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A B S T R A C T

The road network is one of the most ubiquitous and significant long-term legacies of all types of human dis-
turbances on the landscape. Taking the upper reaches of the Minjiang River in Fujian Province of southeast
China as a case, the spatiotemporal dynamics of the landscape patterns and landscape ecological risk (LER) were
explored, and based on the geographically weighted regression (GWR) model, the geographical heterogeneity in
the correlations between the road network and the LER were identified. Our results showed that: (1) The dis-
tribution of the LER had a gradually decreasing trend from the middle to the periphery in 2007, with the high-
risk area expanding to the western part of the study area in 2012 and 2016. The LER close to the road network
was generally higher than those far from the road network. (2) The GWR model fit our case better than the
ordinary least square (OLS) model, with both of the measurements of the road network (i.e., distance to the
nearest road, DNR; and kernel density estimation, KDE) being significantly correlated with the LER at the 1%
level. (3) According to the quantified coefficients estimated by the GWR model, we found that there were spatial
variations in the associations between the two regressors and different level effects of roads on the LER. (4) The
GWR analysis also indicated that the high-level roads mainly affected areas where human activities were more
intensive, whereas the low-level roads infiltrated every corner of the region, mainly affecting areas that were far
from the city. (5) The significant cumulative impacts of the road network on the LER were also observed in this
study. Benefitting from the quantification and visualization of the spatial paradigm in regard to their trade-off
and the synergistic associations between the LER and the road network at the grid level, our study provides
suggestions for implementing more appropriate policies that will alleviate the impact of road construction on the
landscape. This study also sheds light on further applications of the GWR model in future research on road
ecology.

1. Introduction

Ecological risks reflect the possibility that an ecosystem will be
confronted with a degrading response to external disturbances (Gong
et al., 2015). One of its major branches is landscape ecological risk
(LER). The magnitude of LER is affected by multi-source threats from
both natural and human interferences, such as agricultural and forestry
practices and road network extension, which can be observed by the
integrated trait of both landscape patterns and ecological processes at
the regional scale (Li and Zhou, 2015; Simmons et al., 2007). The road
network is among the most prevalent of all the types of human dis-
turbances (Forman et al., 2002; Valipour, 2015), and its increasing
influence on natural ecosystems has been observed over the past two

decades (Coffin, 2007; Karlson and Mortberg, 2015; Selva et al., 2011).
According to previous studies, nearly 15–20% of the total land is cov-
ered by the road effect zone in the USA (Forman, 2000), approximately
16% in the Netherlands (Reijnen et al., 1997), and this number is ap-
proximately 18.37% in China (Li et al., 2004). The road network will
directly or indirectly accelerate the fragmentation and degradation of a
habitat, eventually resulting in an increase of LER (Freitas et al., 2012;
Barandica et al., 2014; Staab et al., 2015). With a sharp increase in the
contradiction between the road network and ecological resources pro-
tection, it is important to better understand their relationships to find
scientific methods to pursue sustainable development.

In recent years, evaluations of LER have drawn wide attention
around the world (Ayre and Landis, 2012; Li et al., 2017; Peng et al.,
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2015). These studies provide an important contribution to the under-
standing of the effects of human disturbances on the ecosystem (Li and
Huang, 2015; Xu and Kang, 2017; Zhou et al., 2014). Meanwhile, the
effects of road construction on landscape sustainability have also been
extensively investigated at various levels, including a single road, a
certain level of roads or even a complicated road network (Barber et al.,
2014; Hu et al., 2016; Narayanaraj and Wimberly, 2012). However,
most of these studies concerning the effect of roads tend to focus on
analysing the patterns of landscapes (Liu et al., 2014; Redon et al.,
2015); few studies have performed a LER assessment associated with
the road network; in particular, spatial variations in the relationships
between the road network and LER across locations have not yet been
reported (Mo et al., 2017).

The road network, which enhances the attraction and radiation of
the manmade landscape, has become a focus of landscape research over
the past two decades (Hawbaker et al., 2006). Along with long-term
planning and the development of roads in a region, a complex network
system with certain spatial characteristics has gradually formed. To
observe the ecological effects of a road network, the spatial pattern of
the road network should be quantified first (Cai et al., 2013; Mo et al.,
2017). Road density (RD) is one of the most commonly used indices that
can effectively characterize the features of a road network. Due to the
rapid development of geographic information systems (GIS), its spatial
analysis tools have been used extensively in various fields, including
road ecology studies (Hu et al., 2014; Karlson et al., 2014; Vu et al.,
2013). Among these spatial analysis tools based on ArcGIS, kernel
density estimation (KDE) (Parzen, 1962), which is a spatial analysis
method that measures the density of the road network, offers a pow-
erful tool for quantifying the spatial features of a road network. KDE has
been employed to observe the ecological impacts of the road network
and has proven to be an effective measurement in its joint consideration
of both the spatial configuration and the function of a road network
(Anderson, 2009; Cai et al., 2013; Hu et al., 2017). Buffer analysis (BA)
and distance to the nearest road (DNR) are also effective methods
employed in many road impact analyses; for example, researchers have
used the DNR index to analyse the impacts of the road network on the
changes in forest cover (Hu et al., 2014; Chaudhuri and Clarke, 2015;
Hu et al., 2016) and have used the BA index to explore the impacts of
road network extensions on landscape patterns (Liu et al., 2014; Liang
et al., 2014).

