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We  performed  an  exploratory  spatial  data  analysis  (ESDA)  of  autocorrelation  patterns  in the  NASA  MODIS
MCD14ML  Collection  5 active  fire  dataset,  for the  period  2001–2009,  at the  global  scale.  The dataset  was
screened,  resulting  in  an annual  rate  of false  alarms  and  non-vegetation  fires  ranging  from  a  minimum  of
3.1% in  2003  to  a  maximum  of  4.4%  in  2001. Hot  bare  soils  and  gas  flares  were  the  major  sources  of false
alarms  and  non-vegetation  fires.  The  data  were  aggregated  at 0.5◦ resolution  for  the  global  and  local  spatial
egetation fires
lobal
ODIS

autocorrelation  Fire  counts  were  found  to be  positively  correlated  up  to  distances  of  around  200  km,
and negatively  for larger  distances.  A  value  of  0.80 (p = 0.001,  ˛ =  0.05)  for  Moran’s  I  indicates  strong
spatial  autocorrelation  between  fires at global  scale,  with  60%  of all cells  displaying  significant  positive
or  negative  spatial  correlation.  Different  types  of  spatial  autocorrelation  were  mapped  and  regression
diagnostics  allowed  for the  identification  of spatial  outlier  cells,  with  fire  counts  much  higher  or  lower
than  expected,  considering  their  spatial  context.
. Introduction

Vegetation fires occur worldwide, at different times of the year
nd inject large amounts of trace gases and particles into the atmo-
phere, having important environmental and climatic impact at
lobal, regional and local scales. A reliable classification and char-
cterization of the fire geography and seasonality at global scale
hat includes inter-annual variations is very important, not only to
educe uncertainties in estimates of emissions from biomass burn-
ng, but also to elucidate relationships between large scale climatic
henomena and fire occurrence and distribution at global scale. The
se of satellite remote sensing allows for the collection of global,
onsistent fire information (Csiszar et al., 2005; Dwyer et al., 2000).

During the last decades several global fire analyses used differ-
nt sensors and algorithms. Dwyer et al. (2000) and Stroppiana et al.
2000) analyzed the global spatial and temporal distribution of 12

onths of Advanced Very High Resolution Radiometer (AVHRR)
ata at 1 km spatial resolution. Prins and Menzel (1992) used data
rom the Geostationary Operations Environmental Satellite (GOES)
t 4 km spatial resolution to study fire activity in the western hemi-
phere. After that, the European Space Agency (ESA) Along Track

canning Radiometer (ATSR) World Fire Atlas (WFA) (Arino and
osaz, 1999; Arino et al., 2005), the NASA/Japan Aerospace Explo-
ation Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM)
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Visible and Infrared Scanner (VIS) (Giglio et al., 2000), and the
active fire product from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) (Justice et al., 2002) were some of the
products that provided a good indication of the distribution of the
burned area and active fires at different scales and years. These
datasets were used to estimate atmospheric emissions of trace
gases (Duncan et al., 2003; Schultz, 2002) and burned area (Eva
and Lambin, 1998; Kasischke et al., 2003; Pereira, 2003; Pereira
et al., 2004). Nevertheless, some of these products have known lim-
itations. The assumption that the WFA  contained few commission
errors was disproved by Mota et al. (2006) and Oom (2008).  They
developed a data screening methodology, which led to the removal
of about 25% of WFA  observations, not corresponding to vegetation
fires. NASA is also developing a global active fires dataset starting in
2000, based on the Aqua and Terra sensors (Giglio et al., 2003). Due
to the improved specifications of those sensors for fire detection,
four daily overpasses and the use of a more sophisticated detec-
tion algorithm this data set is expected to provide a more accurate
depiction of global fire. However, the product is not error-free. Local
and temporal limited validations of the MODIS active fire product
were performed by Giglio et al. (2003, 2006),  Morisette et al. (2005a,
2005b), Csissar et al. (2005), Schroeder et al. (2008a, 2008b),  De
Klerk (2008) and Hawbaker et al. (2008).  They reported commission
errors in the range of 2–3% (Boschetti et al., 2010). Nevertheless, no
quantitative assessment of the MODIS global active fire dataset has

been performed so far.

Exploratory data analysis (EDA) is of a set of descriptive and
graphical statistical tools designed to find patterns in data and sug-
gest hypotheses by imposing as little prior structure as possible

dx.doi.org/10.1016/j.jag.2012.07.018
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Tukey, 1977). This leads to “potentially explicable patterns” (Good,
983), which may  originate formal hypotheses and theoretical con-
epts. Objectives of EDA are to suggest hypotheses concerning the
auses of observed patterns, to assess assumptions which underlie
tatistical inference, and to support the choice of correct statisti-
al methods for the problem under analysis. Exploratory spatial
ata analysis (ESDA) is an extension of EDA to deal with spatial
atasets. It involves specific techniques for detecting spatial pat-
erns in data, formulating hypotheses based on the geography of
he data, and assessing spatial models (Haining, 1993). A central
oncept of ESDA is spatial autocorrelation, the propensity for obser-
ations in geographical proximity to have similar values. Global
patial autocorrelation quantifies overall clustering of similar val-
es and is tested against a null hypothesis of random location.
ejection of the null is indicative of spatial patterning in the data,
roviding useful information concerning the process under study.
owever, tests for global spatial autocorrelation only assess over-
ll clustering and do not inform on the type (correlation between
igh values or between low values), extent, and location of spatial
lusters and outliers (Anselin, 1995). A more detailed exploration
f the data is possible with local indicators of spatial autocorrela-
ion (LISA), which allow assessing the significance of local spatial
atterns and classifying them into four types of association, dis-
inguishing local clusters (high–high or low–low) or local spatial
utliers (high–low or low–high) (Anselin, 1995). A map  showing
ocations with significant Local Moran statistics, classified by type
f spatial correlation is referred to as a LISA cluster map. Some stud-
es have applied these techniques to spatial fire data. Pereira et al.
1998) identified spatial autocorrelation patterns in burned areas
or Portugal, based on global and local indicators of spatial associa-
ion. Chou et al. (1993) incorporated fire occurrence neighborhood
ffects on a spatial regression model for the San Jacinto Moun-
ains, California, after data analysis based on Moran’s I. Siljander
2009) modeled fire probability in Namibia using logistic regres-
ion. Moran’s I analysis led to the incorporation of an autocovariate
xplanatory variable, accounting for neighborhood effects on fire
ncidence. Morisette et al. (2005a) used Moran’s I to character-
ze the spatial patterns of active fires detected with high spatial
esolution ASTER imagery, within lower resolution MODIS pixels,
hile validating MODIS active fire maps for southern Africa. In a fire

