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ABSTRACT ARTICLE HISTORY
Reservoirs are closely related to anthropic activities, and quantify- Received 15 July 2019
ing the long-term dynamics of surface water in reservoirs could be Accepted 12 September 2019
useful for decision-makers to improve the actual strategies of

reservoir management. This study used the global Moran's

| index, modified Normalized Difference Water Index (MNDWI)

and a total of 596 Landsat images during 1985-2018 for tracking

the annual dynamics of water extent in the process of water

shrinkage and expansion in Guanting Reservoir, China.

Landscape metrics related to the area, elongation, fragmentation,

and edge complexity of surface water in reservoir landscape were

computed for tracking the annual dynamics of surface water

patterns. Statistical comparison between the results of global

Moran'’s | index and landscape metrics indicates that except for

the complexity of water and non-water edge, global Moran's

| index can successfully estimate the dynamics of the area, elonga-

tion and fragmentation of surface water in the reservoir. This study

proposed a continuous approach of long-term monitoring of sur-

face water patterns using spatial autocorrelation that might be

used in the areas where the surface water extraction is difficult and

water dynamics are complex.

1. Introduction

Reservoirs are often formed for supporting anthropic activities, such as freshwater
supply, agriculture irrigation and hydropower production, and their construction offers
an obvious increase in the number, area and spatial distribution of surface water in
many regions of the world (Drakou et al. 2008; Havel, Lee, and Zanden 2005).
Quantifying the dynamics of surface water are fundamental in the hydrological, biogeo-
chemical and ecological studies that were useful for decision-makers to improve the
strategies of reservoir management (Wang et al. 2019).
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Optical remote sensing data were widely applied for tracking the dynamics of surface
water in recent years, such as SPOT 5 (Fisher and Danaher 2013), Sentinel-2 data (Yang
et al. 2017), Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) data (Li et al. 2019; Zou et al.
2018) and Moderate Resolution Imaging Spectroradiometer (MODIS) data (Ji et al. 2018;
Feng et al. 2012). Considering the spatial and temporal resolution, and time span of
these data, time series Landsat images are the compromise solution that permits a long-
term tracking (Pflugmacher 2007) of the dynamics of surface water, especially using all
available Landsat images covering the same study area (Xu 2018). In term of water
extraction algorithms, many studies used multi-spectral indices (e.g. modified
Normalized Difference Water Index (MNDWI)) as they are quite easy and quick for
computation (Li et al. 2019; Xu 2018; Zou et al. 2018). Then, thresholding methods are
needed for extracting the surface water from the results of multi-spectral indices. Otsu'’s
method (Otsu 1979), one of the most common methods, permits to automatically give
the real time threshold values by maximizing the inter-class variance of surface water
and background features, and therefore adapts well to the spectral index with a bi-
model distribution (Du et al. 2014, 2016). It is able to respect the different study areas,
weather conditions and time of satellite image acquisition (Li et al. 2015, 2019; Du et al.
2014). Researchers often used landscape metrics for quantifying the compositional and
configurational patterns of land use and land cover (LULC) types and their changes in
a landscape, particularly the dynamics of the surface water patterns in wetlands land-
scape (Li et al. 2019; Jiang et al. 2014; Zhao et al. 2008; Evans, Robinson, and Rooney
2017). Besides, spatial autocorrelation, such as global Moran'’s | index, was often used for
describing the data clustering patterns, which is also able to indicate the changes of the
clustering patterns of land cover types (Das and Ghosh 2017). Such a method might be
another option for investigating the dynamics of surface water patterns.

As one of the lake-type reservoirs, Guanting Reservoir has been the important water
source for anthropic activities in municipal sectors of Beijing, the capital of China where
the evident dynamics of surface water shrinkage and expansion based on water area
over the past three decades have been observed (Wang et al. 2019). However, the long-
term dynamics of the surface water patterns in reservoir landscape have not yet been
studied. In this context, this study aims to investigate whether global Moran’s | index can
give an overall retrospect of the dynamics of surface water patterns in the process of
water shrinkage and expansion in Guanting Reservoir during 1985-2018, by comparing
its performance with landscape metrics.

