factors the annual precipitation, the distance 
from grassland degradation process and distance from silviculture 
expansion. Cluster 5, located near Canguçu municipality, presents as 
main positive variable the annual precipitation and as negative factors 
the number of forest degradation process patches, the distance from 
grassland degradation process and distance from silviculture expansion. 
Common variables for the three clusters (3,4 and 5) were the distance 
from grassland degradation process and distance from silviculture 
expansion. 

4. Conclusions 

The main processes that contributed to grassland vegetation degra-
dation in the last 15 years were soybean and silviculture areas expan-
sion. Using remote sensing and geoprocessing techniques it was possible 
to identify that the pattern of grassland vegetation degradation is a 
complex process involving a series of factors, tending to occur very close 
to areas already degraded previously. The main grassland vegetation 
degradation process in anthropic activities, particularly mechanized 
agriculture, like soybean cultivation and silviculture areas. 

The combination of MODIS/EVI images and night illumination im-
ages (DMSP-OLS) made possible the identification and quantification of 
the approximately 1,244,750 ha increase of areas cultivated with soy-
bean in Pampa Biome, which corresponds to around 145.56% increase. 
Silviculture areas also presented significant increase in area, with 
555,734 ha, over 167% increase in their total area. On the other hand, 
there was reduction in grassland vegetation of around 25% of their total 
area in 15 years, losing a total of 2,576,536 ha. 

The local (GWR) and local regression models’ results showed that 
LUCC processes in Pampa Biome are associated to geomorphometric, 
climatic, distance from already degraded areas and socioeconomic 
variables. For the LUCC process of soybean expansion, the main factors 
identified were: topographic (elevation, declivity and HAND models), 
young population, educational factors (like illiteracy rate), and climatic 
factors (annual precipitation and seasonality of precipitation), and fac-
tors involving proximity to degraded areas. 

In f silviculture expansion LUCC process, the main factors identified 
are: declivity, monthly average yield, illiteracy rate, annual precipita-
tion and proximity to grassland degraded areas. In grassland degrada-
tion LUCC process, the main factors identified are: population density, 
population residing in domiciles, HAND model, grassland degradation 
patches, average of number of residents in domiciles, soybean expansion 
patches and distance from soybean expansion process. 

The local regression model (GWR) is important to understand the 
high level of complexity of Pampa Biome landscape, characterized by a 
considerable level of heterogeneity, spatial fragmentation and aggre-
gation, particularly in its north portion and in Serra do Sudeste. 
Regionalization by SKATER method makes possible to analyze the 
existing variability of independent variables in the different regions of 
the area of study for LUCC processes, grouping in 5 spatial clusters, and 
so improving the understanding of the processes’ dynamics in Pampa 
Biome territory. 
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Scottá, F. C., & Fonseca, E. L. (2015). Multiscale trend analysis for Pampa grasslands 
using ground data and vegetation sensor imagery. Sensors, 15, 17666–17692. 
http://doi: 10.3390/s150717666. 

Smith, C. S., & Mcdonald, G. T. (1998). Assessing the sustainability of agriculture at the 
planning stage. Journal of Environmental Management, 52, 15–37. https://doi.org/ 
10.1006/jema.1997.0162 
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