As mentioned above, the spatial distribution of a road network
characterized by the indicators of RD, KDE, and DNR constrains the
rates and pathways of LER changes. However, how much these vari-
ables are able to explain the patterns of LER is still uncertain. The OLS
technique has been used to explore the effects of human interference
factors on the landscape in many of previous studies; for example, the
linear regression model was used to study urban landscape changes
(Seto and Kaufmann, 2003), the multinomial logistic model was applied
to explore the forces of forest landscape change (Poudyal et al., 2008),
and the maximum covariance analysis was applied to analyse the im-
pact of the road network on LER (Mo et al., 2017). However, the OLS
may ignore the spatial non-stationarity of geographical factors (i.e.,
LER) and lead to biased outcomes or inefficient estimations (Austin,
2007; Valipour, 2015) because the relationships between road in-
dicators and LER may vary greatly across a study area. In this context,
the geographically weighted regression (GWR) model was proposed
(Fotheringham et al., 2002) to identify the geographical variation in the
relationship between two regressors at the pixel level. The GWR model
has been extensively used to explore the driving patterns in land use
and cover changes (Buyantuyev and Wu, 2010; Giri and Qiu, 2016; Tu,
2011), forest landscape dynamics (Hou et al., 2015; Pineda Jaimes
et al., 2010), and other ecological and environmental process (Hu et al.,
2015; Mulley et al., 2016; Zhang et al., 2016). The GWR model has been
proven to be an effective solution to evaluate the spatial non-statio-
narity and thus overcome the problem produced by OLS models.
Therefore, in this study, the GWR model was employed to explore the

impact of different dimensions of road networks on LER.
Fujian Province, which is located on the southeast coast of China,

has the highest forest coverage rate in the country (Ren et al., 2011).
Sanming City possesses the highest vegetation coverage in the province
and is one of the major areas in China in terms of the forest production
industry. However, the region is experiencing active transformations
among landscape types caused by the combination of nature and human
activities (Zhang et al., 2010). Furthermore, the road network of
Sanming City has expanded rapidly over the past 30 years (Hu et al.,
2017). The significant alteration of the forest landscape by the exten-
sion of the road network has potentially negative effects on biodiversity
conservation and habitat loss, thus leading to an increase of the LER.
Therefore, identification and quantification of LER associated with road
network development are of great value for this region. Meanwhile, this
study will provide an important theoretical basis and methodology for
road network planning in other regions to alleviate its impact on the
ecosystem.

Taking Sanming City as a case, the aim of this study was to fill in the
knowledge gap of spatial variation in the association between the road
network and LER. For this purpose, we initially introduced the GWR
model to analyse the spatial paradigm in their associations. Specifically,
the objectives were to: (1) quantify and visualize the spatio-temporal
distributions of the landscape pattern and LER in different periods; (2)
identify the spatial variation of the effects (both sign and size) of the
road network on the LER by applying GWR models at the grid level,
with the LER index as a dependent variable and the KDE and DNR of
different level roads as well as topography indicators (i.e., slope and
elevation) as independent variables.

2. Materials and methods

2.1. Study area

Sanming City (116°22′–118°39′E, 25°30′–27°07′N), including the
Sanyuan District and Meilie District, is located in the western part of
Fujian Province in China. Sanming City is in the upper reaches of the
Minjiang River, which has the seventh highest annual runoff in China.
The study area has a total area of 115 815 hm2, and most of its lands are
mountainous areas with steep slopes. The climate is generally mild and
moist, with an annual average relative humidity of 78.3% and an
average temperature of 19.55 °C. The annual average precipitation is
1665.3 mm, most of which occurred during the period of March to
August (Yang et al., 2007). In the study area, the forest is the pre-
dominant landscape, constituting of more than 80% of the land use.
Thus, it was labelled as the most “green” city in the most “green”
province of China.

Sanming City was chosen as the case study here for two reasons.
First, Sanming City is located in the middle subtropical zone, where the
North-South subtropical flora meets, with complex terrain, rich wildlife
and lush vegetation. At the same time, it was also one of the refuges for
plants during the Quaternary glacial period in China, thus preserving
many valuable prehistoric “relic plants”; e.g., there are near 700 hm2

secondary forest of Castanopsis kawakamii in the study area, which is
among the largest in the world. It has been reported that the forest has
experienced increasing artificial interference in recent decades (Hu
et al., 2014). Second, the study area has vigorously developed trans-
portation in recent years and will in the future to promote the devel-
opment of eco-tourism and other related industries. The significant al-
teration of the forest landscape by the extension of the road network
has potentially negative effects for biodiversity conservation and ha-
bitat loss, thus leading to the increase of LER. How to deal with the
harmonious relationship between the road network extension and
ecological protection is a key scientific issue for the study area and
elsewhere in the world. Thus, our results will have a good policy im-
plication for biodiversity and habitat protection, and the method ap-
plied here (i.e., the LER index and the local model) have a good
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reference for other places in the world.

2.2. Data source

The data used in the study mainly included the Forest Resources
Inventory Database (FRID), the road network dataset, and a city centre
distribution map. (1) The FRID of the study area in 2007, 2012, and
2016 was obtained from the local forestry bureau. The FRID database is
a shapefile that records forest traits (e.g., tree species, age, breast dia-
meter, tree height, etc.) and corresponding ecological factors (e.g., land
type, slope, altitude, soil type, etc.) at the forest patch level (Guan et al.,
2015; Piao et al., 2005). The forest vegetation inventory is investigated
every 5 years at the county level and is constantly updated at the end of
each year (State Forest Administration, 2003; Xie et al., 2011; You
et al., 2017). (2) The road network dataset was based on the trans-
portation maps of the study region in 2016 and was obtained from the
National Fundamental Geographical Information Centre, and the road
network was digitized as vector data (rectified by 1:10,000). The road
network primarily included the expressway, national roads, provincial
roads, county roads, country roads, rail roads, and other main roads. (3)
The centres of the city were defined as the locations where the ad-
ministrative building of the Sanyuan district, Melie district, and
Sanming City were located, respectively.

2.3. Classification of landscape

To comprehensively describe the landscape structure of the study
area, the overall landscape was classified into ten categories (Table 1):
(1) nature forest, (2) artificial mixed forest, (3) artificial pure forest, (4)
bamboo forest, (5) economic forest, (6) other forest, (7) construction
land, (8) cultivated land, (9) unused land, and (10) water land. To avoid
deviation arising from differences in resolution, we transformed the
forest landscape type map into a uniform spatial resolution (5×5m)
for the study years of 2007, 2012 and 2016.

