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Abstract 

Reliable water forecasting provides the basis for making operational, tactical and strategic decisions for water utilities. The aim 
of this paper is to present the results of a spatial and temporal forecasting of water consumption patterns that has been carried 
out at the District Metered Area (DMA) level. Flow, infrastructure and billing data were collected from water utilities and 
combined with recently published census data. Results include empiric relations for estimating design and operational 
parameters for different seasonal and weekday scenarios, as well as average demand patterns for different consumer profiles 
taking into consideration key variables.  
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1. Introduction 

Measuring water consumption at the District Metering Area (DMA) level is becoming a current practice in most 
water utilities with the recent development of metering equipment and Supervisory Control And Data Acquisition 
(SCADA) systems. The characteristics of consumption data can vary considerably between DMA throughout 
different seasons, weeks and days, due to the number and heterogeneity of consumers and households, the 
existence of large consumers and the condition and operation of pipe networks.  
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Forecasting water consumption is challenging due to the nature and quality of available data, the numerous 

drivers that lay behind water consumption and the multiplicity of forecast horizons and spatial scales involved 
(Donkor et al., 2012). The influences of economic, socio-demographic and geographic variables as key drivers of 
water consumption (Grafton et al., 2011; March Corbella and Saurí i Pujol, 2009; Shandas and Hossein 
Parandvash, 2010) need to be identified through an inter-disciplinary work between engineers, economists, 
sociologists and urban planners. However, there are still few studies considering this integrated approach. On the 
temporal forecasting side, few studies consider consumption scenarios on a seasonal or daily basis, despite the 
reckoned differences between winter and summer behaviours (Polebitski and Palmer, 2010). On the spatial 
forecasting side, little research has examined the influence of urban land use patterns on water consumption 
(Shandas and Hossein Parandvash, 2010).  

The present paper focuses on developing a spatial and temporal forecasting of water consumption at the DMA 
level. It uses extensive measurements, since data from DMA distributed throughout the country of Portugal were 
collected, while previous studies used DMA from a single region (Loureiro, 2010). These extensive measurements 
from different regions with different consumption profiles allow a spatial forecasting. Furthermore, the collection 
of flow data with large historical data (i.e., a year) allows identifying different seasonal and weekday scenarios that 
enable a temporal forecasting. In this study the term “consumption” refers to all the components of urban 
consumption (domestic, non-domestic, leakage), while the term “flow” data refers solely to flow measurements. 
The methodology that establishes the approach for consumption forecasting as well as case-studies are presented. 
A series of empiric relations that predict water consumption in different scenarios is explored. 

2. Methodology 

The methodology used for spatial and temporal demand forecasting was adapted from Loureiro (2010) and 
involves a four-step procedure: Data collection, Data processing, Data characterization and Spatial and temporal 
consumption forecasting. As highlighted in Errore. L'origine riferimento non è stata trovata., the present paper 
focuses in steps 1, 3 and 4. 

Prior to data collection, the DMA must fulfill a set of requirements to be valid for spatial and temporal 
consumption forecasting (Loureiro, 2010; Mamade, 2013). 

The first step (Data collection) includes collecting data from different DMA, typically available in a water 
utility, in terms of infrastructure, billed consumption and customers and flow data.  

1. Data collection
Building, dwelling, 
familly, individual 

data

Billing and 
customers data

Flow data

Census

BCMS

SCADA

GIS – Geographical Information System
BCMS - Billing and customers managament system
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4. Spatial and temporal 
consumption forecasting

Census area

DMA

Infrastructure data
GIS

DMA selection

 
 

Fig. 1. Methodology for water consumption profiling, adapted from (Loureiro, 2010). 
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Infrastructure data were provided in GIS system format. Monthly billed consumption data (domestic and non-

domestic) were collected with one year time interval. Flow data readings from the utilities’ SCADA systems were 
collected for DMA with continuous flow monitoring. Socio-demographic data concerning building, dwelling, 
family and individual categories data were downloaded from the last census held in Portugal. These data were 
downloaded at the smallest census area, that corresponds to homogeneous building and living zones, with 
approximately 300 households (INE, 2012). A DMA may include several census areas.  