2, Study area

This study was carried out in Guanting Reservoir that is located northwest of Beijing, the
capital of China (Figure 1). During the past three decades, it presented an obvious
alternation of surface water shrinkage and expansion, with the four following stages: i)
slow rising during 1985-1995, ii) severe atrophy during 1996-2007, iii) stable status
during 2008-2012, and iv) recovery during 2013-2016 (Wang et al. 2019). Meanwhile,
Guanting Reservoir suffered from the extensive problems of water quality due to the
nutrients and organic carbon loading from the drainage catchments (Yihui, Guihuan,
and Rui 2018; He et al. 2011; Liu et al. 2015). The national and municipal water-related
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Figure 1. Geographic location of Guanting Reservoir. The blue block represents the area where all
the statistical analysis were realized in this study. They were displayed on the Landsat 8 OLI (date:
21-08-2018) false-colour composite image using the Green, Red and NIR bands.

policies have been implemented for resolving the problems of water quality and water
storage in the past years that not only alleviated the water pollution, but also evidently
affected the dynamics of water extent (Wang et al. 2019).

3. Materials and methods
3.1. Yearly MNDWI composites

All available Landsat surface reflectance data derived from the Landsat 5 TM, Landsat 7
ETM+ and Landsat 8 OLI over the period 1985-2018 were collected from the United
States Geological Survey (USGS) website and were used as the input data for computing
spectral index (Figure 2(a)). All Landsat images have been pre-processed to L1TP level
(i.e., Standard Terrain Correction) or L1GT level (i.e., Systematic Terrain Correction). For
each image, a quality assessment band was used to remove cloud and cloud shadow,
and the vector file of the bleu block (Figure 1) was applied to delineate the study area.
Then, MNDW!I was applied to each observation from 1985 to 2018 for producing the
MNDWI time series.

Green — SWIR1
MNDWI = Green + SWIR1 M
where Green and SWIRT represent the surface reflectance value of the green band
(band 2 for Landsat TM/ETM+ data and band 3 for Landsat OLI data) and shortwave
infrared band (band 5 for Landsat TM/ETM+ data and band 6 for Landsat OLI data),

respectively.
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Figure 2. Landsat data availability covering the study area during 1985-2018. (a) Number of Landsat
5, 7 and 8 images per year; (b) Number of missing values per study period of each year (i.e., from
April to October).

Based on a mean reducer (Sun et al. 2019), the MNDWI layers between April and
October of each year were utilized to generate the yearly MNDWI composite, as
the ice might be present on the water surface from November to March that could
affect the values of MNDWI. Figure 2b shows the histogram of the proportion of
missing values in each yearly MNDWI composite covering the study area, and the
yearly MNDWI composite for 1986 was not included in the computation of spatial
autocorrelation index and landscape metrics due to the presence of missing
values.

3.2. Spatial autocorrelation index

Global Moran’s | (Cliff and Ord 1981) is a widely used spatial autocorrelation index, was
applied on yearly MNDWI composites for measuring the dynamics of surface water
patterns. The index values varied from 1 to —1, and the value 1 means the positive
spatial autocorrelation (i.e., cluster patterns), the value —1 means the negative spatial
autocorrelation (i.e., chequerboard patterns), and the value 0 represents no autocorrela-
tion (i.e., random patterns). In this study, based on the queen’s case of spatial contiguity,
global Moran’s | was estimated using the Moran function in the package raster in R, and
we obtained one value of spatial autocorrelation per year during the entire study period.
The global Moran’s | (/) could be expressed as follows:

j = M L Wl X by X)Z (i#)) @
(0 S5 wy) 2 (=)

where n is the number of locations in the each of yearly MNDWI composites, x; and x;
represent the values of MNDWI at locations i and j, respectively. x is the average value of
MNDWI in all locations, and w; represents the spatial proximity between locations
iand j.
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3.3. Landscape metrics

Considering the shrinkage and expansion of surface water in reservoir landscape,
the compositional feature of surface water was characterized by the percentage
(PLAND) of water, and the configurational patterns of surface water were charac-
terized by area-weighted mean-related circumscribing circle (CIRCLE_AM), edge
density (ED), and landscape division index (DIVISION) that permit to describe the
elongation, fragmentation, and complexity of water vs. non-water landscape,
respectively (Table 1). Based on yearly MNDWI composites, we first used Otsu’s
method for separating water and non-water, and generating the yearly water vs.
non-water maps. Then, based on yearly water vs. non-water maps, landscape
metrics were computed with an 8-connectivity implementation of the algorithm,
using Fragstats software 4.2 (Amherst, MA, USA).

3.4. Statistical and comparative analysis

In order to evaluate the performance of global Moran’s | in the description of the
dynamics of surface water patterns, we first normalized both landscape metrics and
global Moran’s | of MNDWI using min-max method for ensuring their values varying
from 0 to 1. Such method has been applied in the quantitative comparison of diverse
landscape metrics (Li et al. 2016). Then, the statistical relationships between landscape
metrics and global Moran’s | of MNDWI were established using second-degree poly-
nomial regression and coefficient of determination (R?).