2.4. Establishment of the landscape ecological risk index

2.4.1. Definition of the landscape ecological risk index
Ecological risk assessment is the method for evaluating the degree of

risk of an ecosystem that has been exposed to one or more stressors,
such as land change, road construction, climate change or natural dis-
turbance (Gong et al., 2015). Ecological risk assessment is now applied
more broadly to assess the potential impact of multiple ‘threats’ against
measured present impacts on ecosystem structure and function. One of
the important branches of ecological risk is LER, which explores the
effects of a variety of hazards for large-scale units and is the comple-
ment to and expansion of a general ecological risk assessment. Speci-
fically, the LER assessment refers to the landscape composition, struc-
ture and function of a specific area by analysing the landscape element
mosaic, landscape pattern and landscape ecological process to respond

to intrinsic risk sources and external disturbances (Mo et al., 2017). The
LER assessment is a method for determining or predicting how a process
is affected by human activities or natural disasters. An LER assessment
not only pays attention to the extent of damage to specific risk receptors
but also considers the impact of ecological risks on the fragmentation
and diversity of the overall landscape pattern. Therefore, in the related
research of LER assessments, the landscape index that measures the
regional landscape pattern is often included in the framework of LER
(Simmons et al., 2007; Li and Zhou, 2015). The LER is primarily con-
structed of two landscape-level indices: the Landscape Disturbance
Index (LDI) (external) and the Landscape Vulnerability Index (LFI)
(internal) (Shi et al., 2015). It is significant to make a reasonable as-
sessment of LER to optimize the landscape structure, establish the risk
alarm mechanisms, and maintain the ecological function in upstream of
the basin because the provision of ecosystem services (e.g., soil and
water conservation) is vital to its downstream.

2.4.2. Calculation of the landscape ecological risk index
In reference to previous studies (Gong et al., 2015; Mo et al., 2017),

LER is quantified by the combination of two landscape-level indices,
LDI and LFI, which can not only measure the degree of internal vul-
nerability but also the external disturbance of certain ecosystems. The
LDI reflects the extent to which ecosystems that are represented by
different landscapes are impacted by external disturbances (e.g., road
construction), while the LFI primarily measures the stability or anti-
interference ability of a landscape component itself (Xie et al., 2013).
The detailed formula and descriptions are shown in Table 2.

(1) LDI is employed to observe the intensity of an ecosystem impacted
by natural and human dimensions, which is derived from a com-
bination of three landscape metrics, including the fragmentation
index (Ci), the splitting degree index (Si) and the dominance index
(Di). In the context of rapid urbanization in the southeast coastal
areas of China, the expansion of the road network is the key driving
force that is most likely to cause forest fragmentation by splitting
the forest into pieces and creating some advantageous landscapes
(i.e., plantations in the study area). The dominance index indicates
the extent to which a certain landscape dominates. The higher the
dominance of a landscape, the lower the landscape diversity and
the weaker the resistance to external disturbances should be, or the
greater the ecological loss associated with adverse impacts on it
(Peng et al., 2015). According to previous studies, the weights for
the fragmentation index, the splitting degree index and the dom-
inance index were assigned as 0.5, 0.3 and 0.2, respectively (Gong
et al., 2015; Mo et al., 2017; Liu et al., 2012).

(2) LFI. Different landscape types themselves, with different sensitivity
and resilience, may have different abilities to recover them from
human interference (Peng et al, 2015); therefore, the fragility index
of is a function of the certain landscape types. According to the first-
level classification standard of China and the difference in the

Table 1
Classification of landscape.

Land use types Landscape classes Description

Forest land Nature forest Forests that have re-grown after a timber harvest for a long enough period without human disturbance.
Artificial mixed forest Mixed forest with coniferous and species
Artificial pure forest The standing volume of a single tree species is more than 90%
Bamboo forest P. pubescens
Economic forest Forests with the main purpose of producing forest products, such as fruits, edible oils, industrial raw materials and herbs, other than

wood, such as Camellia oleifera, Citrus reticulata and C. mollissima
Other forest Including shrubwood land, sparse forest land, unforested land

Non-forest land Construction land Including industrial and mining, urban and rural residential, and transportation land
Cultivated land Including rice, wheat, and vegetable land
Unused land Including burned area and barren land
Water land Rivers
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resilience of different forests (Shi et al., 2015; Mo et al., 2017), the
fragility degree of landscape was classified into ten grades, with
nature forest considered to be the most stable ecosystem, while
construction land is considered to be the most vulnerable eco-
system. Therefore, the grade of the fragility degree for the ten
landscapes were as follows: construction land=10, unused
land=9, water area= 8, cultivated land=7, other forest= 6,
economic forest= 5, bamboo forest= 4, artificial pure forest= 3,
artificial mixed forest= 2, and nature forest= 1, then normalized
and finally multiplied by the area ratio of each landscape type to
obtain the fragility index (Fi) of each landscape type.

(3) LER. The study area was first divided into 164 sample units with a
grid of 3×3 km. Then, the LER was calculated with the formulas in
Table 2 for each sample. Hereafter, the LER of the entire area was
interpolated into 1148 grids of 1×1 km using the reverse distance
method in ArcGIS 10.2. Finally, we divided the LER into five grades
using the method of natural breaks, including low risk, sub-low risk,
medium risk, sub-high risk, and high risk.

2.5. Regression models

2.5.1. OLS and GWR regression
Both the global regression model (i.e., OLS) and the local regression

model (i.e., GWR) were employed to analyse the driving patterns of the
LER.

First, we adopted the OLS model to examine the linear relationship
between the LER and its factors. The regression model was specified as
Eq. (1):

∑= + +y β β x ei j i i0 (1)

where yi is the value of LER for the ith grid and xi is the selected factors
of LER (e.g., KDE, DNR, and topography indicators) of the ith grid. β0
and βj are the coefficients of the constant and the explanatory variables,
and ei is the stochastic error term.

