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The Paonia–McClure Pass area of Colorado is well known for active mass movements. We examined 735
active shallow movement features, including debris flows, debris slides, rock slides and soil slides, in this
area. Identification of the hazardous areas is a fundamental component of disaster management and an
important basis for promoting safe human occupation and infrastructure development in landslide prone
areas. Bayes' theorem, based on the weight of evidence (WOE), was used to create a map of landslides that
could be hazardous. The modeling was accomplished by employing a geographical information system (GIS)
and a statistical package.
Seventeen factors that cause landslides were measured and weighted using the WOEmethod to create a map
of areas susceptible to landslides. The maps of weighted factors were summed on a pixel-by-pixel basis after
performing chi-square tests to determine factors that are conditionally independent of each other. By
combining factors that represent topography, hydrology, geology, land cover, and human influences, six
models were developed. The performance of each model was evaluated by the distribution of the observed
landslides. The validity of the best map was checked against landslides, which were not entered in the
analysis. The resulting map of areas susceptible to landslides has a prediction accuracy of 78%.
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1. Introduction

Landslides on steep slopes are always a major concern because
they affect human lives and economic losses. In the US, landslides
alone have an estimated annual economic cost of more than $2 billion
(Spiker and Gori, 2003). Landslides are among the most damaging
natural hazards in the Rocky Mountains of Colorado (Rogers, 2003).
Identification of the hazardous areas associated with landslides is an
important geomorphological component of disaster management and
an important basis for promoting safe human occupation, infrastruc-
ture development and environmental protection in these mountains.
This study maps landslides and identifies areas susceptible to
landslides in the Paonia–McClure Pass area of western Colorado.

In this study, landslide is defined following Varnes (1978). Mass
movements like soil slides, debris slides, rock slides and debris flows
are incorporated into the term landslides. A landslide hazard is
defined, according to Varnes (1984, pp. 10), as “the probability of a
landslide occurrencewithin a specified time andwithin a given area of
potentially damaging phenomenon”.

Many studies have been undertaken to assess susceptibility to
landslides through heuristic, deterministic, and statistical approaches
(Carrara et al., 1995; Wu and Sidle, 1995; Gökceoglu and Aksoy, 1996;
Van Westen and Terlien, 1996; Atkinson and Massari, 1998; Pachauri
et al., 1998; VanWesten, 2000; Dai et al., 2001; VanWesten et al., 2003;
Xie et al., 2004; Zêzere et al., 2004; Concha-Dimas et al., 2007;Neuhauser
andTerhorst, 2007;Dahal et al., 2008a). Aheuristic approach is adirect or
qualitative approach completely based on field observations and an
expert's priori knowledge. In this approach, an expert uses geomorpho-
logical and topographical maps to identify landslides and then makes a
priori assumptions about those sites where movement has occurred and
is likely to occur again. In this way, the expert develops decision rules or
assigns weighted values for the classes of indexmaps and overlays them
todevelopamapofhazards.Deterministic approaches arebasedonslope
stability analyses (Wu and Sidle, 1995; Gökceoglu and Aksoy, 1996; Xie
et al., 2004), and are applicable when the ground conditions across a
study area are relatively homogeneous and the types of landslides are
known and relatively simple (Dahal et al., 2008a). Statistical approaches
are indirect and are based partly on field observations and expert's priori
knowledge and partly on statistical computation of the weight or
probabilities of occurrence of a landslide. This approach uses statistical
methods and/or map algebra to assess the role of various factors that
cause landslides. The importanceof each factor is determinedon thebasis
of observed relationships with landslides.

The current study evaluates the susceptibility to landslides through
GIS techniques using Bayes' theorem based on weights of evidence
(WOE). The WOE method was initially applied to non-spatial, quantita-
tive, medical diagnoses to combine evidence from clinical diagnoses to
predict diseases (Lusted, 1968; Speigelhalter and Knill-Jones, 1984). In
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geosciences the method is applied extensively. Within the GIS environ-
ment, it was used in assessing mineral potentials (Bonham-Carter et al.,
1988, 1989; Agterberg, 1992; Agterberg et al., 1993; Emmanuel et al.,
2000; Harris et al., 2000; Bonham-Carter, 2002; Carranza andHale, 2002),
predicting the locations of flowing wells (Cheng, 2004) and groundwater
springs (Corsini et al., 2009), determining spatial associations between
faults and seismicity (Goodacre et al., 1993; Daneshfar and Benn, 2002),
mapping cliff instabilities associated with land subsidence (Zahiri et al.,
2006) andmappingof landslidehazardand susceptibility (Lee et al., 2002;
Van Westen et al., 2003; Lee and Choi, 2004; Lee and Sambath, 2006;
Neuhauser and Terhorst, 2007; Dahal et al., 2008a). For mapping
susceptibility to landslides, the WOE method calculates weight for each
causative factor of a landslide based on the presence or absence of
landslideswithin the area. The fundamental assumption of thismethod is
that future landslides will occur under conditions similar to those
contributing to previous landslides. It also assumes that causative factors
for the mapped landslides remain constant over time.