4. Results and discussion
4.1. Relationship between global moran’s i of MNDWI and landscape metrics

Figure 3 presents the variation of global Moran’s | of MNDWI and the percent of water
obtained from class-level metric PLAND during the entire study period. It is evident that
all the values of global Moran’s | were near to 1. This indicates that surface water in
Guanting Reservoir kept the cluster patterns during the entire study period. However,
a graphical trend could be clearly observed. The values of global Moran’s | of MNDWI
had a relatively stable status from 1985 to 1995, and it severely decreased from 1996 to
2012, followed by a sharp increase from 2012. The overall variation of global Moran'’s | of
MNDWI was similar with the trend of per cent of water (Figure 3) and the process of
water extent dynamic proposed by (Wang et al. 2019).

Figure 4 illustrates the variations in landscape metrics as a function of the global
Moran’s | of MNDWI. The global Moran’s | of MNDWI exhibited very significant
(p-value <0.001) relationship with PLAND, CIRCLE_AM and DIVISION, with the coeffi-
cient of determination equal to 0.79, 0.85 and 0.79, respectively. These results could
explain that global Moran’s | of MNDWI was sensitive with the changes in the area,
elongation and fragmentation of surface water in reservoir landscape. However, ED
did not have a significant relationship with global Moran’s | of MNDWI. It means that
global Moran’s | index cannot represents the edge complexity of the water and non-
water landscape.
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Table 1. Landscape metrics used in this study.

Metric (Abbreviation) Description Units Range
Percentage Proportional abundance of water patches in study % (0, 100)
(PLAND) area
Edge density Total length of patch edges in study area, per m ha™ >0
(ED) hectare
Area-weighted mean related Assessing shape based on the ratio of patch area to No unit 0, 1)
circumscribing circle the area of the smallest circumscribing circle, for
(CIRCLE_AM) each patch in study area.
Landscape division index Probability that two randomly chosen pixels in Proposition 0,1
(DIVISION) study area are not situated in the same patch
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Figure 3. Temporal variation of the percentage of water (blue line) and the values of MNDWI global
Moran’s | (black line) during 1985-2018.

The reliability of the results could be explained by the clear separation between
water and non-water in each yearly MNDWI composite histogram, with the values
corresponding to water class varied from 0.3 to 0.8, and the values corresponding
non-water class varied from —0.5 to —0.2. In fact, surface water has a high reflec-
tance in green wavelength and virtually no reflectance in the shortwave infrared
wavelength. Moreover, there are very few pixels that might affect the surface water
extraction, such as pixels of terrain shadows and cloud shadows in each yearly
MNDW!I composite as the terrain of the study area is relatively flat, and clouds and
cloud shadows were removed. These facts can ensure: (i) the effective and accurate
monitoring of water extent shrinkage and expansion patterns using global Moran’s
| of yearly MNDWI composites, as this spatial autocorrelation index uses not only
the information on spatial arrangement of pixels in input raster but also pixel
values; (ii) the easy and accurate separation of water and non-water from the yearly
MNDWI composites using Otsu’s algorithm, which then ensures the ability of land-
scape metrics reflecting the real situation of surface water dynamics in Guanting
Reservoir.
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Figure 4. Comparison between the results of MNDWI global Moran’s | and landscape metrics. The
red line represents the regression line obtained using a second-degree polynomial regression.

4.2. Limitations and further considerations

This study has certain limitations. First, we solely considered the global Moran’s | index
in this study, other spatial autocorrelation indices should be considered in further
studies. Second, significant results were obtained in Guanting Reservoir that is an
artificial reservoir with evident water extent dynamics and relatively simple land surface.
Further studies could apply the proposed framework in the natural wetlands for validat-
ing its performance where both dynamic of surface water patterns and landscape are
often complex and diverse. Third, due to the small size of study area, it cannot prove the
generality of global Moran'’s | index in tracking the dynamic of surface water patterns at
a large scale. Large-scale computation of global Moran’s | based on images was not
a cost-effective manner as it needs to deal with the spatial weight between each pair of
spatial locations (Das and Ghosh 2017). The future work should consider such limitation
in the use of the proposed framework for large-scale monitoring of water dynamics.

5. Conclusions

Spatial autocorrelation approach was preliminarily tested to quantify the long-term
dynamics of surface water patterns in terms of water shrinkage and expansion in a lake-
type reservoir during 1985-2018, by computing global Moran'’s | index based on yearly
MNDWI composites. Comparing with discrete landscape indices, although the amplitude
of global Moran’s | index did not change much during the whole study period, it could
successfully assessed the variability of the area, elongation and fragmentation of surface
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water in reservoir landscape. The proposed framework might be applied in the areas
where the surface water extraction is difficult and water dynamic patterns are complex.
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