Second, the GWR model was employed, which is shown as Eq. (2):

∑= + +y u v β u v β u v x e u v( , ) ( , ) ( , ) ( , )i i i i i j i i i i i i0 (2)

here (ui, vi) represents the geographic coordinates of the ith grid.
GWR allocates a unique parameter for each grid. The estimation of

the coefficients are specified as Eq. (3):

̂ = ′ ′−β u v X w u v X X w u v Y( , ) ( ( , ) ) ( , )i i i i i i
1 (3)

where w (ui, vi) is the spatial weight matrix (Hu et al., 2017; Poudyal
et al., 2008) that is unique for each grid.

In this study, both the OLS model and GWR model were processed in

SAM v 3.1 (Hu et al., 2015; Rangel et al., 2010). During processing, the
Gaussian function was selected, and the cross-validation and the Golden
Section Search (searching from 10 to 15% of neighbours) were adopted
to optimize bandwidth and to reduce the Akaike Information Criterion
(AICc) to a minimum.

2.5.2. Variables
The dependent variables were the LER at the 1× 1 km grid level in

2016. Two sets of independent variables (i.e., accessibility factors and
topography factors) were considered in the models (Table 3).

The first group of independent variables is the accessibility factors,
including distance to the nearest road of different levels (i.e., DNR-WH,
DNR-E, DNR-H, and DNR-L), the road density of different levels (i.e.,
KDE-WH, KDE-E, KDE-H, and KDE-L), and the distance to the nearest
city centre (DIST-CTY). (1) The road network was reclassified into three
levels: (i) expressway; (ii) high-level roads (including national and
provincial level roads); and (iii) low-level roads (including county level
roads and country level roads) (Hu et al., 2016; Liu et al., 2014). (2)
The distance to the nearest road of each level for each grid was cal-
culated using the neighbour analysis tool in the ArcGIS 10.2 program.
(3) KDE was calculated using a moving window by ArcGIS (Mo et al.,
2017; Ying et al., 2014). A default bandwidth generated automatically
was applied to optimize the outcome in the ArcGIS 10.2 program.
Therefore, the KDEs of different level roads were obtained. (4) The
distances from each grid location to the nearest city centre (i.e., Sa-
nyuan district, Melie district, and Sanming city) were measured with
the neighbour analysis tool in the ArcGIS 10.2 program.

The second group of independent variables is the topography fac-
tors, including slope (SLOPE) and elevation (ELEV), which imply the
costs of the conversions among landscapes because they have a strong
influence on the level of mechanization or accessibility on foot.

Before processing the GWR program, we first changed the original
values of the independent variables into the logarithm values to reduce
the impact of abnormal value and minimize the residual values; then, to
avoid the multicollinearity problem between the factors, SPSS17 was
used to carry out a step-wise regression analysis; finally, six factors (i.e.,
KDE, DNR-WH, DNR-H, DIST-CTY, ELEV, and SLOPE) were selected as
explanatory variables for the LER in the simulation of the GWR models.
Table 4 exhibited the description of the dependent variables and the six
filtered independent variables.

Table 2
The calculation formulas for landscape ecological risk index.

Landscape index Formula Descriptions

Landscape fragmentation index Ci= ni/Ai To describe the degree of patches fragmentation for a certain landscape type

Landscape splitting index Si= Li·A/Ai, Li=(1/2)· n A/i To indicate the degree of patches separation for a certain landscape type

Landscape dominance index Di=(Qi+Mi)/4+Gi/2, Qi= ni/N, Mi= Bi/B,
Gi=Ai/A

To describe the degree of patches importance for a certain landscape type

Landscape disturbance index LDIi= aCi+ bSi+ cDi To quantify the intensity of a landscape subjecting to external interference

Landscape fragility index LFIi, obtained by artificial assignment and normalization To evaluate the internal capability to maintain stability for a certain landscape type

Landscape Ecological Risk Index = ∑ =LER LDI LFIÂ·k i
J Aki

Ak
ki ki1

To reflect the relative magnitudes of integrated ecological pressures caused by
external interference and internal vulnerability for a certain study area

Note: Ci: landscape fragmentation index of landscape type i; ni: patch number of landscape type i; Ai: total area of landscape type i; Si: landscape splitting index (LSI) of
landscape type i; Li: patch density of landscape type i; A: total area of the entire landscape; Di: landscape dominance index of landscape type i; Qi: the frequency of
landscape type i; N: total number of all type of patches;Mi: the density of landscape type i; Gi: the ratio of landscape type i; Bi: number of samples appearing landscape
type i; B: total sample number; LDIi: the disturbance index of landscape type i; a, b, and c are weights of indices Ci, Si and Di, respectively; LFIi: the degree of
vulnerability in landscape type i; LERk: the Landscape Ecological Risk Index of sample k; J: the number of landscape categories in the sample k; Aki: the area of
landscape type i in sample k; Ak: the area of sample k.
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3. Results

3.1. Dynamic of landscape composition

In the study years, the primary landscape of the study area was the
forest land, which accounted for nearly 80% of the entire landscape
(Figs. 1 and 2). Among the forests, the dominant landscapes were the
artificial pure forest and the bamboo forest, which accounted for more
than 23.0% and 21.0% of the total area, respectively. Nature forests
were also widely distributed in the study area, occupying more than
16.0% of the study area. Non-forest landscapes, such as construction
land, cultivated land, unused land, and water areas, only composed a
relatively low proportion of the entire landscape.

Fig. 3 indicated that the forest cover changes varied among the
landscapes over time. In both of the two periods (i.e., 2007–2012 and
2012–2016), great changes occurred in the economic forest, the other
forest, construction land and unused land, while minor changes hap-
pened in the artificial pure forest, the artificial mix forest, the water
area, and the bamboo forest. Among these, construction land was one of
the largest increasing landscape types, which was observed to increase
by 42.5% and 16.5% in the two periods, respectively; the bamboo forest
increased 4.2% and 3.8% in the two periods, respectively; and the ar-
tificial pure forest increased 3.6% and 1.4% in the two periods, re-
spectively. However, the opposite changes were observed for the eco-
nomic forest, the unused land, and the artificial mixed forest, with the
economic forest decreasing 40.5%and 49.7% in the two study periods,
respectively; the unused land decreasing 63.3%and 36.7% in the two
study periods, respectively; and the artificial mixed forest decreasing
3.4% and 4.0% in the two study periods. Additionally, the other forest
reduced significantly (51.5%) in the early stage and stayed unchanged
(0.2%) during the later period; the nature forest increased 9.5% during
2007–2012, and then remained stable during 2012–2016, while the
cultivated land increased 11.3% in the early stage and then remained
stable (0.4%) in the later period.