The times of the occurrences of all the landslides examined in this
studywere not identified. Based on the report of Rogers (2003), most of
the landslides occurred in the 1980s and one of the old landslides
occurred in 1940. The study included intrinsic and anthropogenic
factors in the analysis of landslides. Intrinsic variables include bedrock
geology, topography, soil depth, soil type, slope gradient, slope aspect,
slope curvature, elevation, engineering properties of the slope material,
land cover, and drainage. The anthropogenic factors include roads and
settlements. Although landslide triggers, like rainfall and snowmelt, are
generally related to mass movements, this study does not use these
factors in the analysis. A study of forty precipitation related landslides all
over Colorado suggests that 50% of them occurred during periods of
intense rainfall and 50% occurred because of snowmelt. Because of the
insufficient numbers of exactly dated landslides, we were unable to
determine what rainfall (mean, max or min) for what period is
appropriate to include in this analysis. Furthermore, we were unable
to include snow as a factor because snowmelt occurs over a long period
Fig. 1. Location of t
of time, and the landslide occurs by the coupling effect of runoff from
snowmelt and ground water hydrology.

2. The study area

The study area is located in west–central Colorado (Fig. 1). The
area extends from Paonia to McClure Pass (N38°43′00″, W107°37′30″
to N39°10′30″, W107°10″00″) and encompasses ∼815 km2. Access to
Paonia–McClure Pass is gained by Colorado Highway 133. Foot trails
and forest roads provide direct access off the highway.

The climate of the study area is predominantly semi-arid with
average annual temperatures ranging from1.8 °C to18.0 °C basedon the
1905–2005 data of the Paonia 1SW climatic station (Western Regional
Climate Center, 2009). Precipitation is primarily the result of summer
convective thunderstorms. The area does receive snow as winter
precipitation. Average annual precipitation is 400 mm based on the
1905–2005data of thePaonia station (WesternRegional ClimateCenter,
2009). Vegetation of the area consists of grasses, aspen groves (Populus
tremuloides), and pines (Pinus edulis). The land cover in the area is forest
and grassland, with landuse dominated by ranching and grazing.

The area has rugged topography and a dendritic drainage pattern. The
North Forkof theGunnisonRiver is themajor river that drains∼2500 km2

of forested mountainous terrain (Jaquette et al., 2005) into the Gunnison
River. Elevations in the study area range from 1712 m to 3883 m. The
lowest elevation is along the flood plain of North Fork of the Gunnison
River at Paonia, and the highest elevation is ChairMountain. The hillslope
morphology in the area varies. Slope angles are not controlled by hillslope
elevation; slopes are mainly controlled by geology. The terrain consists of
igneous intrusive rocks, dikes of basalt and gabbros, and sandstone and
has steeper slopes than the terrain comprised of mudstone, shale and
Quaternary deposits of glacial, colluvial, alluvial and mixed origin
(Dunrud, 1989). Most of the hills have steep slopes and flat mesa like
tops, whereas the highland areas have sharp ridges and steep slopes with
horns, arêtes and glacial cirques developed during Pleistocene glaciation
he study area.



Fig. 2. A hillshaded map of the study area showing variations in topography.

Fig. 3. Relationships between landslides and factors used in WOE. A) Illustrating the
presence and absence of a factor in relation to the landslide (modified after Bonham-
Carter, 2002). B) A Venn diagram showing the relationship of a landslide and two
factors F1 and F2 (modified after Bonham-Carter, 2002).
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(Fig. 2). Key controls on the evolution of these hillslopes are the incision of
the North Fork of the Gunnison River and its associated tributaries,
Pleistocene glaciation and mass movement attributed to the coupling
effect of snowmelt, rainfall and river erosion.