everity assessment based on ASTER data, Coluzzi et al. (2010) used
everal spatial autocorrelation statistics to measure and analyze
ependency among spectral features of areas burned in southern

taly. Finally, a procedure to detect active fires as spatial outliers
n MODIS thermal imagery using Moran scatterplot analysis was
roposed by Byun et al. (2006).

The aim of the present work is to perform an ESDA of the
ctive fire data from the Moderate Resolution Imaging Spectrome-
er (MODIS) MCD14ML product (Justice et al., 2002) for the period
001–2009 and spatially aggregated at 0.5◦ cell resolution, using
he local Moran’s I and the Moran scatterplot. The analysis may  help
dentify relevant covariates, deal with model specification issues,
uch as the identification of spatial regimes, with potentially dis-
inct parameter values, assess the prevalence and importance of
ocal pockets of spatial non-stationarity that may  behave as out-
iers and other influential observations, and assess the pertinence of
ncorporating a spatially lagged independent variable in the specifi-
ation of spatial regression models, to be developed in a subsequent
tudy

ESDA results are also relevant to assist in model specification for
arious types of regression modeling approaches, namely general-
zed additive modeling (Krawchuk et al., 2009), regression trees

Archibald et al., 2009), spatial hierarchical Bayesian modeling
Amaral-Turkman et al., 2010) and geographically weighted regres-
ion (Sá et al., 2011). However none of these studies was preceded
y an ESDA.
 Observation and Geoinformation 21 (2013) 326–340 327

2. Materials and methods

2.1. Data

The dataset consists of 9 years (January 2001–December 2009)
of the MCD14ML Collection 5 active fire product (Justice et al.,
2002), obtained with data acquired by the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) on board NASA’s Earth
Observing System (EOS) Terra (since February 24, 2000) and
Aqua satellite (since May  4, 2002). MODIS has spectral and
radiometric specifications designed for fire observation, with a
spatial resolution of 1 km at nadir. Fire detection is accomplished
using a contextual algorithm that exploits the strong emission
of mid-infrared radiation from fires and is based on brightness
temperatures derived from the 4 and 11 �m channels (Giglio
et al., 2003), enhancing the sensitivity to smaller, cooler fires and
decreasing the occurrence of false alarms. There are some periods
with missing data, from June 16th to July 2nd (2001), March 20th to
27th and April 15th (2002). Although our analysis was  performed at
0.5◦ spatial resolution, the decision of not using the Climate Model
Grid (CMG) Fire Products (MOD14CMH, MYD14CMH) was  due to
our interest in screening daily, individual fire observations in the
MODIS products.

We used the same ancillary dataset in the screening proce-
dure as Mota et al. (2006), with updated versions: (i) Global
Land Cover 2000 (GLC2000) map  (Fritz et al., 2003), which is
based on SPOT-VEGETATION 1 km satellite imagery for the year
2000; (ii) a 2008 annual global composite of stable nighttime
lights (Elvidge et al., 2001) and an independent gas flare mask
(2007) from the Version 4 Defense Meteorological Satellite Pro-
gram (DMSP) Operational Linescan System (OLS) Nighttime lights
time series data (http://www.ngdc.noaa.gov/dmsp/index.html);
(iii) volcanic activity timing and location data (2001–2009) from
the Global Volcanism Program (GVP) (http://www.volcano.si.edu/),
Volcano World (http://http://volcano.oregonstate.edu/) and MOD-
VOLC (http://modis.higp.hawaii.edu/). The terminology used by
Mota et al. (2006) was also adopted: MODIS observations are the
original fire counts, false alarms are observations that do not corre-
spond to fires (hot ground surfaces or calibration errors) and fires
are observations associated with combustion process (including
vegetation fires and also non-vegetation fires, such as gas flares
and volcanic eruptions (Fig. 1)).

2.2. Methodology

2.2.1. Screening procedure
The screening procedure of Mota et al. (2006) and Oom (2008)

applied to the MCD14ML Collection 5 product was implemented
in two stages (Fig. 1). In the first stage, spatial masks were applied
to remove false alarms generated by hot bare ground and night-
lights, as well as non-vegetation fires due to gas flares and volcanic
activity. In the second screening stage the data were visually
inspected and quantitatively analyzed to search for potential erro-
neous observations missed in the first stage. These inspections were
accomplished calculating the difference between daily observa-
tion counts and five-day moving averages and, after aggregating
to a 0.5◦ grid cell (fire counts per cell), the application of Local
Moran (Ii) spatial index (Anselin, 1995). Based on the findings of
Mota et al. (2006),  deserts and sparsely vegetated regions were sub-
ject to particularly careful analysis, to identify commission errors.
Throughout this second stage the observations excluded are con-
sidered false alarms, since they not correspond to combustion

processes. The two-stage classification of MODIS observations is
exhaustive, i.e. it addresses each and every fire count in dataset,
but it is not mutually exclusive, i.e., a given observation may be cap-
tured by more than one filter. The goal of the screening is remove

http://www.ngdc.noaa.gov/dmsp/index.html
http://www.volcano.si.edu/
http://http%3a//volcano.oregonstate.edu/
http://modis.higp.hawaii.edu/
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ig. 1. Hierarchical screening procedure (based on Mota et al., 2006). The parts (a
MSP  stable nighttime lights, (c) volcanic activity timing, (d) daily moving average

on-vegetation fires and false alarms, keeping only vegetation fires
n the dataset.