3.2. Dynamic of landscape metrics

Figs. 4 through 6 revealed that there were obvious changes in the
landscape indices over time. In terms of fragmentation (Fig. 4), the
economic forest, other forest, construction land, cultivated land and
unused land had high values according to the landscape fragmentation
index, which implied high degrees of patch separation for these types of
landscapes. During the two studied periods, the landscape fragmenta-
tion index of the economic forest, other forest and unused land all in-
creased, cultivated land decreased, and construction land decreased
first from 2007 to 2012 and then increased from 2012 to 2016.

In terms of separation (Fig. 5), the values of the LSI for the economic
forest and other forest showed an increasing trend, and that of culti-
vated and construction land decreased during the two periods, whileTa
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Table 4
Description of the variables used in the regression models.

Variables Maximum Minimum Mean Std. Dev. P-value in
step-wise
regression

Dependent LER in
2016

0.377 0.185 0.293 0.039 –

Independent KDE 7.019 0.000 0.430 0.779 0.000**

DNR-
WH

3.913 0.000 2.939 0.632 0.000**

DNR-H 4.185 0.000 3.487 0.534 0.000**

DIST-
CTY

4.500 2.562 4.031 0.291 0.000**

ELEV 3.147 0.000 2.247 0.850 0.000**

SLOPE 1.690 0.000 1.235 0.471 0.000**

** Indicates statistical significance at 0.01 level.
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the splitting index of the unused land decreased first and then increased
during the two periods.

In terms of the dominance (Fig. 6), its index of the artificial pure
forest was among the highest, followed by bamboo forest and nature
forest, which was in line with the size of the area of each landscape
(Fig. 2). During the two studied periods, the landscape dominance in-
dices of the economic forest showed a decreasing trend, the construc-
tion land decreased first from 2007 to 2012 and then increased from
2012 to 2016, while the unused land increased first from 2007 to 2012
and then decreased from 2012 to 2016. The value changes in the other
forest and the cultivated land were small.

Additionally, the values of fragmentation, separation and the
dominance of the other landscapes, such as the nature forest, the arti-
ficial mixed forest, the artificial pure forest, the bamboo forest, and the
water land, were relatively low and stable during both of the two
periods.

3.3. Dynamic of landscape ecological risk

Fig. 7 depicted the distribution of the LER for the years of 2007,
2012, and 2016. The figure indicated that the overall distribution of the
LER was uneven and varied over time and space.

In 2007, the high-risk areas were mainly distributed in the middle of
the study area, with a small part located in the west corner, and the
low-risk areas were mainly located in the southeast parts of the study
region. In 2012, the distribution of the LER showed an obvious struc-
ture of south-north polarization, with high-risk distributing in the south
area and low-risk distributing mainly in the north part. The distribution
of LER in 2016 was similar to that of 2012.

Summarily, the LER showed a gradually decreasing tendency from
the middle to the periphery in 2007, and then the high-risk area ex-
panded to the western section of the study area in 2012 and 2016. It is
worth noting that the higher-risk areas generally were distributed
around the high level of roads and city centres. Moreover, the degree of
the risk had an obvious gradient parallel to the road, with the risk
decreasing as the distance from the high-level road increased.

Table 5 showed the area of different LER grades and their changes
during the studied periods. Overall, the medium-risk and the sub-high-
risk regions accounted for the highest proportion. The medium-risk
accounted for more than 22% of the total area, and the sub-high-risk
accounted for more than 24%. The proportion of the high-risk areas was
the lowest, accounting for 9.815%, 7.236%, and 14.821% of the total
study area in 2007, 2012, and 2016, respectively.

From 2007 to 2016, the medium-risk region had an increasing
tendency, with growth rates of 2.184% and 2.283% for the two time
periods, respectively, and the high-risk area decreased first and then
increased, with growth rates of −2.578% and 7.585% for the two time
periods, respectively. The low-risk area and the sub-high-risk area ex-
hibited a decreasing pattern, and the sub-low risk area increased first
and then decreased.

3.4. Driving pattern of landscape ecological risk

The geographical variations in the correlations between the LER and
the independent variables (i.e., DNR-WH, DNR-H, DIST-CTY, KDE-WH,
elevation, and slope) were examined by both the OLS and the GWR
regression. Because the regression results of the three years were rela-
tively similar, only the outcomes of the year 2016 were elaborated here.

Fig. 1. Spatial distribution of the landscapes in 2007, 2012 and 2016.

Fig. 2. Proportion of each landscape in 2007, 2012 and 2016.
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The adjusted R-squared of the GWR model was 0.697, which is higher
than that of the OLS models (0.134); the AICc of the GWR model was
-5519.219, which was less than that for the OLS models (−4375.427).
All of these outcomes indicate that the GWR model is superior to the
OLS model in this case. Therefore, the results of the GWR regression can
be applied to analyse the correlations between the road network and
the LER. The six variables were all statistically significantly related to
the LER at the 1% level.

Table 6 presented the parameter statistics of the GWR model. These
statistics showed how great the coefficient of each variable varied
within the study area, with minimum, lower quartile, median, upper
quartile, and maximum values being summarized here. The comparison
of the magnitude of the coefficients among all the variables can help to
explain the geographical heterogeneity in the associations between the
LER and its impact factors.