The matrix of the landslides consists mainly of sandstone,
mudstone and shale. Shallow translational and rotational landslides,
the subject of the present study, dominate; deep-seated landslides,
rock falls, topple blocks and rock glaciers are also present. The gentle
slopes of the area are mostly covered by glacial moraine, colluviums
and alluvium deposits. Stream flow is primarily driven by the
snowmelt, which is greatest in May (Jaquette et al., 2005).

3. Theory of weights of evidence (WOE)

WOE is a data-driven method (Bonham-Carter, 1994), which is
basically the Bayesian approach in a log-linear form (Spiegelhalter,
1986) and uses prior (unconditional) probability and posterior
(conditional) probability. The method is applicable when sufficient
data are available to estimate the relative importance of evidential
themes via statistical means (Bonham-Carter, 1994). The prior
probability is the probability of an event, determined by the same
types of events that occurred in the past, for a given period of time. For
example, the probability of a unit area (or pixel) of land sliding in the
future can be estimated based on the frequency of the unit area (or
pixel) of land that moved in the past. This can be determined by taking
the ratio of the area or the total number of landslide pixels to the area or
the total number of the pixels in the study area. The prior probability can
bemodifiedusing other sources of information or evidence. This revised
probability of past events, based on new evidence, is called posterior
probability. In this way, the prior probability can be successively
updated with the addition of new evidence, so that the posterior
probability fromadding onepiece of evidence can be treated as the prior
for adding a new piece of evidence. For example, if a landslide causing
factor “F” exists (Fig. 3A), the probability of occurrence of landslides
based on this factor might change. Then, the favorability for predict-
ing the landslides, given the presence of the evidence factor, can be
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expressed by the conditional probability (P{L|F}) (Bonham-Carter,
2002):

PfL jFg =
PfL∩Fg
PfFg ð1Þ

In terms of the number (N) of the cells occupied by L and F, the
equation can be rewritten as:

PfL jFg =
NfL∩Fg
NfFg ð2Þ

Similarly, the conditional probability of landslides based on factor
F is:

PfF jLg =
PfL∩Fg
PfLg ð3Þ

P{F∩L} and P{L∩F} are the same, so from Eqs. (1) and (3)

PfL jFg = PfLg PfF jLg
PfFg ð4Þ

This states that the conditional (posterior) probability of a
landslide, given the presence of the factor F, equals the prior
probability of the landslide P{L} multiplied by the factor P{F|L}/P{F}.
Similarly, the posterior probability of a landslide, given the absence of
the factor, can be determined as:

PfL jPFg = PfFg Pf
P
F jLg

PfPF g ð5Þ

A similar model can be expressed in an odds form, the ratio of
P/(1–P). The odds of a landslide are expressed as:

OfLg =
Probability that an event will occur

Probability that an event will not occur
=

PfLg
1−PfLg =

PfLg
PfPLg
ð6Þ

Likewise,

OfL jFg =
PfL jFg

1−PfL jFg =
PfL jFg
PfPL jFg ð7Þ

Dividing both sides of the Eq. (4) by P{L ̅|F}

PfL jFg
PfPL jFg =

PfLgPfF jLg
PfPL jFgPfFg ð8Þ

Similar to Eqs. (1) and (4), from the definition of the conditional
probability is:

PfPL jFg =
PfPL∩Fg
PfFg =

PfF jPLgPfPLg
PfFg ð9Þ

Substituting the value of P{L |̅F} in the right side of Eq. (8), produces:

PfL jFg
PfPL jFg =

PfLgPfF jLg
PfPLgPfF jPLg ð10Þ

From Eqs. (6), (7), and (10), it can be rewritten as:

OfL jFg = OfLg PfF jLg
PfF jPLg ð11Þ

Where O{L|F} is the conditional (posterior) odds of L given F, and
O{L} is the prior odds of F. P{F|L}|P{F|L̅} is known as the sufficiency
ratio LS (Bonham-Carter, 2002). In WOE, the natural logarithm of the
sufficiency ratio is W+.