.2.1.1. First stage screening. The MODIS active fire product
2001–2009) was first screened with the above mentioned combi-
ation of ancillary datasets. All the observations falling on GLC2000
lasses “bare areas”, “natural and artificial water bodies”, “snow and
ce” and “artificial surfaces and associated areas” were classified as
alse alarms or non-vegetation fires. Observations (non-vegetation
res) corresponding to gas flares were identified in the gas layer
ask based on their circular appearance and lack of coincidence
ith populated places (Mota et al., 2006). The non-vegetation fires

esulting from volcanic activity, were identified through two cir-
ular buffers (5 and 10 km radius) plotted around each volcano
ocation, and observations within those buffers were matched
gainst volcanic activity reports. The extent and direction of lava
ows were also analyzed. Additionally datasets such as GLC2000
ap  and Google Earth high resolution images were used to deter-
ine whether MODIS observations were generated by volcanic

ctivity, such as pyroclastic eruptions, lava flows, and/or ash
lumes, or resulted from actual vegetation fires ignited by volcanic
ctivity. Choice of size of the two buffers was based on analysis of
aldera sizes from all the volcanoes. The observations detected in
his step were classified as non-vegetation fires.

.2.1.2. Second stage screening. All the observations that passed the
rst screening stage were visually screened by identifying very

arge potentially anomalous, concentrations of observations (in
pace and/or in time), unlikely to correspond to actual vegetation
res. The difference between daily counts and five-day moving
verages was computed to identify atypical temporal clusters in the
ime-series. This visual/temporal inspection was  also performed
ith exploratory spatial data analysis (ESDA) methods, using local

ndicators of spatial autocorrelation. Clusters of observations with
eometric shapes, as straight lines or arcs were detected and classi-

ed as calibration errors (Giglio, 2010). The observations resulting

rom this screening stage were classified as false alarms. The com-
ination of quantitative, automatic criteria and visual checking
omplements the first stage screening.
are the datasets and index used during the screening procedure. (a) GLC2000, (b)
) local Moran index.

2.2.2. Exploratory spatial data analysis
To quantify spatial heterogeneity at global scale, detect spatial

autocorrelation patterns, and identify clusters of similar fire inci-
dence and outliers, an exploratory spatial data analysis (ESDA) of
the screened data was performed. The number of fire counts in
each 0.5◦ grid cell was log-transformed (logn) to reduce the skew-
ness of the original data and improve the performance of ESDA
techniques. The new variable was  characterized with descriptive
statistics and tested for normality with the Kolmogorov–Smirnof
test with Lillefors correction. A box and whisker plot was  created
and the 1.5 Inter-quartile Distance (IQD) rule used to identify dis-
tributional outliers. According to this rule, values larger (smaller)
than the third (first) quartile + (−)1.5 × IQD were considered out-
liers (Haining, 1993). To reduce the number of cells to be analyzed
and focus on “fire prone cells”, an analysis with potentially com-
bustible areas (based on GLC2000 classes with available fuel) and
ecoregions of the world (Olson et al., 2001) was  performed. The
following areas were excluded from further analysis: deserts and
small island ecoregions; ecoregions with all grid cells without fire
counts or with area smaller than 2500 km2; all grid cells with-
out fire counts or with less than 10% combustible area. A total of
50 423 half degree cells were kept and used to characterize the
spatial pattern of fire at global scale. The global Moran’s I statis-
tic measures global (i.e. non-local) spatial autocorrelation and is
assessed by testing a null hypothesis of random location, without
spatial association (Anselin, 1995; Anselin et al., 2007; Cliff and
Ord, 1981). Values of Moran’s I larger (smaller) than the expected
value E(I) = −1/(n − 1), with n as the number of observations, indi-
cate positive-similar (negative-dissimilar) spatial autocorrelation
values. However, the global statistic gives a measure of overall clus-
tering and does not reveal the location of clusters or outliers nor
the type of spatial correlation that may  exist in the data. To over-
come these limitations, local indicators of spatial autocorrelation
(LISA), such as Local Moran statistic Ii (Anselin, 1995) were used.
Anselin (1995) and Anselin et al. (2007) define LISA as an indicator

of local spatial patterns and as diagnostics for local instability, i.e.
areas where local patterns are not in line with the global indication.
Also, as the sum of the Ii for all observations is proportional to the
global value of the Moran’s I it is possible to decompose Moran’s I
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Table 1
Annual results of MODIS dataset screening.

Year Original Screened % screened

2001 1 597 241 70 020 4.38
2002 3 349 321 113 672 3.39
2003 4  618 197 141 005 3.05
2004 4 619 040 170 258 3.69
2005 4  670 379 171 415 3.67
2006 4 225 888 160 141 3.79
2007 4 679 841 153 904 3.29

T
N
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nto its components, using the Local Moran statistic (Ii), Ii = (xi − �).
Wij(xj − �) (Anselin, 1995), where Wij is the element of the spa-

ial weights matrix W corresponding to observation pair (i, j), and
epresents the component that incorporates “space” (Anselin et al.,
007), denoting the strength of connection between i and j. xi and
j are observations for locations i and j, with mean �. In order to
ormalize the number of neighbors around a specific location, the
patial weights matrix was row-standardized such that the ele-
ents Wij in each row sum to 1. Ii assigns an autocorrelation value

o each observation (logn fire counts cells). When the data are stan-
ardized as Zi = (xi − �)/�, where Zi is the standardized value of

