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Abstract. Qualitative spatial variables are important in many fields of research. 

However, unlike the decades-worth of research devoted to the spatial association of 

quantitative variables, the exploratory analysis of spatial qualitative variables is 

relatively less developed. The objective of the present paper is to propose a new test (Q) 

for spatial independence. This is a simple, consistent, and powerful statistic for 

qualitative spatial independence that we develop using concepts from symbolic 

dynamics and symbolic entropy. The Q test can be used to detect, given a spatial 

distribution of events, patterns of spatial association of qualitative variables in a wide 

variety of settings. In order to enable hypothesis testing, we give a standard asymptotic 

distribution of an affine transformation of the symbolic entropy under the null 

hypothesis of independence in the spatial qualitative process. We include numerical 

experiments to demonstrate the finite sample behaviour of the test, and show its 

application by means of an empirical example that explores the spatial association of 

fast food establishments in the Greater Toronto Area in Canada. 
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1 Introduction 

The concept of spatial autocorrelation is central to any effort to understand the spatiality 

of phenomena, and to build spatial theory and models (Griffith 1999; Miller 2004). 

From its origins in mathematical statistics (Geary 1954; Krishna Iyer 1949; Moran 

1948) the notion of autocorrelation has animated, and in turn been given lasting 

currency by, quantitative geography, spatial analysis, and spatial statistics (Getis 2008). 

It is from these disciplines that the analysis of map patterns has diffused throughout, 

starting with the work of quantitative geographers (e.g., Dacey 1968), to Cliff and Ord 

(1973, 1981) and Ripley (1981), through the texts of Anselin (1988), Griffith (1988), 

Haining (1990), and Cressie (1993). Now, spatial autocorrelation analysis is used to 

support research in an ever increasing sphere of cogent disciplines. 

A vast majority of work in spatial analysis has historically been concerned with 

the analysis of variables of a continuous and interval nature. It is thus interesting to note 

that in fact the first attempt to describe maps from a statistical point of view, was made 

in reference to qualitative variables (Dacey 1968; Moran 1948), specifically black and 

white colored (or later k-colored) maps, and only in second place to continuous 

variables (Cliff and Ord 1973; Geary 1954; Moran 1950). The reason for this historical 

development seems clear. Linear regression for the multivariate analysis of continuous 

variables was, until relatively recent times, the instrument of choice for statistical 

analysis of spatial data. In turn, the analysis of map patterns was, almost from the 

beginning, meant to serve as a diagnostic tool for the analysis of residuals in linear 

regression (see Geary 1954, pp. 115-116 and again p. 144).  

Despite the traditional focus on continuous variables in spatial analysis, there 

are numerous situations where qualitative variables are the focus of research, and it is in 

this context that the hypothesis of spatial independence of qualitative data is important. 

Besides early work with join count statistics (e.g., Cliff and Ord 1981; Dacey 1968; 

Upton and Fingleton 1985), and some more recent work by Boots (2003), not much 

research has been devoted to this class of problems in an exploratory setting, even if 

spatial modeling techniques for qualitative data have seen significant progress in recent 

years (e.g., Bhat and Sener 2009; Chakir and Parent 2009; Dubin 1995; McMillen 1992; 

Paez 2006; Robertson et al.  2009; Wang and Kockelman 2009). The objective of this 

paper is to propose a new statistic for the exploratory analysis of spatial 

qualitative/nominal data. The statistic is meant to identify whether neighbouring values 

of a spatial qualitative variable tend to be more similar or dissimilar than would be 

expected by chance. 

The approach proposed to test this hypothesis of spatial independence for 

qualitative variables is based on principles drawn from symbolic dynamics. Symbolic 

dynamics has been used for the investigation of non-linear dynamic systems (Hao and 

Zheng 1998) and provide an ideal set of tools for representing discrete processes. We 

use these tools to derive a new statistic, termed Q, parting from a function of symbolic 

entropy. In addition, we discuss the theoretical properties of the proposed statistic and 

investigate its finite sample behaviour by means of an extensive set of numerical 

experiments. Finally, we illustrate the usefulness of the Q statistic empirically with a 

case study that explores the spatial association of various fast food establishment types, 

namely Pizza, Hamburger, and Sandwich establishments, in the Greater Toronto Area 

eein Canada. In the concluding section, we discuss a number of valuable features of our 

statistic, and directions for future research. 



2 

 

2 Background 

As noted above, the study of autocorrelation of qualitative variables was among the 

earliest forms of spatial analysis, but from the start meant to support the use of linear 

regression for continuous variables. Some early applications confirm this connection, as 

for example the analysis that Haining (1978) conducted for crop failures in Nebraska 

and Kansas. While the premise that crop failures formed one or more regional clusters 

had been previously advanced (e.g., Hewes 1965), application of a contiguity measure 

by Haining (1978) provided the statistical evidence necessary to confirm the visual 

appraisal of crop failure patterns. An intriguing feature of this study is the conversion of 

an interval variable (percentage failure) to a nominal variable by taking values below or 

above the mean, or in other words, the categorization of a continuous variable. This is 

not a lonely example of such practice of discretizing continuous variables, and other 

instances include Chuang and Huang’s (1992) assessment of the level of noise in digital 

images that converted grey scale radiological images to black and white patterns, or 

Goldsborough’s (1994) study of algal enumeration, whereby overall mean density was 

used to classify units as “dense” or “sparse”. One can only speculate as to the reasons 

why continuous variables were converted to nominal variables in these studies, since the 

fact that reduction to a nominal variable involves some serious information loss was not 

lost in these authors (see Chuang and Huang 1992, p. 367). From a computational 

standpoint, there are indications that as late as 1992, the process of counting joins 

required to calculate autocorrelation statistics was still fraught with difficulties and 

plagued with errors (Ghent et al.  1992). Relative simplicity may have also been a 

factor. In any case, it is clear that a vast majority of research efforts were indeed 

devoted to the development of statistics for continuous variables to serve the needs 

imposed by the extended use of regression analysis. As a result, it is conventional in 

contemporary spatial analytical practice to use statistics appropriate for continuous 

variables at the global (Moran’s I, Geary’s c, variographic analysis) or local level 

(Anselin 1995; Getis and Ord 1993). 

There are multiple examples of research where the focus is in fact a qualitative 

variable. In integrated chip manufacturing, for instance, the spatial structure of non-

functional chips in wafers is recognized as a way to provide useful information about 

the manufacturing process. In this case, chips in a wafer are classified as “good” or 

“bad” (e.g., Taam and Hamada 1993, p. 150), and the objective is to determine whether 

defects are randomly or non-randomly scattered. Nominal data are also found in plant 

pathology, as in De Jong and De Bree’s (1995) study of spatial patterns of disease in 

commercial fields of leek, where the variable of interest is a health status binary 

classification (“healthy” and “infected”). Likewise, Real and McElhany (1996) discuss 

the use nominal variables when these are the disease status of plants. In veterinary 

science, Mannelli et al. (1998) have studied swine fever in Sardinia using municipal 

level data following a binary classification scheme defined as “outbreak” and 

“unaffected”. In evolutionary biology, spatial variation in fitness was examined by 

Stratton and Bennington (1996) in an experiment implemented to infer natural selection 

processes that operate in space through the assessment of spatial variations in genotype 

distribution. In this experiment, data collected after a random initial distribution of 

seeds was analyzed to elucidate whether plants that carry identical genetic markers are 

spatially associated, and the classification was defined by means of identity, that is, 

patterns of association of plants with the same genetic markers (e.g., if there are three 

markers, then AA, Aa, aa). In separate research, Epperson and Alvarez-Buylla (1997) 

also investigate the spatial structure of nominal variables based on joins for two 

genotypes. Bell et al. (2008) are interested in spatial patterns of injury. In this 
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investigation, join count statistics are used to describe the spatial co-occurrence of 

injuries by assault or intentional self-harm, with the results suggesting that assault 

injuries sustained by males who resided in neighbouring areas were more frequent than 

expected purely by chance. Self-harm injuries did not display the same strength of 

spatial pattern. 