Thus,

Wþ = loge
PfF jLg
PfF jPLg

 !
ð12Þ

Similarly, taking the natural log of Eq. (11) on both sides,
produces:

Wþ = loge
OfL jFg
OfLg

� �
ð13Þ

Similar algebraic manipulation leads to the derivation of an odds
expression for the conditional probability of L given the absence of the
factor. Thus,

OfL jPFg = OfLg PfPF jLg
PfPF jPLg ð14Þ

The term P{F ̅|L}|P{F ̅| L ̅} is known as the necessity ratio, LN
(Bonham-Carter, 2002). W− is the natural logarithm of LN. Thus,

W− = loge
PfPF jLg
PfPF jPLg ð15Þ

Similarly, taking the natural log of Eq. (11) on both sides gives:

W− = loge
OfL jPFg
OfLg ð16Þ

LN and LS are also referred to as likelihood ratios. If the pattern is
positively correlated, LS is greater than 1 (W+=positive) and LN ranges
from 0 to 1 (W−=negative). If the pattern is negatively correlated,
LN would be greater than 1 (W−=positive) and LS ranges from 0 to 1
(W+=negative). If the pattern is uncorrelated with a landslide, then
LS=LN=1 (W+=W−=0) and the posterior probability would equal
the prior probability, and the probability of a landslide would be
unaffected by the presence or absence of the factor. We used Eqs. (13)
and (15) to calculate weights of the factors.Whenmore than one factor
occurs, it is necessary to combine weights of all the factors.

For example,

PfL jF1∩F2g =
PfL∩F1∩F2g
PfF1∩F2g

ð17Þ

Based on the Bayes' theorem, if factors F1 and F2 are assumed
conditionally independent, Eq. (17) can be rewritten as:

PfL jF1∩F2g =
PfF1∩F2 jLg PfLg

PfF1∩F2g
ð18Þ

Again if F1 and F2 are conditionally independent

PfF1∩F2 jLg = PfF1 jLgPfF2 jLg ð19Þ

Thus, from Eqs. (18) and (19),

PfL jF1∩F2g = PðLÞ PfF1 jLg
PðF1Þ

PfF2 jLg
PðF2Þ

ð20Þ
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For the odds formulation:

OfL jF1∩F2g = OfLg PfF1∩F2 jLg
PfF1∩F2 j

P
L g

= OfLg PfF1 jLgPfF2 jLg
PfF1 j

P
LgPfF2 j

P
Lg = OfLg⁎LS1⁎LS2

ð21Þ

LogitfL jF1∩F2g = LogitfLg + Wþ
1 + Wþ

2 ð22Þ

Therefore, the general expression for combining i=1, 2, …, n
maps containing data on factors is:

LogitfL jF1∩F2∩F3∩:::::::Fng = LogitfLg + ∑
n

i=1
Wþ ð23Þ

In this equation, if the i-th pattern is absent instead of present, theW+

becomesW−. Where the data aremissing in any layer, theweight values
for the missing part are set to 0. All of these equations are similar to the
equations derived by Bonham-Carter (2002) and Dahal et al. (2008a).

Based on Eq. (16), the WOE method requires only the factors
conditionally independent of each other. Themeaningof the conditional
independence is that if two factors (F1 and F2) are conditionally
independentwith respect to a set of landslides (Fig. 3B), Eq. (19) should
be satisfied. The equation can also be written in terms of the number of
pixels (N) as:

NfF1∩F2 jLg =
NfL∩F1gNfL∩F2g

NfLg ð24Þ

The left hand side of the equation is the observed number of cells
where factors F1 and F2 and landslides are present and the right hand
side of the equation is the predicted or expected number of landslides
in this overlap zone, which should equal the number of landslide on F1
times on F2 divided by the total number of landslide, if the two
parameters are conditionally independent.

Different types of statistical tests can be employed to test the
dependency of the factors with respect to the landslides. Pairwise
comparison, principal component analysis and logistic regression are
some of the tests commonly used in landslide studies. Among them,
Fig. 4. Flow chart o
pairwise comparison is the most employed method for testing
conditional independence in the modeling approach using WOE.

4. Materials and methods

4.1. Data preparation

The first phase of this study entailed collection and preparation of
landslide-related spatial and attribute data. This step was followed by
the assessment of areas susceptible to landslides using the relationship
between landslides and causative factors, and the final phase was the
accuracy assessment, verification, and validation of the results (Fig. 4).
The landslide-related spatial and attribute data were collected from
USGS topographicmapsof1:24,000 scale, 1 m resolutionNAIP (National
Agriculture Imagery Program) aerial photographs, a 1:50,000 scale
USGS geological map (Dunrud, 1989), 10 m resolution USGS digital
elevation model (DEM), ETM+(Enhanced Thematic Mapper Plus)
satellite data provided by University of Maryland and USDA (United
States Department of Agriculture), and USFS (United States Forest
Service) soil data. Field surveys were carried out for verification of the
existing data and collection of additional data. These data sources were
used to generate 17 thematic layers using ArcGIS (Table 1).