og-transformed fire counts for each cell and � is the standard devi-
tion, the value of the global Moran’s I is equivalent to the slope
f a linear regression line of a scatterplot where Zi is plotted in
he x-axis against the mean standardized neighbor value for each
ocation, plotted in the y-axis. This bivariate spatial autocorrelation
catterplot is a graphic tool for detecting local spatial association,
lso providing a way to categorize the nature of spatial autocorrela-
ion into four types high–high (type 1 – upper right) and low–low
type 3 – lower left) with potential spatial clusters of similar fire
requency, i.e., positive autocorrelation with high or low similar
alues; high–low (type 2 – lower right) and low–high (type 4 –
pper left) with potential spatial clusters of dissimilar values. Posi-
ive values of Ii reveal spatial clusters of similar values (either high
r low values) and are related with types 1 and 3, while nega-
ive values are related with dissimilar values corresponding with
ypes 2 and 4. Thus, the Local Moran statistic in combination with
he classification into four types of spatial autocorrelation pattern
ndicates significant local spatial clusters and facilitates the identifi-
ation of unusual observations, such as outliers. The significance of
lobal and Local Moran statistics was evaluated with Monte Carlo

andomizations, based on a non-parametric conditional random-
zation (permutation) approach, where the value x at site i is held
xed and the remaining values are randomly permutated over the
ther locations in the global dataset (Anselin, 1995). As Local Moran
tatistics calculated for each grid cell are not independent due over-
apping neighborhoods, p-values were corrected with a 0.05 ˛-level
f significance, using the Simes adjustment (Simes, 1986), which is
ess conservative than the Bonferroni correction.

Three types of regression diagnostics were calculated based on
i and Moran scatterplot, to detect spatial outliers and analyze their
nfluence on global spatial association: y-discrepancy, leverage and
nfluence measures (Haining, 1994). The first is measured with
tandardized residuals and detects outliers, observations that are
xtreme along the dependent variable domain, Y; Leverage (hi),
ssessed by the value of the diagonal elements of the hat matrix, is
 measure of how far an observation deviates from the mean along
he independent variable domain, X. An observation is influential
hen its exclusion from the dataset determines a large change in

he value of the regression coefficients, and can be thought of as

able 2
umber of observations captured by each filter (observations could be screened by more

Year Landcover 

Bare Water Artificial Snow

2001 23 647 8938 5409 39 

2002  41 641 19 967 8044 17 

2003  42 531 23 878 10 666 40 

2004  60 294 29 391 10 282 16 

2005  57 432 27 147 11 426 164 

2006  55 564 22 758 11 916 42 

2007  48 639 22 485 11 901 102 

2008  42 604 23 679 11 870 64 

2009 38 430 23 129 10 827 56 

Total  410 782 201 372 92 341 540 

a The total is greater than the number of screened observations due to counting by mo
2008 4 369 855 146 789 3.36
2009 4  061 749 134 036 3.30

Mean 4 021 279 1 401 38 3.55

combining the effects of the other two diagnostics (Haining, 1994).
It is assessed with Cook’s distance.

Spatial analysis was  performed with Spacestat software vs.
2.0 (Anselin, 1992). The 50 423 standardized, log-transformed fire
counts for 2001–2009 were partitioned into four types. The dis-
tance range used to define spatial neighborhoods was based on
analysis of the correlogram for equal distance bands and was  fixed
in the 200 km.  The neighborhood weighting method used was  the
inverse distance rank and 999 permutations were employed to
build the reference distribution.

3. Results

3.1. Data screening

The original MODIS dataset has 36 191 511 observations of
which 34 930 271 (96.52%) were considered vegetation fires, while
1 261 240 (3.48%) correspond to false alarms or non-vegetation
fires. Screening results show an annual percentage of false alarms
and non-vegetation fires varying from 3% in 2003 to 4.4% in 2001
(Table 1). Hot bare soils and gas flares are the major sources of false
alarms and non-vegetation fires (Table 2).

The years with the most counts were 2007 and 2005, with peaks
in August, September and December (Tables 1 and 2). This result is
expected because, according to NASA’s Goddard Institute for Space
Studies (GISS) 2005 and 2007 were two  of the hottest years since
records began in 1880 (Hansen et al., 2010). The year with fewer
counts, excluding 2001 and part of 2002, when one only one sen-
sor was  acquiring data, was  2009. Gobron et al. (2010),  analyzed
a 12-year (1998–2009) time series of Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR) and report that 2009 had
the strongest negative anomaly for this variable, corresponding to
unfavorable conditions for fuel accumulation. Fig. 2 shows the daily

time-series of the original MODIS active fire dataset (Fig. 2a), false
alarms and non-vegetation fires screened from the original data
(Fig. 2b) and the final screened data, containing only vegetation
fires (Fig. 2c).

 than one filter).

Gas flares Volcanoes Calibration errors Total

32 148 3595 832 74 608
40 957 7229 0 117 855
58 360 7494 0 142 969
69 165 6803 705 176 656
73 612 7949 0 177 730
69 330 6794 0 166 404
64 996 7849 0 155 972
56 787 6816 6757 148 577
52 846 6286 0 131 574

518 201 60 815 8294 1 292 345a

re than one filter.
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The time-series (in particular Fig. 2a and c) shows an incre-
ent in fire counts, starting June 2002, justified by the launch
f Aqua satellite, while before this date only the MODIS sensor
nboard the Terra satellite was acquiring data. The time-series also
eveals a seasonal pattern, with a large number of observations dur-
ng the boreal summer, between July and September, with a peak

ig. 2. Daily time-series of (a) original MODIS fire observations, (b) data removed from t
ebruary 2000 to May  2002.
 Observation and Geoinformation 21 (2013) 326–340

in August. A secondary peak also occurs between November and
February with a maximum in late December and early January. This

secondary peak corresponds mainly to savanna fires in northern
hemisphere Africa. The year with the most counts is 2007 (in both
the original and screened data), with peaks in August–September.
The time-series of non-vegetation fires and false alarms (Fig. 2b)

he original and (c) screened dataset. Only MODIS TERRA data were available from
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The distributional properties of log-transformed fire counts and
the geographical distribution of the data classified into quartiles
are presented in Table 3 and Fig. 5, respectively. According to the
1.5 IQD rule no distributional outliers were present.

Table 3
Distributional properties of the 50 423 logn-transformed MODIS fire counts.