Fig. 8 visualized the spatial distribution of the statistically sig-
nificant associations between the LER and the independent variables,
respectively, at the grid level. Considering that the main purpose of this
study was to identify the impact of the road network on the LER, and
the few areas of the significant clusters being observed for the variables
of DIST-CITY, elevation and slope, then only the spatial variations in
the effects of the significantly related road measurements (i.e., KDE-
WH, DNR-WH, and DNR-H) were discussed in Fig. 8. In the figures, the
colorized clusters (red indicating a positive relationship, and blue in-
dicating a negative relationship; the deeper the colour, the greater the
correlation) indicated that the statistical significance level was less than
5%, implying that the independent variable had a great impact on the
dependent variable, while the grey clusters indicated that the statistical
significance level was greater than 5% and revealed that there were no
obvious relationships between the two regressors.

Fig. 8a indicated that the right part of the study area showed a

significantly positive association between the LER and the KDE-WH.
The figure also indicates an obvious trend, with the degree of the po-
sitive correlation increasing gradually from the northwest to the
southeast of the study region, that was exactly parallel with the high-
level road across the city centres.

Fig. 8b showed that there was only a small part of the grids that
revealed a significant correlation between the LER and the DNR-WH. A
red cluster distributed on the northern section of the study area, which
was located to the west of the high-level road. At the same time, only a
few portions of blue grids occurred in the southern part of the study
area. In terms of the red cluster, the farther away from the city centre,
the greater the value of the coefficient was.

Fig. 8c indicated that most of the study area showed significantly
negative associations between the LER and the DNR-H. The distribution
in the coefficient of the DNR-H had an obviously downward trend from
the city centre to the surrounding.

4. Discussions

4.1. Spatio-temporal pattern of landscape ecological risk

The LER assessment explores the impacts of a variety of hazards on
ecosystem at the large-scale units by assessing potential and cumulative
ecological effects. However, most previous studies on the LER were
based on satellite imagery (Ayre and Landis, 2012; Li et al., 2017;
Zhang et al., 2016), and the landscape is generally divided into forested
and non-forested land type due to image resolution limitations. In this
study, LER was constructed based on two landscape-level metrics (i.e.,
LDI and LFI) to comprehensively analyse the overall ecological risk. LDI
is based on the synthesis of three landscape indices: the fragmentation
index, the splitting index, and the dominance index. More importantly,

Fig. 3. Changes in each landscape during periods of 2007–2012 and 2012–2016.

Fig. 4. Landscape fragmentation index of each landscape in 2007, 2012 and 2016.
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the landscape was classified into ten categories and different weights
were assigned to the three indices to calculate the LFI. Specifically, our
study considered the significant heterogeneity among different forest
types or tree species compositions in a certain forest landscape, owing
to the availability of the FRID. As a result, the forested land was finely
divided into six forest landscapes (i.e., nature forest, artificial mixed
forest, artificial pure forest, bamboo forest, economic forest, and other
forest). Thus, our information collection and classification of the
landscape using FRID provides a more precise analysis of the regional
ecological risk at a finer level. The results revealed that the LER based
on landscape metrics quantified the LER well and could perform a
space–time dynamic analysis on the ecological risk for the study area.

In terms of the time dynamic in the LER, we witnessed that its
changes varied in different grades of the risk. It is worth noting that
there were upward trends in the areas of medium-risk and high-risk
from 2007 to 2016 (Table 5). The reason is that the LER consists of
landscape indices (Table 2); as a result, the value of the LER is affected
by the combination of landscape type and landscape pattern (Xie et al.,
2013; Xu and Kang, 2017). In the study periods, the rapid urbanization
process had promoted land use and cover changes from traditional
agriculture to the secondary or tertiary industries (Mo et al., 2017).
Thus, the geographic atrophy in the economic forest, the other forest,
and the unused land offered sufficient space for construction (Fig. 3),
such as the expansion of the build-up area, the development of new

industries or the road network. As a consequence, these changes also
cause the economic forest, the other forest, and the unused land to
become more fragile and separated (Figs. 4 and 5), which resulted in
exerting more pressure on the LER and led to an increase in the pro-
portion of medium-risk and high-risk areas in the study region (Gong
et al., 2015). Our results are in line with the previous findings, which
have revealed that the road network extension contributes significantly
to the increase in the quantity and fragmentation of the landscape
patches; moreover, habitat loss occurs more often in areas near the city
and road network (Liu et al., 2014; Karlson and Mortberg, 2015).

In terms of the spatial dynamic in the LER (Fig. 7), we found that the
overall distribution of the LER was uneven across the study area. It is
worth mentioning the obvious structure of south-north polarization in
the LER in 2012 and 2016. Moreover, when overlaying the map of the
risk with the high-level road network, we found that the values of the
LER near the road network were generally higher than those far away
from the road network (Fig. 7), which might be due to areas near the
road having been mainly invaded by the high fragile land use/covers
(e.g., construction land, cultivated land, or unused land) and having
higher values of LDI and LFI. Our results are consistent with the pre-
vious results (Freitas et al., 2012; Hawbaker et al., 2005; Hosseini
Vardei et al., 2014) that indicated that the road network is one of the
most important biophysical factors driving changes in the landscape
patterns by introducing various other human disturbances to the road

Fig. 5. Landscape splitting index of each landscape in 2007, 2012 and 2016.

Fig. 6. Landscape dominance index of each landscape in 2007, 2012 and 2016.

Y. Lin et al. Ecological Indicators 96 (2019) 392–403

399



effect zone.

4.2. Spatial paradigm in the impact of road network on landscape ecological
risk

The change of land use and land cover related to the road network
has been widely investigated in previous studies (Cai et al., 2013; Hu
et al., 2016; Liang et al., 2014; Ying et al., 2014). These quantitative
findings make up for the lack of understanding of the road impacts on
landscape stability to a large extent. However, these studies have sev-
eral limitations. First, some of these previous studies only considered a
single indicator, e.g., RD or DNR. Second, some of them did not take the
grade effects of roads into account. Third, most of these studies are
based on global models (i.e., OLS), which ignore the spatial variation in
the correlations between the two regressors across the study region
(Cieszewski et al., 2004; Fotheringham et al., 2002; Hu et al., 2015).