4.1.1. Landslide characteristics and inventory maps
In mapping the susceptibility of landslides using theWOE approach

many researchers (e.g., Neuhauser and Terhorst, 2007; Dahal et al.,
2008a) commonly use point locations of landslides, as shown by either
the center of the polygon or the scarp, and represent the area of the
landslide by the size of the unit pixel at that location. In this scenario, the
probability of a landslide occurrence is the ratio of one landslide pixel
from each existing landslide to the total number of the pixels in the
entire area. This calculation ignores the sizes or magnitudes of the
existing landslides. Furthermore, if the analysis does not have sufficient
locations of landslides, the results obtained, based on the analysis of the
parameters at the center of the landslides, might yield a biased result.
These uncertainties can be reducedby entering the number of the pixels
covered by the landslide polygons. We use this approach in this study.

Seven hundred and thirty five shallow landslide polygons were
mapped on 1991 and 2005 orthorectified aerial photographs of
f methodology.



Table 1
Sources and significances of the factors used in the analysis.

Data type Factors Source Significance

Geologic Geological map USGS Characteristics of the slope material
Proximity to fault USGS Co-seismic landslide triggering

Land cover Land cover Landsat ETM+ Root reinforcement of soil, surface runoff regulation
Soil Soil plasticity index and coarseness USDA, USFS Shear strength of soil
Topographic Elevation DEM Climate, vegetation, and potential energy

Slope DEM Overland and sub-surface flow velocity
Aspect DEM Solar insolation, evapo-transpiration, flora and fauna distribution and abundance
Plan curvature DEM Converging, diverging flow, soil water content, and soil characteristics
Profile curvature DEM Flow acceleration, erosion/deposition, and geomorphology
Tangent curvature DEM Erosion/deposition
Solar radiation DEM Weathering, soil moisture, flora and fauna distribution and abundance

Water-related FL DEM Runoff velocity and potential energy
FA DEM Runoff velocity, runoff volume, and potential energy
SPI DEM Erosive power of water flow
TWI DEM Soil water content
Proximity to rivers DEM Susceptible to hillslope undercutting

Anthropogenic Highway and roads Aerial photo Landslide triggering by the road cutting and vibration generated by the vehicles
Landslides Landslide inventory Aerial photographs, field surveys Spatial pattern of unstable zones

Acronyms: TWI: Topographic Wetness Index, SPI: Stream Power Index, FA: Flow Accumulation, and FL: Flow Length.
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1:12,000 scale using a GIS (Geographic Information System). The
aerial photographs are 1-m ground sample distance ortho imagery
rectified to a horizontal accuracy of within ±5 m of reference digital
ortho quarter quads (DOQQS) from the National Digital Ortho
Program (NDOP). The positional accuracy of the landslide polygons
is within ±5 m of the aerial photograph. Landslides were identified
visually based upon distinguishing tone, shape, size and texture of
landslides on aerial photograph (Fig. 5), and then digitized and
entered into ArcGIS®. Although landslides were clustered in many
locations, individual landslides were mapped by identifying the
distinct boundary of each (Fig. 6). Three-dimensional visualization
techniques and stereo-visualization techniques were employed to
determine the types of landslides. These techniques help to identify
landslides from features having a landslide appearance on a two-
Fig. 5. Landslides around the small community of Somerset on a 2005 aerial photograph. The i
A is dominated by shallow and deep-seated landslides. The hummocky landform in Zone B
entire hillslope, shown in A,B and C, is active. Zones A and B also include deep-seated landslid
river in the area flowing east–west is the North Fork of the Gunnison River; Colorado Highw
dimensional non-stereo visualization of an aerial photograph. For
example, an observer may have difficulty in distinguishing between a
snow-avalanche track and a landslide when observing Fig. 7A and
between a landslide and a non-vegetated slope when observing
Fig. 7B. After mapping locations of landslides on aerial photographs,
fieldmapping verified the data. Most of the attributes of the landslides
were collected from aerial photographs, historical archives and field
surveys. The attribute data of a landslide includes area, perimeter,
volume, length, width, type, activity, position on the hillslope,
vegetation, main causes, damage, and preventive measures taken.
All these attributes were linked with the spatial information of the
landslides. The landslides mapped range in an area from 85 m2 to
160,000 m2 with an average area of 6600 m2; about 50% of the
landslides are smaller than 2000 m2. Based on the analysis of the
mage shows a 3-D view towardswest. Rockslides (Rs) occurmostly on steep slopes. Zone
and the southern slope of Somerset (Zone C) are dominated by active debris flows. The
es. Only shallow landslides from these zones were mapped for the analysis. The largest
ay 133 trends parallel to the river. The vertical scale of the image is exaggerated twice.