Collected data were processed in step 2 (Data processing). For flow data, this step involved data validation, 
normalization and outlier detection and cleaning. In terms of infrastructure, billing and customer data, the 
databases were standardized and combined in order to have only the necessary information required for the 
analysis. For socio-demographic data, a geoprocessing tool that calculates the weight of each census area and 
transforms the statistical descriptors from the census area level into the DMA level was used. This tool was 
developed by Loureiro (2010) and improved in this study. 

The third step (Data characterization) involved calculating socio-demographic, infrastructure, billing and 
consumption variables (Table 1). Socio-demographic variables were calculated using the geoprocessing tool. 
Variables concerning the building, dwelling, family and individual categories were calculated. A large number of 
socio-demographic variables are presented herein (22 variables). Most were initially used to characterize the social 
dimension in other urban infrastructures (e.g., airports) (Rebelo and Freitas, 2004). Loureiro (2010) has shown that 
these variables were appropriate for correlation with consumption variables in water distribution systems (WDS). 
Infrastructure variables describe the main characteristics of the pipe network (i.e., material, diameter and 
installation year) and service connections (i.e., number of service connections and service connection pipe length). 
Billing variables characterize the domestic and major categories of non-domestic consumption (i.e., commerce-
industry, collective and public). In terms of domestic consumption, total domestic consumption within each tariff 
was also calculated. The tariff categories considered were: 1st tariff – up to 5 m3/month, 2nd tariff – between 5-15 
m3/month, 3rd tariff – between 15-25 m3/month and 4th tariff – above 25 m3/month (IRAR, 2009). 

Table 1. Socio-demographic, infrastructure and billing variables. 

Socio-demographic Infrastructure Billing 

Building Dwelling Family Individual Service 
connection Pipe Domestic Non-domestic 

Buildings 
until 1970, 
1980, 1990, 
2000 and up 
to 2011 

Buildings 
with 1-2 , 3-4 
and  5 floor 

Residential 
immobility 

Rented 
dwellings 

Vacant 
dwellings 

Families with 
adolescents 

Families with 
elderly 

Families with 
unemployed 

Small 
families (1-2 
elements) 

Medium 
families (3-4 
elements) 

Large 
families ( 5 
elements) 

Population 
above age 65 
years 

Inactive 
workers 

University 
graduates 

Economic 
mobility 

Active 
population 
mobility 

Population with 
12 years of 
education 

Service 
connection 
density 
(sc/km) 

Average 
service 
connection 
pipe length 
(m) 

Average 
installation year 
(year) 

Average diameter 
(mm) 

Total stainless 
steel pipe length 
(%) 

Total grey iron 
pipe length (%) 

Total asbestos 
cement pipe 
length (%) 

Unknown material 
pipe length (%) 

Average 
domestic 
consumption 
(l/inh·day) 

Total domestic 
consumption (%) 

Total domestic 
consumption 
within each tariff 
category (%) 

Commerce-
industry billed 
consumption 
(%) 

Collective 
billed 
consumption 
(%) 

Public billed 
consumption 
(%) 

This step also involved the calculation of consumption variables and patterns for all the DMA taking into 
consideration the different seasonal and weekday consumption scenarios (Table 2). Seasonal scenarios may be 
related with changes in outdoor uses throughout the year (e.g., garden watering and swimming pool filling); 
weekday scenarios may related to water use changes between working days and weekends. 
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Consumption scenarios were obtained using hierarchical cluster analyses (Ward’s method). First, this statistical 

technique was used to identify groups of months with a similar behaviour. Each month corresponded to a case for 
the analysis and was characterized by the average consumption pattern. Second, cluster analysis was used again to 
identify group of weekdays with similar behaviour, within each seasonal scenario and the same approach was 
adopted. Then, a set of consumption variables was calculated. The focus was to calculate important variables for 
network operation and water losses control (i.e., minimum night consumption, and average consumption during 
minimum night consumption period) and for pipe network design and rehabilitation (i.e., peaking factors and 
average consumption). Therefore, consumption variables based on instantaneous flow time series were calculated 
for all scenarios (i.e., global, seasonal and weekday). The minimum consumption during the night period (0:00-
6:00) was firstly identified and removed from the consumption time series, for a separate analysis and for all 
consumption scenarios,  since it is an important variable to evaluate leakage at the DMA level (Farley and Trow, 
2003).  