The intention of the statistic proposed in this paper is to support analysis in 

research that makes use of qualitative variables, such as the examples above. 

3 Symbolization of a spatial process with discrete outcomes 

Development of the Q statistic is based on the application of symbolic dynamics 

concepts. Symbolic dynamics is an approach, developed in the field of mathematics for 

the study of dynamical systems (Hao and Zheng 1998) that consists of modelling a 

dynamic system by means of a discrete set consisting of sequences of abstract symbols 

obtained for a suitable partition of the state space. The basic idea behind symbolic 

dynamics is to consider a space in which the possible states of a system are represented, 

and each possible state corresponds to one unique point in the state space. This space 

can then be partitioned into a finite number of regions and each region can be labelled 

by an alphabetical letter. In this regard, symbolic dynamics is a coarse-grained 

description of dynamics. Even though coarse-grained methods lose a certain amount of 

detailed information, some essential features of the dynamics may be kept, including 

periodicity and dependencies, among others (for an overview of these concepts see Hao 

and Zheng 1998). If the process is inherently discrete to begin with, then symbolic 

dynamics provide an ideal tool for its study.  

In order to implement symbolic dynamics concepts the symbols for a process 

must be defined, or in other words, the process needs to be symbolized. In principle, 

there is no reason to anticipate that symbolization procedures will be unique given a 

spatial process, and in fact it is possible to conceive of several possible ways to 

symbolize a process. Therefore the general framework proposed here can be adapted to 

the necessities of specific problems, and just as is the case with connectivity matrices in 

spatial modelling, it is generally possible to incorporate substantive understanding of 

the process of interest in order to refine the symbolization procedure. This is a feature 

that lends great flexibility to our approach. In order to ensure broad applicability of the 

statistic proposed, in this paper we propose a general, all-purpose symbolization 

procedure which allows us to capture the dependencies of a discrete process in 

geographical space. 

Let us begin by defining a discrete spatial process { }s s SX  , where S is a set of 

geographical coordinates that denote the locations of events. These locations are given 

and fixed. Further, denote by 1 2{ }kA a a … a     the set of possible values that sX  can 

take, for all s S . Clearly, there are k different categories in this notation, which could 

be “black”/”white” or “yes”/”no” (k=2), “AA”/”Aa”/”aa” if there are three genetic 

markers (k=3), and so on. In other words, observations are made at spatially discrete 

locations, and the outcome of the process is discrete as well. A natural way to symbolize 

such a process is to embed it in an m-dimensional space as follows:  

0 1 10 0( ) ( ) for
mm s s sX s X X … X s S


       (1) 

where s1, s2,..., sm-1 are the m-1 nearest neighbours of s0. We will call this m-dimensional 

space an m-surrounding. A key to symbolizing the process is to define the criteria that 

determine which spatial events are the neighbours of s0. To this end, we propose a 

definition of neighbours based on proximity (i.e. nearest neighbour criterion). Whenever 
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two neighbours are equidistant, then the polar coordinates 0 0( )i i   of si are considered, 

taking s0 as the origin. This implies that the m-1 nearest neighbours will be those events 

satisfying the following two conditions that ensure the uniqueness of ( )mX s  for all 

s S :  

(a) The distance of the m-1 neighbours from s0 satisfies the condition that 
0 0 0

1 2 1m…      ; and 

(b) In the case of a tie in terms of the distance from s0, (i.e. if 0 0

1i i   ) then 

precedence goes to the smaller angle (i.e. 0 0

1i i   ).  

The set of the m-1 nearest neighbours is denoted as 1 2 1{ }s mN s s … s     . Since 

an m-surrounding ( )mX s  consists of m observations, and there are k possible values that 

each observation can take, there are k
m
 distinct combinations of values for an m-

surrounding. We will denote each of these unique combinations by an abstract symbol, 

say i, and will define 1 2{ }mk
…        as the set of all possible symbols. 

Furthermore, we will say that a location s  is of i -type if and only if ( )m iX s  . 

As an illustration of the symbolization procedure, consider a simple spatial 

system consisting of a regular hexagonal tessellation as shown in Fig. 1, and a process 

with two possible outcomes (k=2). The outcomes are shown in the figure in dark color 

when they are class 1 and light color when they are of class 2. Taking m=6 as the size of 

the m-surrounding, this gives a total of 2
6
=64 different combinations of values, or 

symbols (1 through 64), as listed in Table 1. Please note that a hexagonal tessellation 

is used only for illustrative purposes. The symbolization procedure is equally applicable 

to regular and irregular distributions of observations, and to points as well as areas. 

 

 
Fig. 1. Simple spatial system and process with two types of outcomes. 

 

Since in a hexagonal tessellation the distance from s0 is the same for all 6 

contiguous spatial units, and keeping in mind that polar coordinates begin at an angle of 

0 in the positive direction of the x axis in Cartesian coordinates, it should be clear that 

neighbours are arranged in order of increasing angle from the origin of the polar 

coordinate system. Then, referring again to Fig. 1, we say that location s1 is of symbol 

13, since 1( ) (1,1,2,2,1,1)mX s  , whereas location s2 is of symbol 34, since 

2( ) (2,1,1,1,1,2)mX s  . 

It is important to note that while the number of classes k is determined by the 
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nature of the process, the size of the m-surrounding is not, which gives some flexibility 

to the analyst to explore various alternatives, however bounded by the necessity to 

satisfy some minimum conditions required to ensure desirable statistical properties, as 

discussed more fully below. 