Minimum Maximum Mean Std. deviation Variance
Fig. 2. 

lso reveals a seasonal pattern, with a very large spike in February
6, 2008 corresponding to calibration errors. Fig. 3 decomposes
he time-series of false alarms and non-vegetation fires into land
over and oil and gas flares filters. Both filters show seasonal pat-
erns with more observations during the boreal summer (note the
ifferent scales).

However, while the land cover and oil gas flares time series
how a seasonal trend, with more observations during the boreal
ummer induced by hot land surfaces, the volcanic eruptions time
eries exhibits a pattern unrelated with climate and with several
poradic spikes, corresponding to large eruptions. The calibration
rror filter captured three spikes, the largest of which occurred in
ebruary 16th, 2008 and corresponds to a cluster of 6757 observa-
ions located in northern Russia. The other two spikes are located in
ntarctica and northeastern Canada. Fig. 4a–c displays maps of the
riginal MODIS fire data, false alarms and non-vegetation fires, and
egetation fires. Fig. 4a and c is very similar regarding the location
f the larger clusters. Fig. 4c displays a geographical fire distribution
imilar to several previous studies (e.g. Csiszar et al., 2005; Dwyer
t al., 2000; Mota et al., 2006), with large clusters located in tropical
nd sub-tropical zones in the northern and southern hemisphere of
frica, the cerrado savannas of Brazil, savannas and forests in south-
rn Mexico, and tropical savanna in northern Australia. At higher
atitudes, Kazakhstan and the northwestern Iberian Peninsula also
isplay high concentration of vegetation fires. The screened obser-
ations (Fig. 4b) are mainly concentrated in Kazakhstan and eastern
hina (landcover filter), Algeria, Libya, Nigeria, Russia and Persian
ulf region (gas flares filter). The land cover filter captured 705 035
bservations (55% of all screened observations) with the bare areas
lass as the most representative, with 410 782 observations (31% of
ll screened data and 58% of the land cover filtered data).
The gas flares filter, with 518 201 observations removed (40%)
nd a peak in 2005, shows Iraq (127 499 observations removed),
ussia (95 408), Iran (72 575) and Nigeria (40 302) as the countries
ith the most non-vegetation fires due to oil and gas exploration
inued ).

activities. We  analyzed 432 volcanoes which captured 60 815
observations (5% of total screened) for 2001–2009 period, which
were not vegetation fires. Volcanoes like Kilauea, in Hawai with
19 985 observations filtered, and African volcanoes like Nyiragongo
and Nyamuragira in the Democratic Republic of Congo with a total
of 5514 observations, or Erta Ale in Ethiopia with 3989, were those
responsible for the larger numbers of observations screened out.
Calibration errors were located in Russia, Antarctica and Canada,
mainly in 2008. Again, 2005 and 2009 display respectively the
largest and smallest number of observations post-screening, for
the reasons mentioned above.

3.2. Exploratory spatial data analysis

The 50 423 half degree log-transformed fire counts kept for the
period 2001–2009 were used to analyze the spatial structure of fires
at global scale. The log-transformation unskewed the data (skew-
ness decreased from 3.690 to −0.022). The Kolmogorov–Smirnof
test with Lillefors correction was  applied for original fire counts,
log-transformed fire counts and log-transformed standardized
fire counts and all show that the distributions are non-normal
(p = 0.000).
0.000 9.673 3.902 2.840 8.069

Skewness Kurtosis 1st quartile 2nd quartile 3rd quartile

−0.220 −1.245 1.099 4.149 6.267
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ig. 3. Daily time-series of original MODIS fire observations removed due each fi
ebruary 2000 to May  2002.

.2.1. Spatial statistics

All calculations were made using standardized log-transformed

re counts. A value of 0.80 (p = 0.001) for Global Moran’s I was
btained (  ̨ = 0.05). The expected value for I was −0.00002. Local
oran (Ii) range from −1.82 to 3.90, with a mean of 0.80 (Fig. 6).
a) land cover, (b) oil and gas flares. Only MODIS TERRA data were available from

Negative values of Ii are located mainly in South America,

Canada, Alaska, and Russia. A few cells with negative values are
also present in Africa, China, India and Australia. Positive values
of Local Moran (Ii) are concentrated in tropical and boreal regions
and can be found in all continents. According to the 1.5 IQD rule,
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35Ii spatial outliers were identified, all located in Africa. Ii detected
0 316 cells without significant spatial autocorrelation and 30 107
60%) spatially autocorrelated cells. From these, 29 269 have a pos-
tive sign and 838 a negative sign, indicating correlation of similar
nd contrasting values, respectively.

.2.2. Moran scatterplot
The Moran scatterplot (standardized values of the log-
ransformed fire counts for each cell was plotted against the mean
tandardized neighbor value for each location) divided the 50 423
ells into four spatial association types (Fig. 7). Out of 30 107
60%) significantly autocorrelated cells, 14 996 (30%) show spatial

Fig. 4. Global maps (2000–2009) of (a) original MODIS fire counts
 Observation and Geoinformation 21 (2013) 326–340 333

clustering of high values (type 1) while 14 273 (28%) display spatial
clustering of low values (type 3). 579 cells correspond to type 2
and 259 to type 4. About 20 316 (40%) cells display non-significant
autocorrelation (p > 0.05). Moran scatterplot regression has a
positive slope of 0.80, indicating dominance of positive spatial
association and, an r2 of 0.82.