For the subsequent analyses, 49 variables concerning socio-demographic, infrastructure and billing categories 
and 55 variables related to domestic billed consumption, total consumption and non-revenue water were obtained, 
along with 6 daily consumption patterns (one for each identified scenario).  Thus, this comprehensive approach 
allows forecasting the different components of urban consumption taking into consideration a broad number of key 
variables. 

The fourth step (Spatial and temporal consumption forecasting) involved data reduction using Principal 
Components Analysis (PCA) and correlation and Multiple Linear Regression (MLR) analyses. PCA was applied to 
reduce the number of variables from each category – socio-demographic, infrastructure and billing – into Principal 
Components (PCs). In addition, the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO-test) was used. The 
sample was adequate if the value of KMO was greater than 0.6 and the total explained variance for each category 
was greater than 75%. After the PCA, simple correlation analysis was carried out to assess possible correlations 
between PCs and consumption variables.  Once identified the most important correlations MLR was carried out 
(Donkor et al., 2012) by setting consumption variables as dependent variables and predictor variables as 
independent variables (these include the PCs calculated). In order to ascertain good regressions, the adjusted 
correlation coefficient (ra

2) that reflects the number of independent variables as well as the sample size is 
calculated, as well as the p-value. 

In what concerns the average daily consumption patterns, a new cluster analysis was carried out in order to 
group DMAs with similar patterns. Then, the average patterns for each group were converted into dummy 
variables and analysed with a correlation matrix using socio-demographic variables. The consumers’ behaviour is 
analysed for different weekday scenarios. Only socio-demographic variables were used, since these were found to 
be the most important for the analysis of daily consumption patterns (Loureiro, 2010). 

Table 2. Consumption variables. 

Category of  time series Variable Consumption scenario 

Instantaneous flow values Instantaneous peaking factor (-) Global, seasonal, 
weekday 

Instantaneous flow values during minimum night 
consumption period 

Average consumption during minimum night 
consumption period (l/inh·hour) 

Global, seasonal, 
weekday 

Instantaneous minimum flow values during night 
period 

Minimum night consumption value (l/service 
connection·day) 

Global, seasonal 

Daily flow Daily peaking factor (-) 
Average daily consumption (l/inh·day) 

Global, seasonal, 
weekday 

Monthly flow Monthly peaking factor (-) 
Average monthly consumption l/inh·month) 

Global 
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3. Results 

3.1 Case-studies and Data characterization 

Data from 2011 were collected from DMA belonging to different Portuguese WDS located in four districts
(Errore. L'origine riferimento non è stata trovata.): Oporto (Por), Braga (Bra), Lisbon (Lis) and Setúbal (Set). 
Each DMA was identified with a code with an abbreviation of the DMA name and an abbreviation of the district 
name. For instance, ADE_Bra, refers to a DMA in Braga district.   

Loureiro (2010) analysed 22 DMA in the Lisbon district, while in this paper analysed 17 DMA in four different 
districts. The general characteristics of these DMA are presented in Table 3.  
 

Table 3. General characteristics of analysed DMA. 
 
 
 

 
 
 
 
 
 
 
DMA analysed by Loureiro (2010) have (in average) a lower number of service connections and network length 

and a higher number of inhabitants,  comparing to the DMA analysed in the current work. This is mainly due to the 
fact that the Lisbon district is characterized by a majority of urban areas with high density of population. This 
contrasts with more rural areas with lower density of population typical of Oporto and Braga districts. 