 

Table 1. List of symbols for k=2, m=6 

 1 =(1,1,1,1,1,1)   17 =(1,2,1,1,1,1)   33 =(2,1,1,1,1,1)   49 =(2,2,1,1,1,1) 

 2 =(1,1,1,1,1,2)   18 =(1,2,1,1,1,2)   34 =(2,1,1,1,1,2)   50 =(2,2,1,1,1,2) 

 3 =(1,1,1,1,2,1)   19 =(1,2,1,1,2,1)   35 =(2,1,1,1,2,1)   51 =(2,2,1,1,2,1) 

 4 =(1,1,1,1,2,2)   20 =(1,2,1,1,2,2)   36 =(2,1,1,1,2,2)   52 =(2,2,1,1,2,2) 

 5 =(1,1,1,2,1,1)   21 =(1,2,1,2,1,1)   37 =(2,1,1,2,1,1)   53 =(2,2,1,2,1,1) 

 6 =(1,1,1,2,1,2)   22 =(1,2,1,2,1,2)   38 =(2,1,1,2,1,2)   54 =(2,2,1,2,1,2) 

 7 =(1,1,1,2,2,1)   23 =(1,2,1,2,2,1)   39 =(2,1,1,2,2,1)   55 =(2,2,1,2,2,1) 

 8 =(1,1,1,2,2,2)   24 =(1,2,1,2,2,2)   40 =(2,1,1,2,2,2)   56 =(2,2,1,2,2,2) 

 9 =(1,1,2,1,1,1)   25 =(1,2,2,1,1,1)   41 =(2,1,2,1,1,1)   57 =(2,2,2,1,1,1) 

 10 =(1,1,2,1,1,2)   26 =(1,2,2,1,1,2)   42 =(2,1,2,1,1,2)   58 =(2,2,2,1,1,2) 

 11 =(1,1,2,1,2,1)   27 =(1,2,2,1,2,1)   43 =(2,1,2,1,2,1)   59 =(2,2,2,1,2,1) 

 12 =(1,1,2,1,2,2)   28 =(1,2,2,1,2,2)   44 =(2,1,2,1,2,2)   60 =(2,2,2,1,2,2) 

 13 =(1,1,2,2,1,1)   29 =(1,2,2,2,1,1)   45 =(2,1,2,2,1,1)   61 =(2,2,2,2,1,1) 

 14 =(1,1,2,2,1,2)   30 =(1,2,2,2,1,2)   46 =(2,1,2,2,1,2)   62 =(2,2,2,2,1,2) 

 15 =(1,1,2,2,2,1)   31 =(1,2,2,2,2,1)   47 =(2,1,2,2,2,1)   63 =(2,2,2,2,2,1) 

 16 =(1,1,2,2,2,2)   32 =(1,2,2,2,2,2)   48 =(2,1,2,2,2,2)   64 =(2,2,2,2,2,2) 

 

Once the symbolization of the process has been defined, it is possible to 

calculate the frequency of each symboli, which is simply the number of locations s 

that are of i -type: 

{ ( ) }
i m in s S X s       (2) 

where  denotes the cardinality of a set. Since this frequency is defined for each of k
m
 

symbols, under the conditions above, the relative frequency of a symbol    can be 

easily computed as:  

{ is of type}
( )

s S s
p p

S





  
 

 
  (3) 

whereby S   denotes the cardinality of the set S  (the total number of symbolized 

observations). 

Now, under this setting, we can define the symbolic entropy of the spatial 

process { }s s SX   for an embedding dimension 2m  . This entropy is defined as the 

Shanon’s entropy of the mk  distinct symbols as follows:  

( ) ln( )h m p p 
 

    (4) 
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Symbolic entropy, or ( )h m , is the information contained in comparing the m-

surroundings defined for the spatial process. Notice that when one symbol, say i , 

tends to dominate the process then 1
i

p   and 0
j

p   for all j≠i, which implies that 

ln( ) 0
i i

p p    and ln( ) 0
j j

p p    and therefore   0h m  . Furthermore, when the 

values of the qualitative variable are identically and independently distributed, all mk  

symbols should appear with equal frequency, in which case we have that 1/
i

mp k   for 

all i. The entropy function is then bounded between    0 ln mh m k  , where the 

lower bound indicates a tendency for only one symbol to occur (i.e. there is a tendency 

towards patterning in the distribution of the values of the qualitative variable), and the 

upper bound corresponds to a completely random system (i.i.d. spatial sequence). As an 

illustration, consider the situation illustrated in Fig. 2, with k=2 and m=3, which means 

that there are 32 8  symbols. The left panel shows a random distribution of the values 

of the qualitative variable. The histogram of the frequency of each of eight symbols 

verifies that all symbols appear with similar frequency. The right panel shows the case 

where the values are distributed non-randomly and two symbols tend to appear with 

more frequency than the rest. Rarely will the frequency of symbols be identical, and the 

question that emerges is whether departures from this are significant. In other words, do 

some symbols appear with more or less frequency than what would be expected by 

chance alone? The results needed to statistically test this hypothesis are derived next. 

 

 

 

Fig. 2. Random and non-random distributions of values of qualitative variable (k=2) and 

frequency of symbols 
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4 Construction of the independence test 

In this section, we construct a spatial independence test for a discrete qualitative spatial 

variable. We also prove that an affine transformation of the symbolic entropy defined in 

Eq. (4) is asymptotically 2  distributed. 

Let { }s s SX   be a discrete spatial process and m  be a fixed embedding 

dimension. In order to construct a test for spatial independence in { }s s SX  , we consider 

the following null hypothesis: 0 { }s s SH X   is spatially independent, against any other 

alternative. 

Now, for a symbol i  , we define the random variable 
is

Z  as follows:  

1 if ( )

0 otherwise
i

m i

s

X s

Z




 
 

  (5) 

that is, we have that 1
is

Z   if and only if s  is of i -type, 0
is

Z   otherwise. Then 

is
Z  is a Bernoulli variable with probability of “success” 

i
p , where “success” means 

that s  is of i -type. It is straightforward to see that:  

1

1
i

n

i

p


   (6) 

Let us assume that set S  is finite and of order R  (the number of symbolized 

locations). Then we are interested in knowing how many s ’s are of i -type for all 

symbols i  . We construct the following variable to this end:  

i is

s S

Y Z 


   (7) 

The variable 
i

Y  can take the values {0 1 2 }… R    . Notice that not all the 

variables 
is

Z  are independent (due to the overlapping of some m -surroundings), and 

therefore 
i

Y  is not exactly a binomial random variable. Nevertheless, the sum of 

dependent Bernoulli variables can be approximated to a binomial random variable 

whenever (see Soon 1996): 

 

(i) Dependencies among the indicators are weak; and 

(ii) The probability of the indicators to occur is small.  

 

Condition (ii) is satisfied by the way the symbols have been constructed, since in 

this case, under the null hypothesis, the probability of success of the indicators sZ  is 

small ( 1/ mp k  ). Condition (i), on the other hand can usually be satisfied only if the 

events are distributed in a regular array, and the size of the m-surrounding is relatively 

small, in which case the overlaps are minor. More generally, when the size of the m-

surrounding is large, or when their spatial arrangement is irregular, this condition 

becomes more difficult to maintain, if we consider all the indicators sZ  for all s S . 