To overcome these limitations, two dimensions of the road network
(i.e., both DNR and KDE) and different grades of roads (i.e., the entire
road network, expressways, high-level roads and low-level roads) were
employed to explore spatial variation in their effects on the LER using a
local model (i.e., GWR) in this study. Our regression outcomes verify
past studies, which have indicated that the variable of RD, KDE, and
DNR are significantly related to many ecological processes. We also
found that the variables of KDE and DNR were statistically significantly
correlated with the LER. Comparing this study to previous studies on
road impacts (Cai et al., 2013; Hu et al., 2017), a major distinction is
found: the grades of roads were taken into account. This is a very good
response to previous works (Hu et al., 2017; Liang et al., 2014), which
have noted the need for comparative studies on the grade impacts of the
road network on the landscape ecology. Among the indices of different
grades in terms of the road network, we found that the KDE-WH, DNR-
WH, and DNR-H were statistically significantly correlated with the LER
in the regressions, while the other road network measurements were
not significantly related with the LER. The modelling results not only
verified the importance of the road network as a key driver of the LER
but also revealed the different effects on the LER caused by the different
levels of roads. Moreover, the spatial heterogeneity in the effects of

these roads was observed and visualized. Thus, to some extent, this
study fills the gap for the study of road ecology.

The KDE-WH was among the most significant index of the road
density measurement indices. This finding corroborated the previous
study, which proved that the index of KDE can effectively quantify the
effect of the road network on landscape (Anderson, 2009; Cai et al.,
2013; Mo et al., 2017). The GWR result showed that it was significantly
positively associated with the LER in the eastern part of the study area,
while its impact was insignificant in the western part (Fig. 8a). When
we looked closely at Fig. 1, we found that there was a larger proportion
of the bamboo forest and other forest in the southeastern part of the
study area, while the proportion of the natural forest and the artificial
mixed forest in the northwest part was relatively high. The landscape
fragmentation index of the other forest increased dramatically from
2007 to 2016, while landscape fragmentation was relatively stable for
the nature forest and artificial mixed forest during the studied periods.
The landscape splitting index had the same tendency as the fragmen-
tation index (Figs. 4 and 5). Moreover, it is well known that bamboo
forest is one of main timber species in southern China (Zhang et al.,
2010), which indicates that the planting practices are more active in the
eastern part of the study area. Following this logic, it is necessary that
the road network have more impact on the forest landscape in such
areas. However, the natural forest and the artificial mixed forest are
well protected, according to local policies (Hu et al., 2014), which
implies less human disturbance in such regions. All these results are
consistent with the significant cluster of GWR analysis, which indicated
that the road network has a greater impact in the southeast part of the

Fig. 7. Spatial distribution of the landscape ecological risk in 2007, 2012 and 2016.

Table 5
Changes in the proportion of the LER from 2007 to 2016.

Grade 2007 2012 2016 2007–2012 2012–2016

Area (km2) % Area (km2) % Area (km2) % % %

Low 275.270 23.899 238.844 20.736 184.140 15.987 −3.162 −4.749
Sub-low 212.868 18.481 257.498 22.356 205.226 17.818 3.875 −4.538
Medium 254.974 22.137 280.128 24.321 306.426 26.604 2.184 2.283
Sub-high 295.655 25.669 291.996 25.351 285.308 24.770 −0.318 −0.581
High 113.048 9.815 83.349 7.236 170.715 14.821 -2.578 7.585

Table 6
Parameter descriptive statistics from the GWR regression (Local model).

Variables Minimum Lower quartile Median Upper quartile Maximum

DNR-WH −0.010 −0.003 0.003 0.008 0.016
DNR-H −0.049 −0.032 −0.026 −0.019 −0.009
DIST-CTY −0.080 −0.053 −0.017 0.031 0.109
KDE −0.007 0.001 0.006 0.016 0.035
Elevation −0.020 −0.011 −0.006 0.002 0.014
Slope −0.029 −0.003 0.010 0.017 0.043
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study area than in the northwest part (Fig. 8). Therefore, our findings
are quite consistent with the objective reality (Ren et al., 2011).

Moreover, the relationship between the LER and KDE-WH showed
an obvious gradient variation, with the coefficients of the KDE-WH
being smaller closer to the city centre, mainly due to the higher density
of the road network in the city centre than that in other areas, resulting
in much higher values of KDE-WH in the city centre than that in the
areas farther away from the city centre. Thus, we assume that the range
of the dependent variable (i.e., LER) is relatively small and the higher
the value of the independent variable (i.e., KDE-WH), the lower the
GWR coefficient should be, which implies that the independent variable
is less sensitive, with a marginal increase of KDE-WH in the city centre
area than in locations that are relatively far away from the centre.

The DNR-WH and the DNR-H were also significant indicators of the
LER. The GWR outcome showed that the significant effect of the DNR-
WH on the LER was concentrated in the area near the city centres
(Fig. 8.b), where the road network is more developed; as a con-
sequence, the histogram of the indicator of DNR-WH is normally dis-
tributed. However, in other regions, where the road network is rela-
tively underdeveloped and even sparse, the histogram of the DNR-WH
is randomly distributed, leading to the distribution of the significant
cluster shown in Fig. 8.b.

It is unexpected that the DNR-WH is positively correlated with the
LER; that is, a marginal decease of the DNR-WH may result in a de-
crease of the LER. However, most previous works have found negative
effects of the road network on the landscape, such as an alteration,
isolation, fragmentation, or degradation (And and Alexander, 1998;
Forman et al., 2002). Furthermore, we found that DNR-H was sig-
nificantly and negatively correlated with the LER in most of the study
area (Fig. 8.c). Therefore, it is interesting to explain this anomaly. Ac-
cording to the previous stepwise regression, the variables of DNR-WH
and DNR-L were both positively correlated with the LER (Tables 4 and
6). It is well known that high-level roads have a limited range of dis-
tribution, whereas low-level roads infiltrate everywhere; as a result, the
nearest road to each sampling grid is most likely a low-level roads.
Following this logic, to some extent, the variable of the DNR-WH is
similar to the variable of the DNR-L, so the DNR-L was excluded by
step-wise regression to avoid a multicollinearity problem. Thus, we can
assume that the positive effect of DNR-WH on the LER is mainly caused
by the low-level roads. Our finding is in accordance with previous
works, which revealed that low-level roads provide human beings with
more feasible access to the forest landscape, which will make the
landscape more separation, thus enhancing the fragmentation of the
landscape and putting the landscape at risk. As a result, low-level roads
are much more sensitive to nature habitats (Hu et al., 2016; Liang et al.,
2014; Liu et al., 2008).