Fig. 8 displays the geographical distribution of the four types of
spatial association.
Regions of positive spatial autocorrelation are colored in gray
and yellow (types 1 and 3 respectively) (Fig. 8). Gray regions
represents cells of high fire activity, surrounded by similar cells
and are located mainly in tropical and subtropical regions, but

, (b) removed observations, and (c) vegetation fires data set.
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Fig. 4. (Continued ).
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Fig. 5. Log-transformed MODIS fi

lso in Alaska, agricultural areas in southeastern USA, and in
astern Europe, extending to northern Kazakhstan. The most pos-
tive values are of type 1 (high–high) and are located in tropical
ones, such as the sub-Saharan region of northern hemisphere
frica, in the forest savanna-mosaic (Central African Republic and
outhern Sudan) and in the southern hemisphere tropical woody

avannas, especially in Angola miombo woodlands and forest-
avanna mosaic. The other positive values of Ii classified as type 3
low–low), are mainly located in boreal regions, Brazil, Venezuela,
nts cells quartiles (2001–2009).

and China. The yellow regions represent low fire activity cells
located in a low fire activity neighborhood are found mainly in
boreal regions, Amazonia, the horn of Africa and Tibet. High–low
(type 2) and low–high (type 4) reveal spatial clusters of dissimilar
values, i.e. cells with high fire activity in low fire activity neigh-
borhood, and cells with low fire activity in a high fire activity

neighborhood. The former are mainly located in Canada, Russia and
United States, whereas the latter are found mostly in Brazil and
Russia (Fig. 8).
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Fig. 6. Geographic distribution of Local Moran, Ii .

Fig. 7. Moran density scatterplot. Zi is the standardized value of log-transformed fire counts for each cell and WZi is the mean standardized neighborhood value for each
cell.  Type 1 (high–high, upper right) and type 3 (low–low, lower left) represents potential spatial clusters of similar fire frequency, i.e., positive autocorrelation with high
or  low similar values respectively; type 2 (high–low, lower right) and type 4 (low–high, upper left) represents potential spatial clusters of dissimilar values. Gray dots are
non-significant values.
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ig. 8. Geographical distribution of the four types of spatial association, partioned 

tates.  The low–high cells are mainly located in Brazil, Russia, USA and Canada.

The high–low cell with the most negative Ii value (with 1005 fire
ounts) is located in Alaska, but that with the most fires is located
n Brazil, with 2701 fire counts during the study period. In Russia,
he high–low cells with the most fire counts in the period under
nalysis were located in the Siberian Far East. Brazil is the country
ith the higher number of low–high cells, with 55, out of a total 259.

hey are mainly located in protected areas with 34 being located
n indigenous areas of the Legal Amazon. The remaining 21 cells
ccur in four clusters, in the states of Amazonas, Pará, Bahia, and
araíba. The Russia low–high cells are located near the borders with
azakhstan, Mongolia and China, where some cells with few fires
re surrounded by cells with higher fire activity that are common
n those regions.

.2.3. Regression diagnostics
The ten most extreme observations according to each Moran

catterplot regression diagnostic were analyzed in detail. Fig. 9
isplays the spatial distribution of the 30 most extreme observa-
ions according to the three types of regression diagnostics (10 for
ach regression diagnostic): y-discrepancy, influence and leverage.
able 4 describes those extreme cells.

Most of these observations are located in the tropical belt, except
or three in Alaska. The largest outliers (absolute standardized
esiduals) are of type 4 (low–high), and type 2 (high–low) and can
e found in Brazil, Guatemala, USA (Alaska) and Bolivia. The high-
st leverage values are of type 1 (high–high) and are located mainly
n Africa (Guinea, Sudan and Angola) except for the highest of all,

hich is located in NW India. The most influential observations,
ccording to Cook’s distance, are of type 2 (high–low) for one grid
ell in Brazil and one in Alaska, and of type 4 (low–high) for the
est of the cells, located in Brazil, Alaska and Guatemala. Some cells
n Brazil, Guatemala, Alaska, Russia and Bangladesh have extreme
alues, both according to the standardized residuals and Cook’s

istance diagnostics. For instance, in Brazil the cell with the most
xtreme residual value is also the most influential one. Due to this
dentification by more than one diagnostic, the 30 most extreme
bservations correspond to 22 grid cells, with Brazil (five cells) and
he Moran scatterplot. The high–low cells are located in Canada, Russia and United

Guinea and Angola (four cells each) as the countries with the most
extreme values.

4. Discussion

4.1. Data screening

We  used a 9-year record of original MCD14ML Collection 5 active
fire product, dated from January 2001 through December 2009.
The screened fire distribution results are consistent with several
global/regional studies, including some performed with data from
different sensors. A small percentage of observations (3.5%) were
removed from the original dataset, which compares very favorably
with the approximately 25% observations found not to be vegeta-
tion fires in the ATSR WFA, using a very similar procedure (Mota
et al., 2006). The screening procedure highlighted several commis-
sion errors caused by a variety of factors, such as hot bare soil
surfaces, gas flares, other industrial and urban heat sources, vol-
canoes, and calibration errors. More than 1 250 000 observations
(3.5%) were false alarms or non-vegetation fires, mainly due to hot
bare soils. The two-stage screening showed that most false alarms
were eliminated with the application of the spatial mask (first
stage), while the second stage was much more time consuming
identifying anomalies or large clusters concentrated in space and/or
time, and unlikely to correspond to actual vegetation fires. All com-
mission errors derived from land cover, gas flares, urban/industrial
lights and volcanoes are clustered, either in space, in time, or both,
most with a markedly seasonal pattern. As Mota et al. (2006) con-
cluded with ATSR fire data, seasonality in land cover false alarms
is mainly induced by hot soil surfaces and, as the observations are
captured by more than one filter (not exclusively), the seasonal pat-
tern present in the gas flare observations removed from the dataset
results from overlap with those captured with the land cover filter.
4.2. Exploratory spatial data analysis

The Global Moran’s I statistics provided a good measure of spa-
tial pattern of global fire distribution. A value of I = 0.80 revealed
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ig. 9. Geographical distribution of the 10 most extreme observations for each Mor

trong spatial autocorrelation between fire observations, which
as positive at distances up to 200 km.  The ESDA detected strong

lustering of like values (HH and LL), with the HH clusters primar-
ly located in tropical savannas and temperate agricultural areas,

hile LL clusters were mostly found in boreal forests. Such strong
patial clustering pattern may  indicate the usefulness of develop-
ng a regression model with a small number of spatial regimes,
o account for likely differences in model parameters in areas
ssociated with these two kinds of cluster. The high spatial autocor-
elation values detected, both globally (Moran’s I), and locally (local
oran’s I) suggest that it may  be worthwhile testing the advantage

f developing a spatial lag regression model. Regarding the observa-
ions in the LH and HL quadrants of the Moran scatterplot, detailed
nalysis of the LH cells indicates that it will be appropriate to use
n explanatory variable characterizing nature conservation status,
t the global scale. The HL cells represent a more difficult problem
o model. They typically correspond to large wildfires occurring in
reas with fire cycles an order of magnitude longer than the dura-
ion of our 9-year dataset, thus representing a temporal sample that
s too short to yield stable spatial patterns of fire incidence.