Additional steps are therefore needed to ensure that the dependencies among the 

indicators sZ  are weak. 
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In order to attain a good binomial approximation, we consider a subset of 

locations S S  with controlled overlap, so that the dependencies among the indicators 

sZ  are weak for s S . Use of a subset of locations will cause a loss of information, 

and this loss will be greater in the measure that set S  is smaller. A reasonable balance 

therefore must be struck between strongly dependent indicators and too much loss of 

information. In order to control the amount of overlap among the Bernoulli variables, 

we can take as S  those coordinates in S  such that for any two coordinates i js s S   the 

sets of nearest neighbours of is  and js  are at most r (a small enough positive integer) if 

they intersect:  

0 if non-overlapping

otherwise              i js sN N
r


   


  (8) 

We call this integer r  the degree of overlap of the spatial process { }s s SX  . We 

now turn to a method to select the set S  satisfying the above condition. Let us define 

the set S  recursively as follows. First chose a location 
0

Ss   at random and fix an 

integer r  with 0 r m  . Let 
0

0 0 0

1 2 1{ }ms
N s s … s      be the set of nearest neighbours to 

0s , where the 0

is ’s are ordered by distance to 
0s . Let us call 0

11 m rss    and define 

0 0

0 1 20
{ }m rA s … ss      . Take the set of nearest neighbours to 

1s , namely 

1

1 1 1

1 2 1{ }ms
N s s … s     , in the set of locations 0S A  and define 1

12 m rss   . Now for 

1i   we define 1

1

i

m ri
ss


   where 1

1

i

m rs 

   is in the set of nearest neighbours to 
1is 
, 

1

0 1 1 1

1 2 1{ }
i

i i i

ms
N s s … s



  

    , of the set 1

0{ }i

j jS A

 . Continue this process while there are 

locations to symbolize. In the end, we have constructed a set of locations:  

0 1
{ }

R
S …s s s      (9) 

such that the variable 
i i s

s S

Y Z 


  can be approximated to a binomial distribution for a 

suitable choice of r . Notice that the maximum number of locations that can be 

symbolized with an overlapping degree r  is 1N m
m r

R 


    , where the operator [ ]x  

denotes the integer part of a real number x .  

Given the above considerations, we can now state the following results (the 

proof can be found in the Appendix). 

Theorem 1 Let { }s s SX   be a qualitative discrete spatial process with S N  . Let 

1 2{ }kA a a … a     be the set of possible values that sX  can take, for all s S . Let r  be 

the overlapping degree of { }s s SX   and [ ] 1N m
m r

R 


  , where [ ]x  denotes the integer part 

of a real number x . Let 1 2{ }mk
…        be the set of symbols defined in Section 2. 

Let ij  the number of times that class ja  appears in symbol 
i

  and ( )j jq P X a  . 

Denote by ( )h m  the symbolic entropy defined in Eq. (2) for a fixed embedding 

dimension 2m    with m . If the spatial process { }s s SX   is independent, then:  

     
1 1

2 ln

m

i

k k

ij j

i j

n
Q m R q h m

R




 

 
   

 
   (10) 
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is asymptotically 2

1mk



 distributed. 

Note that if { }s s SX   is also identically distributed, in other words, each value of the 

variable appears with equal frequency, then 
1

jq
k

  and therefore Eq. (10) reduces to: 

 ( ) 2 ( ) ( )mQ m R Ln k h m  . (11) 

Let   be a real number with 0 1  . Let 2

  be such that:  

2 2

1
( )mk

P   

     (12) 

Then, to test: 0 { }s s SH X   is spatially independent, the decision rule in the application 

of the ( )Q m  test at a 100(1 )%  confidence level is:  

2

0

0

If ( )  then reject

  Otherwise do not reject

Q m H

H

 



  (13) 

5 Properties of the Q(m) test 

Next, we prove that the ( )Q m  test is consistent for a wide variety of spatially dependent 

processes. This is a valuable property since the test will reject asymptotically the 

assumption of spatial independence whenever there is spatial dependence within the m-

surrounding. By spatial dependence of order less than or equal to m we mean that, 

whatever the structure of the spatial process is, there exists dependence between the 

random variable located at point s  and its m -surrounding or a part of it. We will 

denote by ( )Q m  the estimator of ( )Q m . The proof of the following theorem can be 

found in the Appendix.  

 

Theorem 2  Let { }s s SX   be a discrete spatial process, and 2m   with m . Then:  

limPr( ( ) ) 1
R

Q m C


    (14) 

under spatial dependence of order smaller than or equal to m for all 0 C C   .  

Thus, the test based on ( )Q m  is consistent against all spatial dependence of 

order less than or equal to m. Conversely, since the dependence detected by the test is at 

most of order m, if the dependence structure of the process is of order larger than m, 

then it will not be present in every m -surrounding and therefore the symbols may not 

capture it. Since Theorem 2 implies ( )Q m   with probability approaching one 

under spatial dependence of order less than or equal to m, then upper-tailed critical 

values are appropriate.  

As previously noted, from a practical point of view, the researcher has to decide 

upon the embedding dimension m  in order to compute symbolic entropy and therefore, 

to calculate the ( )Q m  statistic. While this affords some flexibility, there are also some 

conditions that must be observed in order to guide a decision. Note that the number of 

locations that are symbolized (R) should be larger than the number of symbols ( mk ) in 

order to have at least the same number of m-surroundings as symbols have been defined 

( 1 m

i i k    ). When the 2  distribution is applied in practice, and all the expected 

frequencies are larger than or equal to five the limiting tabulated 2  distribution gives, 
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as a rule, the value 2

  with an approximation sufficient for ordinary purposes (see 

chapter 10 of Rohatgi 1976). For this reason, it is strongly advisable to work with at 

least 5 mk  symbolized observations. 

6 Finite sample behaviour of Q(m)  

In this section, we examine the finite sample behaviour of the Q(m) test. This is to 

establish the power and size of the statistic under various levels of spatial association, 

sample size, size of the m-surrounding, and degree of overlap. In addition, we explore 

the potential impact of boundary effects. 

6.1 Size and Power of the Test in Finite Samples 

To investigate the power and size of the test, we conduct an extensive set of numerical 

experiments. Let us begin with some considerations regarding the data generating 

process used for the experiments. In order to obtain categorical random variables with 

controlled degrees of spatial dependence, we have designed a two-stage data generating 

process. Firstly, we simulate autocorrelated data using the following model:  

1( )I    W Y  (15) 

where  ~ 0,1N , I  is the N N  identity matrix,   is a parameter of spatial 

dependence, and W is a connectivity matrix that determines the set of spatial 

relationships among points. The process, therefore, is based on the auto-normal model. 

Alternative models for the data generation process were considered (e.g., the auto-

logistic) but the auto-normal provides the best alternative for controlling the frequency 

of each categorical value in the simulations. In the second step of the data generation 

process, the continuous spatially autocorrelated variable Y is used to define a discrete 

spatial process as follows. Let ijb  be defined by: 

( )  with i<jij

i
p Y b

j
    (16) 

Let 1 2{ }kA a a … a     and define the discrete spatial process as:  

1 1

1

1

if

if

if

s k

s i i k s ik

k s k k

a Y b

X a b Y b

a Y b









 



  



  (17) 

The last item that needs to be determined before data can be generated is a 

specific spatial arrangement of observations, so that matrix W can be defined. In this 

regards, we note that Farber et al. (2009) report that square tessellations provide poor 

approximates to the topology of real geographical systems. For this reason, we prefer to 

use for our experiments hexagonal tessellations, which more closely resemble the 

topology of Voronoi tessellations and administrative zoning systems used in many 

empirical applications. Two experiments use regular lattices of sizes N=100, 400, 900, 

1,600, 2,500, and 3,600. In addition to these regular tessellations, we simulate irregular, 

but not random, spatial distributions of observations, with the same numbers of 

observations. The data are generated using Eq. (15), with the connectivity matrix 

defined in terms of first-order contiguity. Matrix W is row-standardized for the 

calculations. 