In order to have a wider understanding of the differences between the northern and southern regions, more data 
on infrastructure and billing were collected. As a result, a total of 86 DMA were analysed respectively in the north 
(33) and south regions (53). For these additional DMA, flow time series could not be used due to insufficient 
historical data or to problems in some data. 

The main results in terms of the socio-demographic analysis are depicted in Errore. L'origine riferimento non 
è stata trovata. and show social differences between both analysed regions.  

 

                  
 

Fig. 2. General overview of socio-demographic variables, at the DMA level. 
 

Characteristic Interval Average value Median value Loureiro (2010) 

Diameter [mm] 75 – 131 100 102 121 

Network length [km] 4.0 – 95.0 32 21 19.3 

N.º service connections 250 – 3698 1462 1221 643 

N.º of clients 742 – 5185 2183 2100 3124

N.º of domestic clients 667 – 4514 1992 1863 2888 

N.º of inhabitants 2295 – 9312 3311 2349 5911 (2001) 
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Socio-demographically, DMA from the north have more recent buildings (39%) than DMA from the south 

(24%). Buildings with 1-2 floors are more common in the north (88%) than in the south (55%), which corroborates 
a lower number of service connections and network length in the DMA belonging to the Lisbon district. 
Concerning the family size, there are only 34% of families with 1-2 elements in DMA from the north, against 59% 
from the south. In terms of economic mobility, 43% of the workers living in DMA from the north are employed in 
the tertiary sector of activity, against 81% in DMA from the south. The fact that DMA from the south have a 
higher percentage of independent workers is probably correlated with higher incomes and may lead to less 
conservation attitudes towards the use of water (Beal and Stewart, 2011).  

Concerning the infrastructure variables, most networks are composed by plastic pipes (>70%). However, the 
proportion of asbestos cement (AC) pipes is higher in DMA from the south (30%) rather than in the north (3%).  

As for the billing variables, the average domestic billed consumption per inhabitant in DMA from the north is 
53 l/inh·day, whereas in DMA from the south it is considerably higher with an average of 121 l/inh·day (Fig. 3).  

 

Fig. 3. Domestic billed consumption and economic mobility for the analysed DMA. 

As previously referred, the fact that the economic mobility is higher in DMA from the south suggests a higher 
income, which can be an important factor explaining this difference in the per capita consumption. Additionally, 
this difference may also be related with the existence of households in the north region that are not connected to 
the WDS (e.g., households with private wells). The northern region is also characterized by lower temperatures (T) 
in the summer and much higher precipitation (P) than the south region (i.e., Oporto had an average T= 23.5ºC and 
an average P=44.5 mm, whereas Lisbon had an average T=26.7ºC and an average T=14.2 mm in the summer of 
2011) and thus, outdoor uses in the northern region may be less important. Non-revenue water accounts for 35%, 
in average, for all DMA analysed with flow data. Public consumption is considerably higher than public: 75% of 
DMAs have public consumptions below 9.5% and collective consumptions below 3.2%.  

In terms of the consumption seasonal scenarios, cluster analysis allowed the distinction of two groups of 
months. Generally, one group corresponded to the winter season and the other one to the summer season. Fig. 4(a) 
shows both seasonal scenarios for FAR_Set DMA.  

 

 

Fig. 4. DMA scenario exploration for FAR_Set DMA: (a) seasonal; (b) weekday. 
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As depicted, there is an average consumption increase in some months and also a significant behavioural change 

between January to March (cluster I) and April to September months (cluster II). 

Typically for all the analysed DMA, summer scenarios occur from July to September, whereas winter scenarios 
occur from November to February. Having explored the winter (W) and summer (S) scenarios, the next step was to 
understand whether the behaviours between days of the week were different for each seasonal scenario. Results 
showed that working days have a different behaviour from Saturdays and Sundays and bank holidays, for both 
seasonal scenarios. Thus, for spatial and temporal forecasting three weekday scenarios were analysed for each 
seasonal scenario. Fig. 4(b) shows the weekday scenario for each season in FAR_Set DMA where significant 
differences can also be identified. 