Fig. 6. Distribution of shallow landslides in the study area.
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profiles of 735 landslides developed from the DEM, the average depth
of the landslides is calculated as 1.9 m; themean slope of the landslide
surface is 26°.
Fig. 7. Field photographs. A) A panoramic view of the SE slope near Somerset. The entire slope
thatmodified the slope. Landslides comprised of unconsolidatedmaterials. B)A large slump ind
symbols also represent landslides. Arrows with “?” symbol indicate the unvegetated part of th
aerial photograph. C) A landslide (debris slide) in the study area. The entire slope is moving d
4.1.2. Geological factors
The study area is mainly comprised of only five types of rocks but

the geology of the area is differentiated into 13 classes of lithology
is moving downslope. The topography that indicates mass movement is themajor process
icatedby a dashed line in the photograph is comprisedofMancos Shale. Arrowswithout “?”
e landscape which looks like landslides in non-stereo two-dimensional visualization of an
ownslope. The landslides are comprised of unconsolidated materials.



Fig. 8. Approach of categorizing continuous factor data. The continuous data were categorized using the values of the data at which the slope of the weight contrast graph breaks. The
graph shows weight contrasts for the cumulative values of the continuous data. A) Graph showing the variation of weight contrasts with distances from fault. The weight contrast is
maximum at 350 m distance from a fault. B) Graph showing the variation of weight contrasts with slope aspects. C) Graph showing the variation of weight contrasts with distances
from river. The weight contrast is maximum at 250 m distance from a river. D) Graph showing the variation of weight contrasts with distances from road. The weight contrast is
maximum at 40 m distance from a road.
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based on the dominance of the types of rocks and deposits. Using the
geological map of Dunrud (1989), some of the geological formations
were combined to simplify the relationship of geology to character-
istics and frequencies of landslides. Most of the landslides were
observed in interbedded sandstone, shale and mudstone and
unconsolidated colluvial, alluvial and glacial deposits (Fig. 7).

Twenty surface and sub-surface faults weremapped. Many landslides
are found in the close proximity of these faults. The distances from these
faults are divided intodifferent categories (Table 2) based on the variation
in weight contrast values (WC=Wi

+−Wi
−) with distances (Fig. 8A).

4.1.3. Land cover
Land cover is also one of the key factors responsible for landslides

in the study area. Vegetated areas are less prone to shallow landslides
(Greenway, 1987; Styczen and Morgan, 1995) because vegetation
prevents erosion through the natural anchorage provided by roots.
Based on the unsupervised classification of the ETM satellite image
acquired in 2002, evaluation of an aerial photograph acquired in 2005
and field surveys, seven land cover classes weremapped: forest (41%),
woodland (5%), shrub (40%), grassland (9%), agricultural land (3%),
rock cliffs and barren land (2%), and human settlement (0.2%). Among
these classes, shrubland and woodland are the classes where most of
the landslides occurred.

4.1.4. Soil
Grain size and plasticity index of the soil or regolith up to a depth

of about 1.5 mwere collected. Grain size of the soil is classified based
on the percentage of soil passing through #200 sieve (0.075 mm). The
soil size is classified into three classes as fine grained, medium grained
and coarsegrained. Fine soil is classified ifmore than66%passes through
the sieve, medium grained if 33% to 66% passes, and the coarse grained
with 0 to 33 % passing. Soil plasticity index is classified as non-plastic,
low plastic (PI=0–5), medium plastic (PI=5–20), and high plastic
(PIN20). Most of the landslides are observed in medium to coarse and
non-plastic to low plastic soils. The spatial pattern of the classes of both
factors is quite similar. Therefore, only the plasticity index is used in the
analysis of the susceptibility to landslides.