.3. Regression diagnostics

The spatial distribution of the 30 most extreme observations,
ccording to the Moran scatterplot regression diagnostics is shown
n Fig. 9 and Table 4, and discussed below.

.3.1. Outliers
The largest outlier corresponds to a cell located in the Uru-Eu-

au-Wau indigenous protected area (11◦S, 64◦W)  in Rondonia,
razil, an area with around 1 900 000 ha, which was created to pro-
ect valuable ecosystems and to preserve a region that represents
he transition between Cerrado and Amazonia forests (IBAMA,
005). The second largest outlier occurs in the Maya Biosphere

eserve, Guatemala (18◦N, 90◦W),  located in the border between
uatemala and Mexico (18◦N, 90◦W),  in a region with three con-

iguous UNESCO biosphere reserves: the Maya Biosphere Reserve
n Guatemala, Calakmul and Montes Azules Biosphere Reserves in
tterplot regression diagnostic: outliers, high leverage, and influential observations.

southern Mexico. According to the UNESCO Man and Biosphere Pro-
gramme  (MAB), in this Mexican region (more than 3 600 000 ha),
one of the biggest areas of tropical forest located north of the
Amazon, and the northernmost tropical forest in the Western
Hemisphere, efforts have been developed to come up with viable
alternatives to slash-and-burn farming. Of the other cells, two are
located in Brazil. One is in Pará state (9◦S, 56◦W),  and belongs to
a four-cell cluster located at Serra do Cachimbo, in a forest region
between two protected areas, located in a military training camp
of the Brazilian Air Force. The other cell, located within the Tumu-
cumaque indigenous protected area (2◦N, 56◦W),  was classified as
type 2 (high–low) and, from the cells with negative values of Ii, is
the one with the most fire observations (2701) during the period
of analysis. It coincides with an isolated area of savanna-like veg-
etation surrounded by moist forests (Tiriyós Savanna), near the
border with Surinam. The 2701 fire counts are distributed through-
out the entire study period, with a peak in 2004 of around 700 fire
observations. Fire, which plays a very important role in the cul-
ture of the indigenous population living in the area occurs between
September and November, and is used for hunting and pasture
renewal (Barbosa and Campos, 2011; Rodrigues et al., 2007). The
Bolivia cell (19◦S, 59◦W)  is located in southeastern Bolivia on the
borders with Brazil and Paraguay, within in the Otuquis National
Park. This protected area is part of one of the largest flood-prone
areas in the world – the Pantanal. Although a few agricultural fires
may  occur within the park, in the surrounding area fire is widely
used to clear land for agriculture and ranching, determining the
classification of this cell as low–high cell.

Therefore, fire count spatial outlier analysis highlighted the sub-
stantial reduction in fire activity in several Amazon protected areas,
by contrast with their surroundings, in agreement with Nepstad
et al. (2006) suggesting effectiveness of these areas in restricting
the use of fire.

The Alaska (USA) cells classified as low–high (66◦N, 142◦W;

66◦N, 148◦W;  66◦N, 149◦W)  were adjacent to a group of type 1
(high–high) cells in central-eastern part of the state, where most
fire activity occurred in 2004, the worst fire year on record in Alaska
(Shulski, 2005). These cells are within Yukon Flats National Wildlife
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Table 4
Extreme observations derived from the diagnostic regression. HH – high/high; HL – high/low; LL – low/low; LH – low/high.

Location Diagnostic regression Moran scatterplot Spatial outlier Observations

ID Country Lat., long. (◦) Zone Outlier Leverage Influential Type 1
(HH)

Type 2
(HL)

Type 3
(LL)

Type 4
(LH)

1.5 IQD
rule

1 Brazil 11S, 64W Uru-Eu-Wau-Wau X X X Indigenous
protected areaa

2 9S, 56W Serra do Cachimbo X X X Military zone
3 2N,  56W Tumucumaque X X X Indigenous

protected areab

4 4S, 52W Trincheira Bacajá X X Indigenous
protected areac

5 5S, 52W X X
6 Guatemala 18N, 90W Guatemala-Mexico

border
X X X UNESCO reserved

7 USA 66N, 142W Yukon Flats
National Wildlife
refuge (YFNWR)

X X X Protected areae

8 66N, 148W X X X
9  66N, 149W X X X

10  61N, 143W Wrangler St. Elias
Nat. Park

X X X 2009 Chakina firef

11 63N, 147W Valdez/Copper
River area
forestry

X X 2004 Alphabet
Hills fireg

12 Bolivia 19S, 59W Otuquis National
Park

X X Protected areah

13 India 31N, 75W Punjab X X Agricultural firesi

14 Guinea 10N, 10W Guinea Highlands X X X Savanna/grassland
fires

15  10N, 9W X X X
16  9N, 9W X X X
17  8N, 8W X X X
18  Angola 7S, 16E Malanje, Lunda and

Cuanza provinces
X X X

19  8S, 18E X X X
20  8S, 22E X X X
21  9S, 17E X X X
22 Sudan 5N, 17E Southwest X X X

a http://pib.socioambiental.org/caracterizacao.php?uf=UF&id arp=3891.
b Rodrigues et al. (2007) and Barbosa and Campos (2011).
c http://pib.socioambiental.org/caracterizacao.php?id arp=3609.
d http://www.unesco.org/mab.
e Drury and Grissom (2008) and Natcher (2004).
f AICC (2009).
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g Hrobak (2006).
h http://www.fcc.org.bo/web/.
i Le Page et al. (2010) and Sharma et al. (2010).