Figure 3 shows examples of the different spatial distributions of N=900 
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observations generated for 0   (no spatial structure), 0 5    and 0 9   , and for 

k=2, 3, 4 possible outcomes. As can be seen there, when the value of parameter   

increases, more cells of the same colour cluster together. Examples of the irregular 

distributions of observations used in the second set of experiments are shown in Fig. 4. 

The following parameter space is explored, from no- to high-autocorrelation, six sample 

sizes, three classes for number of outcomes, three m-surrounding sizes, and overlap: 

 

 Autocorrelation parameter = 0.0, 0.2, 0.5, and 0.9 

 Sample size N= 100, 400, 900, 1,600, 2,500 and 3,600. 

 Number of outcomes k=2, 3 and 4 

 Size of m-surrounding: three (self + 2 neighbours), four (self + 3 neighbours), 

five  (self + 4 neighbours)  

 Degree of overlap r=1, 2,..., as appropriate (see below) 

 

Data are simulated 1,000 times for each combination of parameters (number of 

replications), and the test was applied to each generated dataset at level of significance 

0.05  . The number of times that the probability value of the statistic exceeded 0.05 

was recorded, which, following the decision rule posed in Eq. (13), would indicate 

rejection of the null hypothesis. We would expect the statistic to fail to reject the null 

hypothesis most of the time when the level of autocorrelation is zero (size of the 

statistic). At the same time, we would expect it to reject the null hypothesis more 

frequently as the level of autocorrelation goes up (power of the statistic).  

 
 ρ = 0 ρ = 0.5 ρ = 0.9 

k=2 

   

k=3 

   

k=4 

   

Fig. 3. Examples of distributions of observations on a regular hexagonal lattice 

(N=900), for different number of outcomes k and levels of . 
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Fig. 4. Irregular distributions of observations N=900 and N=3,600 

 

The results of the numerical experiments appear in Tables 2, 3, and 4, for the 

regular and irregular settings respectively. Please note that combinations of parameters 

are selected that satisfy the general rule that there must be at least 5 mk  symbolized 

observations R. Since the number of symbolized locations depends on the degree of 

overlap, r must be selected so that the number of symbolized locations R is greater than 

5 mk . 

The results of the experiment indicate that the size of the test (the rejection rate 

when the variable is independent) is typically higher for regular lattices, indicating a 

slightly greater risk for false positives, compared to irregular distributions of 

observations. Increasing the overlapping degree leads to more symbolized observations. 

This, as previously discussed, can result in non-independent Bernoulli variables, and 

therefore a higher size of the test, as seen in the tables. The increase in size is expected 

to carry over for higher levels of spatial dependence. The experiments are conducted for 

equal and unequal frequency of the values of the qualitative variable. The size of the test 

is not affected by changes in the proportionality of variable values in our experiments. 

With regards to the power of the statistic, when the overlapping degree is high, 

the power will tend to be high as well. This is due to two effects: first, the starting size 

is higher, and secondly, the number of symbolized locations is greater. With regard to 

equal and unequal frequencies of the values of the variable, there is a slight loss in 

power when the values are not observed with identical frequencies. This loss is more 

marked for small sample sizes, which may make it difficult to identify even moderately 

strong spatially dependent processes in small sample situations. The loss in power 

becomes less relevant as the size of the sample increases, even for moderately large 

samples such as N=400. As usual, the power of the statistic tends to increase with 

increasing sample size. For a fixed sample size, the power is lower as the number of 

categories k increases, but this is due to the fact that the number of symbols will 

increase as well, and so the ratio of symbolized locations to symbols will decrease. 

It is interesting to remark that the results are noticeably different for the case 

where observations are irregularly distributed compared to regular tessellations, when 

other parameters are comparable. This would suggest that the topology of the system to 

some extent can influence the performance of the statistic. While an in-depth 

investigation of the effect of topology is beyond the scope of this paper, this is 

suggested as a topic for future research along the lines of the studies by Páez et al. 

(2008) and Farber et al. (2009). 
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Table 2. Size and power of the Q test for k=2 

Regular lattice 

    p1= p2 =1/2 p1=1/4; p2=3/4 

N R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

100 
49 3 1 0.051 0.032 0.088 0.736 0.034 0.041 0.069 0.640 

97 4 3 0.081 0.118 0.242 0.936 0.077 0.088 0.205 0.876 

400 

199 3 1 0.027 0.036 0.329 1.000 0.032 0.040 0.204 1.000 

199 4 2 0.045 0.052 0.370 1.000 0.052 0.065 0.268 1.000 

397 4 3 0.083 0.131 0.609 1.000 0.096 0.112 0.512 1.000 

900 

449 3 1 0.031 0.062 0.676 1.000 0.024 0.048 0.517 1.000 

449 4 2 0.038 0.070 0.792 1.000 0.028 0.051 0.621 1.000 

897 4 3 0.076 0.144 0.926 1.000 0.082 0.138 0.823 1.000 

299 5 2 0.062 0.074 0.610 1.000 0.062 0.105 0.498 1.000 

1600 

799 3 1 0.034 0.088 0.878 1.000 0.035 0.075 0.779 1.000 

799 4 2 0.041 0.118 0.974 1.000 0.046 0.102 0.902 1.000 

1597 4 3 0.083 0.259 0.997 1.000 0.082 0.203 0.977 1.000 

532 5 2 0.046 0.090 0.859 1.000 0.057 0.103 0.765 1.000 

Irregular lattice 

    p1= p2 =1/2 p1=1/4; p2=3/4 

N R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

100 
49 3 1 0.029 0.037 0.086 0.811 0.027 0.042 0.090 0.704 

97 4 3 0.052 0.068 0.242 0.952 0.053 0.054 0.170 0.897 

400 

199 3 1 0.024 0.055 0.465 1.000 0.025 0.059 0.354 1.000 

199 4 2 0.036 0.061 0.539 1.000 0.036 0.062 0.423 1.000 

397 4 3 0.046 0.127 0.766 1.000 0.053 0.119 0.675 1.000 

900 

449 3 1 0.025 0.096 0.876 1.000 0.038 0.078 0.764 1.000 

449 4 2 0.037 0.125 0.924 1.000 0.048 0.113 0.817 1.000 

897 4 3 0.053 0.215 0.984 1.000 0.052 0.207 0.952 1.000 

299 5 2 0.053 0.102 0.800 1.000 0.056 0.113 0.685 1.000 

1600 

799 3 1 0.024 0.160 0.993 1.000 0.036 0.116 0.950 1.000 

799 4 2 0.038 0.199 0.998 1.000 0.046 0.144 0.977 1.000 

1597 4 3 0.039 0.383 1.000 1.000 0.052 0.308 1.000 1.000 

532 5 2 0.033 0.126 0.978 1.000 0.067 0.126 0.942 1.000 
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Table 3. Size and power of the Q test for k=3 