3.2 Spatial and temporal demand forecasting 

3.2.1 Principal Components Analysis (PCA)  

Since significant regional differences were identified, PCA was carried out separately for the north and the 
south region with the aim of finding, from the initial set of 49 variables, the most relevant for each region. For the 
socio-demographic and infrastructure categories, the first two principal components explained more than 80% of 
total variance. Errore. L'origine riferimento non è stata trovata. summarizes all the variables considered for 
MLR analysis and describes the structure of each principal component for the south region.  

Table 4. Variables considered for MLR with a sample of 53 DMA belonging to the south region. 

 
Concerning the socio-demographic category, the 1st component (PC1: Elderly families) is the most important, as 

it explains 58.2% of total variance and shows that families with 1-2 elements and inactive workers or elderly are 
related (positive loadings), in opposition (negative loadings) to families with 3-4 elements and with adolescents. 
The 2nd component (PC2: Individuals mobility) explains 30.7% of total variance and shows that individuals with 
higher graduation (university graduates) and working in the tertiary sector (economic mobility) are related, in 
opposition to individuals with lower education level. For the north region, PCA showed the same components. 
However, the Individuals Mobility component had a greater importance, since it explained 50.6%, whereas the 
Elderly families component explained 26.0%.  

Regarding the infrastructure, the 1st component (PC1: Pipe material) reflects pipe material, which is 
independent of network pipe dimension (PC2: Pipe size). In opposition, for the north region, PCA showed that 
Pipe size is more important than Pipe material.  

For billing variables, PCA analysis was only applied to domestic billed consumption variables as they were 

Category Predictor variable Relevant variable (loading) 

Socio-
demography 

PC1: Elderly families Inactive workers (0.92); Elderly (0.94); Families with 1-2 elements (0.95); Families with 3-4 
elements (-0.96);Families with adolescents (-0.97) 

PC2: Individuals 
mobility 

Economic mobility (0.80); University graduates (097); People with 12 years of education (-
0.91) 

Infrastructure 
PC1: Pipe material Plastic pipes (-0.76); AC pipes (0.78); Service connection density (0.71) 

PC2: Pipe size % Diameter 110-310 (0.63); % Diameter 110 (-0.72) 

Billed 
consumption 

PC1: Domestic Billed 
consumption 

Domestic consumption per inhabitant (-0.61);  Domestic Consumption 1st level (0.78); 
Domestic Consumption 2nd level (0.93);  Domestic Consumption 4th level (-0.91) 

Commerce and industry 
billed consumption Commercial and industrial billed consumption category (%) 

Public billed 
consumption Public billed consumption category (%) 

Collective billed 
consumption Collective billed consumption category (%) 
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found to be independent from non-domestic consumption variables. Hence, the only component obtained (PC1: 
Domestic billed consumption) shows that per capita consumption is related with consumption in higher tariffs. The 
same structure was obtained when performing PCA in the north region.  

Thus, data reduction allowed reducing the 49 initial variables into 8 new variables (5 PCs and 3 variables). A 
good structure was obtained for both regions and important regional differences were found. 

3.2.2 Multiple linear regression for empiric relations 

After reducing the variables into components, a correlation matrix was calculated to analyse which relations 
between consumption (55 dependent variables) and the predictor variables (Table 4) ought to be explored. After 
analysing the most significant correlations, a MLR analysis was carried out, and some of the most relevant empiric 
relations obtained are presented in Errore. L'origine riferimento non è stata trovata.. Since different behaviours 
for the north and the south region were detected, MLR was also carried out separately for both regions. In some 
cases, due to the short number of DMA with flow data in the north region, MLR was only carried out for DMA 
belonging to the south region.  

Table 5. Results of the Multiple Linear regression analysis. 