efuge (YFNWR). This is one of the most fire-prone landscapes in
laska, where fire is allowed as a natural process, under specific
nvironmental conditions depending on values to protect (Natcher,
004). According to the YFNWR Fire Management Plan summary,
he levels defined as critical and full management include zones
ike villages, native land and with highly valued resources. These
ones receive high priority for fire suppression. The cells are in the
entral part of the refuge where the main villages are located, so
re activity in these cells probably reflects the different levels of

ntervention used at YFNWR.
The other Alaska cells (61◦N, 143◦W;  63◦N, 147◦W)  were clas-

ified as type 2 (high–low). The first is the high–low cell with the
ost negative Ii value, and is located within the Wrangell St. Elias
ational. It corresponds to the Chakina fire of 2009, which burned
a. 23 000 ha. According to the Alaska Interagency Coordination
enter (AICC), 2009 was one of the driest and warmest summers
n record in southeastern Alaska and had one of the worst wildfire
easons in 50 years. The second cell contains 369 active fires, all
bserved in 2004 during the Alphabet Hills fire, which lasted for

3 days, burned around 15 000 ha and was part of the Bureau of
and Management (BLM)/Alaska Fire Service (AFS) fuels reduction
rogram to reduced fire danger around communities in the Copper
iver basin (Hrobak, 2006).
There, outlier analysis highlighted the location of large fires that
occurred during the study period. Since this period is very short
relatively to the fire cycle of boreal forests, exceptional events stand
out clearly.

So, with the exception for the Tumucumaque and Chakina fire
events, most of the outliers correspond to protected areas where
fire is suppressed and regulated. In fact, wildfires are a major con-
cern in protected area management (Mulongoy and Chape, 2004).
Regions like Yukon flats adopted fire managements policies that
suppress and exclude fires especially in native owned lands, but
around them a “let burn” strategy is the widely adopted (Natcher,
2004).

4.3.2. Leverage
The most extreme values according to the leverage diagnostic

were all classified as type 1 (high–high) and are located in Africa
(Guinea, Angola and Sudan) with the exception of one cell in Pun-
jab (NW India) near the border with Pakistan. The India cell (31◦N,
75◦W)  contains the second highest number of active fires (of the

30 extreme observations), with 14 066 counts scattered through-
out the 9 years, and peaking in 2005. This cell is part of a group of
Moran scatterplot high–high cells in Punjab, a region characterized
by wheat-rice double crop rotation, where it is common practice

http://pib.socioambiental.org/caracterizacao.php?uf=UF&id_arp=3891
http://pib.socioambiental.org/caracterizacao.php?id_arp=3609
http://www.unesco.org/mab
http://www.fcc.org.bo/web/
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o use of fire for burning agricultural crop residues after the wet
eason (Le Page et al., 2010; Sharma et al., 2010). All African cells
re located in savanna/grassland ecosystems. Five cells are in the
orthern hemisphere savanna (10◦N, 10◦W;  10◦N, 9◦W;  9◦N, 9◦W;
◦N, 8◦W in Guinea and 5◦N, 29◦E in Sudan) with a large number
f fires during the boreal winter (October–March). The Guinea cells
re located Guinea Highlands forests. Fires are set intentionally for
asture and farmland clearing. The remaining cells (7◦S, 16◦E; 8◦S,
8◦E; 8◦S, 22◦E; 9◦S, 17◦E) are located in northern Angola (Malanje,
unda and Cuanza provinces), the southern part of the Democratic
epublic of Congo and in cropland-forest mosaic of Guinea. Fires
re set during the dry season (May through September, October),
o clear brush, pastures, or old croplands, and also to drive game
nd livestock.

This diagnostic identifies some of the areas with the highest fire
ncidence in the world, where fire is regulated for land management
urpose

.3.3. Influence
Cook’s distance identifies the cells with the highest influence

n the regression coefficients and is the most important regression
iagnostic, combining the previous two. The 10 most influential
ells are located in the western hemisphere and belong to types 2
high–low) and 4 (low–high) in the Moran scatterplot. As expected,

ost were detected by the previous diagnostics, mainly in the abso-
ute standardized residuals (eight out of ten). However two cells
4◦S, 52◦W;  5◦S, 52◦W)  located in Trincheira Bacajá indigenous
rotected area (Pará, Brazil), were not included in the 10 extreme
alues on any the previous diagnostics, but were classified as the
th and 10th most extreme values according to Cook’s distance.
hese cells (type 4, low–high) coincide with indigenous protected
reas in central Pará (Brazil), where restrictions have been imposed
n the use of fire. The most influential observation, which was also
he largest outlier, is located in the Uru-Eu-Wau-Wau indigenous
rotected area. These two cells further stress the effectiveness of
rotected areas in Brazil to contain fire use.

. Conclusions

The NASA MODIS MCD14ML Collection 5 active fire product
or 2001–2009 was screened, prior to performing an ESDA. The
lobal dataset was found to contain 3.5% of observations that are
alse alarms or non-vegetation fires, and which were eliminated
n exploratory spatial data analysis (ESDA) of the screened data
evealed strong positive autocorrelation based on global Moran’s

 statistic, stressing the importance of addressing this data feature
n the development of spatial regression models of fire presence
r abundance Regression scatterplot decomposition of the global
oran’s I, analysis of its residuals, and local Moran’s I analysis

llowed for the identification and mapping spatial non-stationarity,
uggesting heterogeneity in fire–environment relationship across
pace. Analysis of regression diagnostics highlighted areas with
ery intensive fire use associated with land management practices,
ery large fires standing out in regions with long fire cycle, and sub-
tantially reduced fire activity in areas with special conservation
tatus.
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