4.1.5. Topographic factors
DEMs with a horizontal resolution of ten meters have been used to

derive various topographic factors including slope, aspect, elevation,
profile curvature, plan curvature, tangential curvature, andmeanhourly
solar radiation using inbuilt algorithms in ArcGIS®. All of these data
were initially continuous, but were converted into different categories
based on the variation in weight contrast values with values of the
topographic data (e.g., Fig. 8B) as well as the frequency distribution of
different topographic values on the surface of the landslides and for the
entire area. Both approaches provided similar results.

4.1.6. Water-related factors
Surface water, sub-surface water and groundwater are the major

hydrological causes of landslides. Surface water promotes landslides by
undercutting and eroding slopes. Fluctuation of sub-surface water and
groundwater changes the pore water pressure in soil and changes the
stability of the slope. The factors of drainage network, topographic
wetness index (TWI), stream power index (SPI), flow accumulation and
upstream flow length, were derived from a DEM as a measure of surface
water, sub-surfacewater and groundwater.TWI and SPI can be defined as

TWI = logeðA= b tanβÞ ð26Þ

SPI = A tanβ=b ð27Þ

where A (m2) is the upstream catchment area or flow accumulation,
b (m) is the width of a cell through which water flows and β (radian)
is the slope.



Table 2
Factors, factor classes, number of factor class pixels and landslide pixels and weights of the factor classes.

Weights represented by the bold text are underestimated values. During the analysis, these values were replaced by 0 to reduce the effect of the underestimation. Acronyms: sst:
sandstone, mst: mudstone and clst: claystone.
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Researchers suggest that soil moisture can be estimated by the
topographic wetness index (Moore et al., 1991; Beven, 1997; Blyth
et al., 2004). The stream power index is a measure of the erosive
power of water flow based on the assumption that discharge is
proportional to specific catchment area (Moore et al., 1991). Flow
accumulation in its simplest form is the number of upslope cells that
flow into each cell. The flow length is the longest upslope distance
along the flow path from each cell to the top of a drainage divide. The
flow accumulation and flow length were created using inbuilt
algorithms in ArcGIS®. The algorithm uses an eight direction (D8)
flow model proposed by Jenson and Domingue (1988).

We observed many landslides in the proximity of the North Fork of
the Gunnison River and its associated tributaries. To include the effect of
the stream in the assessment of susceptibility to landslides, the drainage
map of the study area, which consists of drainage orders up to the 8th
order based on Strahler (1957), was created from the DEM. A cell is
considered to have a stream if more than 500 upslope cells (50,000 m2

catchment) flow through it. Distances from the streamswere calculated
and themapwasdivided into different categories (Table 2) basedon the
variation in weight contrast values with distances (Fig. 8C). Similarly,
topographicwetness index, streampower index,flowaccumulation and
flow length were divided into different classes (Table 2).

4.1.7. Distance to road
Excavating slopes for the construction of roads and frequent

vibrationsgeneratedbyvehiclespredisposehillslopes to failure (Ayalew
and Yamagishi, 2005; Mittal et al., 2008). Around the Paonia–McClure
Pass area numerous landslides were observed along Colorado Highway
133 and various forest roads. To include the role of roads in the
assessment of hazardous landslides, Highway 133 and the forest roads
weremappedwithin±5mpositional accuracy of the aerial photograph
and distances from these roads were calculated. The distances from
roads are divided into different categories based on the variation in
weight contrast valueswith distances (Fig. 8D and Table 2). Some roads,
including those around residential areas, on flat terrains, and in areas
with little potential for landslides, were excluded from this study.

4.2. Calculation of weighted values

Weighted values for the classes of 17 factors were calculated using
the following equations which are derived from Eqs. (12) and (15):

Wþ = loge

A1

A1 + A2
A3

A3 + A4

0
BB@

1
CCA ð28Þ

W− = loge

A2

A1 + A2
A4

A3 + A4

0
BB@

1
CCA ð29Þ
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where, A1 is the number of the landslide pixels present on a given
factor class, A2 is the number of the landslide pixels not present in the
given factor class, A3 is the number of the pixels in the given factor
class in which no landslide pixels are present, and A4 is the number of
the pixels in which neither landslide nor the given factor is present.