The transit-oriented development mode not only prevails in the
developed countries but also becomes a developing mode of emerging
cities in China (Cervero et al., 2005), which is also true for our study
region. The significant GWR clusters for the coefficient of the DNR-WH
are urban areas, with large built-up areas that are highly concentrated
near roads because of the transit-oriented development mode, resulting
in a lower degree of fragmentation and a splitting of the matrix (i.e.,

construction land). However, a variety of land-use types are mixed in
places far away from roads in the urban area, resulting in a higher
degree of fragmentation and splitting of the patches (i.e., construction
land, forested lands). As a consequence, the LER in places closer to the
roads is relatively lower than that in places farther away from the roads.

Additionally, the negative correlations between the LER and the
DNR-H varied across locations, with higher values of the coefficient in
the areas closer to the city centre and lower values in the regions farther
away from the city centre. The gradient patterns and causes are similar
to the relationship between the LER and the KDE-WH (Fig. 8.a). In
summary, we can infer that high-level roads went through the city
centre (Fig. 8.c), thus mainly affecting areas where human activities are
more intensive, while low-level roads mainly affected remote regions
(Fig. 8.b). Our analysis further confirms the previous studies (Hu et al.,
2017; Liu et al., 2008; Liu et al., 2014) that have indicated that the
effect of roads on landscape ecology is hierarchical among different
levels of roads.

4.3. Limitations of landscape ecological risk index

A landscape consists of mosaic patches, and its stability and resi-
lience capability from disturbance are closely related to its diversity.
The highly heterogeneous landscape, its overall structural changes and
dynamic processes are relatively slow. Thus, the landscape not only has
the key elements of a risk receptor but also the key reflections of a
hazard status; simultaneously, the landscape dynamic process is often
built in a static pattern (Forbes and Calow, 2013). Therefore, in the
process of the LER assessment, it is essential to embody the landscape
pattern or land mosaic pattern in the LER index. Currently, the most
commonly used LER index based on the landscape pattern is synthe-
sized by the two types of landscape-level metrics: the landscape dis-
turbance index (external) and the landscape vulnerability index (in-
ternal) (Gaines et al., 2004). External interferences of the ecological risk
are relatively discrete events that alter the landscape structure, such as
the patch, corridor and matrix, thus altering the landscape hetero-
geneity and connectivity. The frangibility reflects not only the natural
attributes of the landscape but also the conjoint effect of human activity
on the land (Deal and Pallathucheril, 2009; Scott et al., 2013).

Although the LER index can quantitatively characterize the safety
status and degree of forcedness to indirectly represent the complexity,
stability and diversity of the landscape, the index itself cannot reflect
the formation mechanism of the nonlinear dynamics and evolution of
the landscape and cannot explain the driving mechanism for the eco-
logical consequences of the landscape pattern evolution from the per-
spective of complexity science. This inability has led to an unclear
ecological connotation of the current LER assessment, and it is im-
possible to correspond the assessment results with specific ecological
factors, thus causing risk management control to lose its directivity
(Deal and Pallathucheril, 2009; Scott et al., 2013). In addition, the
complex relationship between the landscape dominance index and
ecosystem stability has not yet reached an agreement. Therefore, in
further research, the process-based pattern analysis method should be
developed and applied to the LER assessment (Liu et al., 2008;

Fig. 8. Significant clusters of GWR coefficients for KDE-WH, DNR-WH, and DNR-H.
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Malekmohammadi and Blouchi, 2014); for example, while selecting
and calculating the landscape disturbance index, the dynamic changes
of the landscape pattern with time should be considered, such as in-
corporating road obstruction into the overall measure of landscape
disturbance (Peng et al., 2015). In this way, the current patterns of
disturbance and the probability of future human disturbance are com-
bined simultaneously in the landscape disturbance index.

5. Conclusions

In this study, we first classified the landscape into ten categories
based on FRID for the years 2007, 2012 and 2016 and then constructed
a LER index using the landscape indices. DNR and KDE, two dimensions
of the road network, were applied to quantitatively to estimate the road
effects on the LER using the GWR model.

(1) The distribution of the LER was uneven across the study region,
with an obvious structure with a south–north polarization.
Specially, the areas of sub-high and high-risk levels of LER were
mostly distributed in the vicinity of high-level roads, while the low-
risk levels of LER were mainly located in the southeast parts of the
study region.

(2) The results of the GWR analysis indicated that were existed spatial
variations in the associations between the two regressors.
According to the magnitude (both the sign and the size) of the es-
timated coefficients, we confirmed that the effects of the road
network on the LER were obviously different among different levels
of roads; even among the same level of roads, their impacts varied
greatly across locations.

(3) The significant cumulative impacts of the road network on the LER
were identified in this study. The highest values of the LER were
distributed in the city centre areas, where the high-level roads pass;
the KDE-WH had a significant impact in the eastern part of the
study region, where the forest activities were more active, while the
impacts were insignificant in the western part, where there was less
human disturbance.

(4) The sensitivity of LER to road network changed with different dis-
tances from the city centre. The indicator of the DNR-H showed that
the impact of the road network decreased with the increasing dis-
tance from the city centre. Moreover, the effects of both the DNR-
WH and KDE-WH on the LER gradually increased with the distance
from the city centre.

(5) Our results also indicate that high-level roads mainly affect areas
where human activities are more intensive, whereas low-level roads
infiltrate every corner of the region, mainly affecting areas far from
the city.

Benefitting from the quantification and visualization of the spatial
paradigm in their associations at the grid level, our study suggests more
accurate policies to alleviate the negative impact of road construction
on the LER. Our study will also inspire further applications of a local
model in the research of road ecology.
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