Regular lattice 

    p1= p2= p3 =1/3 p1=1/8; p2=3/8; p3=4/8 

N R m R ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

400 199 3 1 0.030 0.048 0.290 1.000 0.037 0.039 0.296 1.000 

900 

449 3 1 0.033 0.037 0.611 1.000 0.034 0.055 0.555 1.000 

449 4 2 0.064 0.077 0.690 1.000 0.058 0.098 0.726 1.000 

897 4 3 0.067 0.148 0.891 1.000 0.101 0.162 0.890 1.000 

1600 

799 3 1 0.020 0.072 0.879 1.000 0.029 0.056 0.839 1.000 

799 4 2 0.025 0.104 0.958 1.000 0.066 0.130 0.946 1.000 

1597 4 3 0.078 0.209 0.995 1.000 0.127 0.225 0.991 1.000 

2500 

1249 3 1 0.027 0.090 0.992 1.000 0.031 0.091 0.977 1.000 

1249 4 2 0.041 0.134 0.996 1.000 0.047 0.153 0.992 1.000 

2497 4 3 0.094 0.265 0.999 1.000 0.107 0.302 1.000 1.000 

Irregular lattice 

    p1= p2= p3 =1/3 p1=1/8; p2=3/8; p3=4/8 

N R m R ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

400 199 3 1 0.029 0.037 0.086 0.811 0.027 0.042 0.090 0.704 

900 

449 3 1 0.024 0.055 0.465 1.000 0.025 0.059 0.354 1.000 

449 4 2 0.036 0.061 0.539 1.000 0.036 0.062 0.423 1.000 

897 4 3 0.046 0.127 0.766 1.000 0.053 0.119 0.675 1.000 

1600 

799 3 1 0.025 0.096 0.876 1.000 0.038 0.078 0.764 1.000 

799 4 2 0.037 0.125 0.924 1.000 0.048 0.113 0.817 1.000 

1597 4 3 0.053 0.215 0.984 1.000 0.052 0.207 0.952 1.000 

2500 

1249 3 1 0.024 0.160 0.993 1.000 0.036 0.116 0.950 1.000 

1249 4 2 0.038 0.199 0.998 1.000 0.046 0.144 0.977 1.000 

2497 4 3 0.039 0.383 1.000 1.000 0.052 0.308 1.000 1.000 

 

Table 4. Size and Power of the Q test for k=4 

Regular lattice 

    p1= p2= p3= p4=1/4 p1=1/12; p2=2/12; p3=3/12; p4=6/12 

N R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

900 449 3 1 0.033 0.059 0.517 1.000 0.039 0.081 0.514 1.000 

1600 799 3 1 0.026 0.043 0.788 1.000 0.040 0.069 0.725 1.000 

2500 1249 3 1 0.026 0.076 0.971 1.000 0.026 0.086 0.927 1.000 

3600 

1799 3 1 0.031 0.099 0.997 1.000 0.037 0.099 0.995 1.000 

1799 4 2 0.070 0.185 1.000 1.000 0.097 0.271 0.998 1.000 

3597 4 3 0.077 0.280 1.000 1.000 0.147 0.400 0.999 1.000 

Irregular lattice 

    p1= p2= p3= p4=1/4 p1=1/12; p2=2/12; p3=3/12; p4=6/12 

N R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

900 449 3 1 0.033 0.081 0.799 1.000 0.039 0.085 0.755 1.000 

1600 
799 3 1 0.031 0.111 0.991 1.000 0.052 0.103 0.965 1.000 

1597 4 3 0.098 0.308 1.000 1.000 0.098 0.366 1.000 1.000 

2500 
1249 3 1 0.036 0.167 1.000 1.000 0.036 0.149 0.999 1.000 

2497 4 3 0.086 0.395 1.000 1.000 0.112 0.490 1.000 1.000 

3600 

1799 3 1 0.017 0.251 1.000 1.000 0.038 0.240 1.000 1.000 

1799 4 2 0.062 0.302 1.000 1.000 0.098 0.399 1.000 1.000 

3597 4 3 0.059 0.521 1.000 1.000 0.122 0.576 1.000 1.000 
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6.2 Boundary effects 

In this section, we are interested in assessing the potential effect of system boundaries 

when data points are not observed beyond an arbitrarily defined boundary. The usual 

question when considering boundary effects is whether the behaviour of a statistical 

estimator changes if variable Xi is influenced by Xj and j is a location outside of the 

study area (Haining 1990, p. 101; Upton and Fingleton 1985, p. 365). For us, the 

question is whether our ability to detect a spatially dependent process is influenced by 

unknown values of the variable at locations beyond the boundary of the study area. In 

other words, how frequently the statistic would agree to either reject or fail to reject the 

null hypothesis for two systems that are comparable (in size) if one is observed 

completely and the other is observed only partially. 

Table 5. Size and power of Q(m) in the presence of boundary effects 

k=2 1 2 1/ 2p p  

     Partial system Complete system 

NO NC R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 NO=NC ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

100 196 
49 3 1 0.044 0.035 0.052 0,609 

100 
0.051 0.032 0.088 0.736 

97 4 3 0.091 0.111 0.178 0,876 0.081 0.118 0.242 0.936 

400 576 
199 3 1 0.024 0.047 0.248 1,000 

400 
0.027 0.036 0.329 1.000 

397 4 3 0.073 0.110 0.571 1,000 0.083 0.131 0.609 1.000 

900 1156 
449 3 1 0.029 0.043 0.570 1,000 

900 
0.031 0.062 0.676 1.000 

897 4 3 0.065 0.124 0.874 1,000 0.076 0.144 0.926 1.000 

1600 1936 
799 3 1 0.027 0.084 0.841 1,000 

1600 
0.034 0.088 0.878 1.000 

1597 4 3 0.083 0.236 0.989 1,000 0.083 0.259 0.997 1.000 

k=3 1 2 3 1/ 3p p p  

     Partial system Complete system 

NO NC R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 NO=NC ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

400 576 
199 3 1 0.025 0.038 0.223 0.999 

400 
0.030 0.048 0.290 1.000 

397 4 3 0.125 0.156 0.519 1.000 0.141 0.156 0.586 1.000 

900 1156 
449 3 1 0.023 0.041 0.502 1.000 

900 
0.033 0.037 0.611 1.000 

897 4 3 0.081 0.139 0.838 1.000 0.067 0.148 0.891 1.000 

1600 1936 
799 3 1 0.024 0.050 0.828 1.000 

1600 
0.020 0.072 0.879 1.000 

1597 4 3 0.077 0.192 0.984 1.000 0.078 0.209 0.995 1.000 

2500 2916 
1249 3 1 0.019 0.093 0.969 1.000 

2500 
0.027 0.090 0.992 1.000 

2497 4 3 0.097 0.267 0.999 1.000 0.094 0.265 0.999 1.000 

k=4 1 2 3 4 1/ 4p p p p  

     Partial system Complete system 

NO NC R m r ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 NO=NC ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 

900 1156 449 3 1 0.036 0.049 0.398 1.000 900 0.033 0.059 0.517 1.000 

1600 1936 799 3 1 0.031 0.047 0.703 1.000 1600 0.026 0.043 0.788 1.000 

2500 2916 1249 3 1 0.026 0.050 0.947 1.000 2500 0.026 0.076 0.971 1.000 

3600 4096 1799 3 1 0.035 0.076 0.995 1.000 3600 0.031 0.099 0.997 1.000 

 

To evaluate the effect of boundaries in the size and power of the test, we 

conduct a second simulation experiment. The data are generated using the same 

procedure described in the preceding section. In irregular lattices, m-surroundings are 

constructed based on proximity, only resorting to the direction criterion in the rare cases 

when two neighbours are equidistant. Boundary effects could be more critical in regular 

tessellations due to the way that the m-surroundings are constructed involving the 

direction of the neighbours. For this reason, we repeat the experiments with regular 

hexagonal tessellations only. The results can be compared to the experiments in the 
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preceding section (Tables 2, 3 and 4), conducted under the assumption that the system 

was completely observed. In the case of the new simulation, a complete system is 

simulated with NC cases. In order to simulate the boundaries, we remove all hexagons in 

the periphery, to obtain an observed system with a total of NO cases after omitting all 

observations in the boundaries. The simulation is done for 1000 replications, and the 

frequency of rejection of the statistic is recorded for each combination of parameters to 

calculate the size and power of the test when applied to a partial system. 