In the north region, domestic billed consumption increases more significantly with the Individuals mobility 
component ( 1=62.5), which means that it is higher for university graduates and individuals employed in the 
tertiary sector. This regression also indicates consumption is higher for AC pipes ( 2=65.5) and families with 
adolescents ( 3=-29.4). As previously referred, employees in the tertiary sector may have higher incomes, which 
may lead to higher water consumption due to less conservation attitudes (Beal and Stewart, 2011).  

In the south region, domestic billed consumption is more influenced by the Elderly families component ( 2=-
25.8) showing that families with 3-4 elements with adolescents consume more water for domestic purposes. This 
consumption variable also increases with the Pipe size component ( 2=-13.6), and networks with diameters above 
110 mm. 

Domestic consumption per client tends to be higher in the north region ( 0=318.0) rather than in the south 
region ( 0=228.9). This difference is mainly explained by the family size: in the north region, 66% of the families 
have more than 3 elements, while in the south this statistic accounts for 40%.  

Concerning the daily peaking factor, it increases mostly with monthly consumptions above 25 m3 ( 2=-0.10), 
plastic pipes ( 3=0.10) and families with 3-4 elements and adolescents ( 1=-0.02). Although not presented in the 

Region N.o 
DMA 

Dependent variable Explaining component Regression 
coefficient 

Standard-
Deviation 

p-
value 

 

N
or

th
 

33 Domestic billed consumption 
per client (l/cl·day) 

Constant ( 0) 
Elderly families ( 1) 
Individuals mobility ( 2) 
Pipe material ( 3) 

318.0 
-29.4 
62.5 
65.5 

15.5 
16.7 
17.9 
16.2 

0.0002 0.53 

So
ut

h 

53 Domestic billed consumption 
per client (l/cl·day) 

Constant ( 0) 
Elderly families ( 1) 
Pipe size ( 2) 

228.9 
-25.8 
-13.6 

5.8 
6.0 
6.0 

0.0001 0.35 

12 Daily peaking factor 
[-] 

Constant ( 0) 
Elderly families ( 1) 
Domestic consumption ( 2) 
Pipe material ( 3) 

1.39 
-0.02 
-0.10 
0.10 

0.04 
0.03 
0.03 
0.04 

0.0009 0.81 

Average consumption per 
inhabitant 
(l/inh·day) – winter 

Constant ( 0) 
Individuals mobility ( 1) 
Domestic consumption ( 2) 

172.1 
34.2 
-21.3 

21.3 
26.7 
23.7 

0.090 0.47 

Average consumption per 
inhabitant 
(l/inh·day) – summer 

Constant ( 0) 
Individuals mobility ( 1) 
Domestic consumption ( 2)

220.5 
34.8 
-55.4 

12.1 
16.6 
14.7 

0.015 0.90 

Minimum night consumption 
per service connection 
(l/sc·day) – winter 

Constant ( 0) 
Elderly families ( 1) 
Individuals mobility ( 2) 
Commerce and industry 
consumption ( 3) 

105.5 
74.1 
54.0 
28.6 

109.7 
42.7 
46.0 
9.9 

0.003 0.73 
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table, daily peaking factors in the summer increase with public consumption that includes public outdoor uses such 
as municipal pool fillings and garden irrigation. Zhang (2005) verified that the presence of outdoor uses is an 
important reason for a significant raise in peaking factors. This is also verified in the monthly and instantaneous 
peaking factors for all the scenarios analysed. These results support the idea that this type of consumption may 
have a large potential of improvement if   water efficiency measures are taken, especially in the summer period. 

In terms of the average flow per inhabitant, two scenarios were analysed: winter and summer. For both 
scenarios, the average flow per inhabitant is higher for individuals with higher mobility ( 1=34.2) and monthly 
consumptions above 25m3 ( 2=-21.3).  As expected, consumption tends to be higher in the summer ( 0=220.5) 
comparatively to the winter ( 0=172.1) (Polebitski and Palmer, 2010). 