The results of the experiment are presented in Table 5 for various values of NO, 

, and other parameters. The columns give the frequency of rejection of the null 

hypothesis. It is to be expected that the frequency of rejection in the case of a partial 

system will not be affected when the level of autocorrelation is zero. In this case, the 

data points are independent, and what happens beyond the boundary stays there. The 

results of the simulation confirm this, since it can be seen that the size is comparable for 

every case studied. The results indicate that boundary effects influence the power of the 

statistic when autocorrelation is present. The effect in general is to reduce the power of 

the statistic, although the reduction is relatively small in most cases, and the loss in 

power tends to be smaller as the number of observations and the level of autocorrelation 

increase, since this is naturally associated with higher power in any case. 

Typical recommendations for the treatment of boundary effects include to 

collect more data points whenever possible, or to create an artificial boundary or buffer, 

and to consider the observations within the buffer as a known boundary. The first 

recommendation is sensible but frequently unfeasible. The second recommendation is of 

dubious merit in the case of our statistic, because any gains in power are bound to be 

minor as suggested by the simulation, and likely be offset by the loss of power 

associated with a reduced number of observations. 

7 Illustration: Fast food establishments in Toronto 

We now proceed to illustrate the use of the Q(m) test by means of an empirical example 

concerning the spatial association of fast food establishments in the city of Toronto, 

Canada, specifically those offering primarily [P]izza, [S]andwich, and [H]amburger 

products. Use of spatial statistics has recently been applied to the study of food 

environments (Austin et al.  2005), and our example illustrates other ways in which the 

food landscape can be examined from a spatial perspective. In particular, we explore the 

question of whether the type of establishment is independent from its neighbours, 

whether establishments tend to attract or repel establishments of the same type.  

7.1 Data 

The analysis is based on business points, which record the location of different 

establishments in the city of Toronto, as well as their industrial codes and other 

characteristics, such as various categories of size, revenue, etc. The business directory is 

based on infoCanada data, which is compiled from over 200,000 sources, including 

telephone directories, annual reports, press releases, city and industrial directories, news 

items, and new business listings. The database is telephonically verified annually by 

infoCanada to ensure the accuracy of the information. This information is processed and 

packaged by Environics Analytics to produce a business profiles database. 

The final database for analysis includes a custom Standard Industrial 

Classification code which allows for the identification of business groups. Location 

coordinates are coded by Environics Analytics to enable mapping applications of the 

businesses recorded in the database. For the purpose of this illustration, a subset of 

observations is extracted from the file corresponding to the region surrounding the city 



17 

 

of Toronto, to obtain a set of 877 businesses with Standard Industrial Codes 5812 

classification (“Eating Places”) that can be identified as offering primarily one of 3 

types of fast food, including [P]izza (nP=303), [S]andwich (nS=299), and two major 

[H]amburger chains in the city (nH=275). The spatial distribution of fast food places is 

shown in Fig. 5. It is reasonable in this case to think of the observations as a completely 

observed system, because development beyond the study area is sparse with the 

exception of the western boundary. As suggested by the simulations in Section 6.2, even 

if there are boundary effects, there is little risk that a false positive will be obtained, and 

the loss of power is bound to be relatively small.  
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Fig. 5. Fast food establishments in Toronto and the Greater Toronto Area 
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7.2 Analysis and results 

To support our analysis of spatial association of a qualitative variable (establishment 

type) we first analyze the point pattern of establishments. This is done by means of 

nearest neighbour analysis, an approach developed with the objective of measuring the 

degree of proximity between events and their nearest neighbours (Bailey and Gatrell 

1995). The specific technique we use is the G function, a cumulative plot that shows the 

proportion of events that have a nearest neighbour at a distance of d or less: 

 
  # min id d

G d
N


  (18) 

The analysis can be performed for k
th

 order neighbours, that is, the proportion 

of events whose k
th

 nearest neighbour is at a distance d or less. A steep increase of the 

function indicates a tendency towards spatial clustering. The results of this analysis are 

shown in Fig. 6, where it can be seen that about 70% of events have a first order nearest 

neighbour within 500 m distance, and about 90% have first order neighbours within 1.2 

km. About 70% of events have a second order neighbour within 1.1 km, and a third 

order neighbour within 1.5 km. This gives a stronger basis to the preliminary impression 

that there is a good deal of spatial clustering in the location pattern of fast food 

establishments. 

 
Fig. 6. Event-to-event k

th
 nearest neighbour distance analysis 

We now turn to the question of whether there are patterns of association for the 

different types of establishments. Application of our statistic is straightforward. The 

number of possible event outcomes is k=3, and the number of observations is N=877. 

Given these values    ln / 5 / ln 4.7033N k  , meaning that we can explore m-

surroundings of size two (self and one nearest neighbour), three (self and two nearest 

neighbours) and four (self and three nearest neighbours). On the other hand, we are 

prevented by the sample size to explore m-surroundings of size five or larger. Based on 

our previous application of the G function, there appears to be only relatively a minor 

difference between m=3 and m=4, in terms of the spatial distribution of the locations of 

establishments. Since a property of the statistic is that it detects spatial dependence of 

order less than or equal to m, it seems sensible to select m=4 for our analysis. If 

dependence is detected, it would carry for the cases of m=2 and m=3. One additional 

decision to make concerns the degree of overlap. An overlap of r=1 does not satisfy the 

criterion that the number of symbolized locations be greater than 5k
m

=405. Overlaps of 

r=2 and r=3 result in R=437 and R=874 symbolized locations respectively. Since the 

simulation results indicate that higher values of R generally increase the power of the 
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statistic, we select r=3 for our application. The summary of these parameters and results 

of the test are shown in Table 6. 

Table 6. Summary of parameters and results 
Sample size (N) 877  

Symbolized observations (R) 874 

Number of classes (k) 3 

Size of m-surrounding (m)        4 

Degree of overlap (r)       3 

Number of symbols (n)      81 

Ratio R/n 10.79 

5km 405.00 

Frequency of classes 0.3136 0.3455     0.3409 

 

Q test for spatial dependence in qualitative data 

Test         Value DF p-value 

Q (equiprobab.)              177.27         80 <10-5 

Q (non-equiprob.)               166.38     80 <10-5 

 The value of the statistic for the approximate case of equal frequency of 

classes is 177.27 (see Eq. (11)), and for non-equiprobability is 166.38 (see Eq. (10)). 

These values are tested using the 2  distribution with 1 80mk    degrees of freedom. 

The cut-off value for rejection at the 0.05 level of significance is 101.8795, which the 

values of the test exceed, and therefore, according to our decision rule, leads to rejection 

of the hypothesis of independence. Alternatively, the probability values in both cases 

are smaller than 10
-5

. 

The test rejects the hypothesis of independence. However, dependence could 

take different forms. An attractive feature of the Q(m) statistic is that it is based on the 

frequency of different symbols being observed, which allows a more in-depth 

exploration of the patterns of association. Recall that the probability of each symbol 

appearing under the hypothesis of independence is 1/ mk , so that in this case, since there 

are 874 symbolized locations, each symbol would appear approximately eleven times. It 

is possible to plot a histogram with the actual frequency of the 81 symbols (see Fig. 7). 

The expected frequency under the null is indicated by the dotted line in the figure, and it 

is possible to see which symbols deviate from this expectation, and in which direction 

(more frequent, less frequent). The symbols carry a fair amount of information, since 

each symbol represents a particular combination of events, and also their order of 

proximity and possibly directionality from s0. 
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Fig. 7. Frequency of fast food type co-location symbols in Toronto (m=4 and r=3) 

In Fig. 8, we condense the information contained in the histogram, in order to 

display only the types of events in m-surroundings, but not other features of the pattern, 

such as order of proximity. This allows us to discern that four establishments of a kind 

(four pizza, four sandwich, or four hamburger places) are seldom found together. Much 

more common is the case where neighbouring groups 4 establishments consist of a 

variety of establishments, with at most two of one class, and one each of the other two 

classes. This would tend to indicate – in addition to the evidence of economies of 

agglomeration evinced by the spatial clustering – that within clusters there is a pattern 

of competition or repulsion between establishments of the same type. 

 
Figure 8. Co-location of events, condensed histogram. H,S, and P indicate the type of 

establishment, e.g., HHPP means two Hamburger and two Pizza in a group of four. 
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8 Conclusions 

In this paper, we have proposed a new statistic Q(m) useful to test the hypothesis of 

independence among spatially distributed qualitative data. Qualitative data are receiving 

increased attention from a number of disciplinary perspectives. However, besides black 

and white or k-coloured join count statistics (e.g., Cliff and Ord 1981; Dacey 1968; 

Upton and Fingleton 1985), and the work of Boots (2003), there has been only limited 

development in terms of spatial analysis of qualitative data, compared to the 

development of methods and techniques useful to study continuous variables. Our 

statistic therefore is proposed as a complement to further enrich the diversity of the 

spatial analysis toolbox. 

The Q(m) statistic is developed parting from concepts of symbolic dynamics. 

Symbolic dynamics provide an ideal set of tools to investigate discrete processes. Our 

statistic therefore is designed for the analysis of spatially discrete events, with 

qualitative/nominal outcomes. In this paper, we provide the inferential basis for 

conducting tests of hypothesis based on an affine transformation of the statistic, and a 

decision rule is proposed to reject or fail to reject the hypothesis of independence. We 

have also performed an extensive set of numerical experiments that demonstrate the size 

and power of the statistic to identify spatial association under a range of different 

conditions, and the potential effect of boundaries. In addition an example illustrates the 

usefulness of the statistic to address substantive research questions. 

In addition to its ability to identify patterns of spatial association, an attractive 

feature of our statistic is that it is based on the frequency of occurrence of various 

abstract symbols that can be linked to meaningful states of the system. The frequency of 

the symbols can be examined to obtain in-depth information about departures from the 

expected frequencies under the null hypothesis of independence. The ability to do this is 

akin, if not identical, to that provided by Moran’s scatterplot, in that it gives specific 

patterns of association that can be contrasted with different ideas about the substantive 

process. In our example, we discussed a condensed histogram of the symbols, which 

provides a simplified perspective on the patterns of association. However, it is not 

difficult to envision other questions of interest that could be explored using the full 

histogram, for example, concerning directional or proximity trends of other types of 

events (e.g., do sandwich establishments tend to be closer, or further away from pizza 

locations, relative to hamburger places?) In fact, the symbolization procedure can be 

modified in order to address specific research needs, for example to deal with questions 

of anisotropy or others. This is a matter for further research. 

Two additional points are indicated as directions for additional research. First, 

the number of outcomes k typically depends on the nature of the process, and is 

therefore a parameter beyond the control of the analyst. The number of observations 

needed to conduct analysis can quickly explode depending on the size of the m-

surroundings. For example, if k=4, and one desires to examine m-surroundings of size 

three, at least 625 points would be required. In contrast, an m-surrounding of five would 

require 3,125 observations. A topic for further investigation is whether different 

symbolization schemes can help to maintain data needs under control. Secondly, using 

the histogram of frequency of symbols to test whether each symbol departs significantly 

from the expected frequency appears as a promising direction for further research. The 

histogram already provides a decomposition of the statistic, and the ability to test 

deviations for specific symbols would further enhance the capabilities of the statistic, in 

the manner of various other local statistics of spatial association (Anselin 1995; Getis 

and Ord 1993). 
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9 Appendix: Proofs 

Proof of Theorem 1  

Under the null 0H , the joint probability density function of the n  variables 

1 2
( )

mk

Y Y …Y      is:  
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1 2

1 2 1 2
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   
 (A.1) 

where 1 2 na a … a R    . Consequently, the joint distribution of the n  variables 

1 2
( )

mk

Y Y …Y      is a multinomial distribution.  

The likelihood function of the distribution given by Eq. (A.1) is:  
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and since, 
1
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m
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 , it follows that  
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Then the logarithm of this likelihood function remains as  

   

 

1 2

1 2

1 2 1

1

ln ln ln

ln 1

m

m i ik

mk

m mk k

k

i i

R
L p p … p n p

n n … n

n p p … p

    

  

   






        
       

 

    


 (A.4) 

In order to obtain the maximum likelihood estimators ˆ
i

p  of 
i

p  for all 

1 2i … n    , we solve the following equation  
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to get that:  
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Then the likelihood ratio statistic is (see for example Lehman 1986):  
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where (0)

i
p  denotes the probability of the symbol 

i
  under the null hypothesis. 

         On the other hand,   ( ) 2lnQ m Y   asymptotically follows a Chi-squared 

distribution with 1mk   degrees of freedom (see Lehman 1986). Hence:  
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Now, taking into account that  
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Notice that if the spatial process is independent identically distributed then 
1

jq
k

  and 

therefore  ( ) 2 ( ) ( )mQ m R Ln k h m   which finishes the proof of the theorem. 

Proof of Theorem 2 

First, notice that the estimator of  h m ,    ˆ ˆln
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Recall that: 
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Now, let us call: 
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Also, since  ln 1x x   for all x with equality if and only if x=1, and under the 

alternative hypothesis of spatial dependence of order m  we have that: 
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it follows that: 
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Since, also ˆlim j j
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 , then by Eq. (A.11) we have 
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Let 0 C   with C  and take R  large enough such that  
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Then, under the spatial dependence of order less than or equal to m it follows that 
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Therefore, by Eqs. (A.16), (A.17) and (A.18) we have that: 
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as desired.  
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