Concerning the minimum night consumption, it is preferable to analyse this variable in the winter scenario, 
since the average flows are generally lower for this season and the proportion of consumption due to leakage may 
be more significant. However, instead of reflecting the infrastructure characteristics that are generally more 
correlated with leakage results show that this variable is mainly influenced by socio-demographic variables. This 
may be due the fact that the overall proportion of AC is lower in most DMA (less than 30%) and pipes with this 
material may be in good conditions. Thus, the minimum night consumption increases with the Elderly families 
component ( 1=74.1) and the Individuals’ mobility component ( 2=54.0). Additionally, it increases with 
Commerce-industry consumption ( 3=11.1). This tendency also highlights the importance of measuring large 
consumers for a separate analysis (Loureiro, 2010).  

In general, the empiric relations were obtained with better adjustments when comparing to Loureiro (2010), 
since this study used recently published census data and corresponding to the same time period as all the other 
collected data. Although the sample used for demand forecasting at DMA level was reduced in some cases, results 
are encouraging and should be explored with a large number of DMA.  

3.2.3 Correlation analysis for daily consumption patterns 

The analysis of the correlation matrix revealed two different profiles: young families and elderly families. These 
results are in agreement with Loureiro (2010). The first includes medium families (3-4 elements) whose elements 
spend most of the time outside (e.g. work/study outside their municipalities). The second includes small families 
(1-2 elements), people with more than 65 years or inactive workers and spend most of the time at home. Fig. 5 
presents the average consumption patterns for these two consumer profiles for working days in the winter and 
summer scenarios. 
 

 

Fig. 5. Average daily consumption patterns for working days (a) young families; (b) elderly families. 

Concerning working days, consumption in the night period (00:00-06:00) is very similar for both young and 
elderly families, with an average consumption factor of 0.4. Young families have a morning consumption peak 
from 07h30 to 08h30 with a consumption factor of 2.0. On the other side, the consumption pattern for elderly 
families does not show a morning peak, but instead has a flat consumption level from 07h15 to 13h15 with a factor 
of 1.5. As for consumption during the day (15:00-18:30), both patterns indicate similar consumption, although 
slightly higher in elderly families. Finally, concerning the night peak, the maximum consumption is registered at 
20h15 with an average consumption factor of 1.7 for young families and 1.4 for elder families. No significant 
differences between winter and summer scenarios were observed, apart from the morning peak being higher during 
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the winter season for young families and minimum flows in the night period being lower in the same season for 
elderly families. 

4. Conclusions  

The goal of the current work was to combine a large amount of data from different sources and resolutions to 
develop a spatial and temporal forecasting of water consumption and patterns in WDS.  

A consolidated and systematic methodology was adopted and a framework of 86 DMA with 49 socio-
demographic, billing and infrastructure variables was developed. Scenario exploration over flow time series was 
carried out and allowed the identification of seasonal (i.e., winter and summer) and weekday scenarios (i.e., 
working days, Saturdays and Sundays). Using these trends, 55 consumption variables and 6 daily consumption 
patterns were analysed.  

A rigorous Principal Components Analysis (PCA) was carried out to define the most relevant socio-
demographic, billing and infrastructure variables, followed by correlation and Multiple Linear Regression (MLR) 
analyses. The most important components behind the empiric relations obtained are socio-demographic and  
indicate that consumption is higher for large families employed in the tertiary sector (higher incomes), families 
with adolescents and university graduates. Public consumption is also relevant, especially to explain consumption 
increase in the summer season.   

For estimating consumption patterns, two different consumption profiles have been identified (i.e. young and 
elder families), clearly showing that different daily consumption behaviours are mainly associated with different 
family structures (i.e. families with adolescents or elderly).  

Although the number of cases used for demand forecasting at DMA level was reduced in some cases, results are 
encouraging and should be explored with a large number of DMA. This contribution considerably reduces the 
uncertainty in planning and operation of water distribution systems. Further developments include testing the 
empiric relations obtained in other DMAs with flow data. 
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