The calculation is performed in ArcGIS 9.2® by using the spatial
analysis tool. A positive weight (Wi

+) indicates presence of the causative
factor in the landslide, and the magnitude of this weight is an indication
of the positive correlation between presence of the causative factor and
landslides. A negativeweight (Wi

−) indicates an absence of the causative
factor, and the magnitude indicates negative correlation. The difference
betweenthetwoweights isknownas theweightcontrast,WC(WC=Wi

+−
Wi

−), and the magnitude of the contrast reflects the overall spatial
association between the causative factor and landslides. If the weight
contrast is positive, the factor is favorable for the landslides, and if it is
negative, it is unfavorable for the landslides. If the weight contrast is close
to zero, this indicates that the factor shows little relation to the landslides.
A problem with this method is that when a very few pixels of a landslide
are present in a given factor class, the weighted value of the class
becomes very low.While summing this valuewith the weighted values
of other factors, the high negative values might cause the region to fall
into a low susceptibility category, although theweighted values of other
factors imply that the zone is hazardous. In this case it is better to assign a
zero weighted value to this class or combine the class with other classes.

4.3. Test for conditional independence

The conditional independence of the factors assigned to given land-
slides was tested before the integration of the weighted map to create a
total weight map by pairwise comparison using chi-square statistics.
Table 3
The 2×2 contingency table showing observed frequencies (Oi) and expected
frequencies (Ei) of landslides (L) in binary factors F1 and F2.

Binary pattern F1

Present Absent Totals

Binary
pattern
F2

Present O1={F1∩F2∩L} O3={F1̅∩F2∩L} {F2∩L}
(E1={F2∩L}⁎{F1∩L}/{L}) (E3={F2∩L}⁎{F1̅∩L}/{L})

Absent O2={F1∩F2̅∩L} O4={F1̅∩F2̅∩L} {F2̅∩L}
(E2={F2̅∩L}⁎{F1∩L}/{L}) (E4={F2̅∩L}⁎{F1̅∩L}/{L})

Totals {F1∩L} {F1̅∩L} {L}

The expected frequencies (Ei) are determined by multiplying the marginal frequencies
together and dividing by the total.

Table 4
Pairwise chi-square statistics of 17 factors.

Acronyms: GEO: geology, DF: distance from faults, SP: soil plasticity, LC: land cover, SL:
curvature, TC: tangential curvature, FL: flow length, FA: flow accumulation, SPI: stream pow
from roads. The bold texts suggest that the pairs are not significantly different, given the oc
and 99% confidence level (χ2= 6.64).
First, for the ease of the analysis, all of the factors causing landslides
were converted into a binarypattern (presenceor absenceof landslides)
based onweight contrast and expert's knowledge. Categorical data, like
geology, land cover, soil size and soil plasticity index, were first
separated into the binary pattern based on the expert's judgment and
the weight contrasts of each factor class. Continuous data, like slope,
aspect, elevation, curvature, wetness index, and stream power index,
were first divided into classes and then categorized into binary patterns
based on the weight contrasts of each class. In both cases, mostly the
factor classes having positive values of weight contrasts, were assigned
as presence and factor classes having negative weight contrast values
were assigned as absence. These binary classes were cross-verified by a
priori judgment based on the personal evaluation of the hazards and the
distribution of the landslides. Continuous data, like distance to roads,
drainage, and faults, have different meanings. If these features are
responsible for the landslides, the weighted values should be relatively
higher nearby these features. We classified distance to faults, roads and
drainage into the binary pattern based on themaximumvalue ofweight
contrast from the cumulative weight contrast curve (Fig. 8). Areas
within 350 mof faults are categorized aspresence, and the areas beyond
this distance are categorized as absence. The areas within 40 m of the
roads are categorized as presence and the areas beyond this distance are
categorized as absence. Likewise, the areaswithin 250 mof the drainage
are categorized as presence and the areas beyond this distance are
categorized as absence.

Second, 2×2 contingency tables for all possible pairs of 17 binary
factors (similar to Table 3) were prepared and chi-square tests were
performed with 1 degree of freedom. The observed chi-square value
for each pair is compared with the table value for 1 degree of freedom
at the 99% confidence level (6.64). Chi-square values, greater than the
table values, suggest that the pairs are not significantly different,
given the occurrence of landslides. Chi-square values were deter-
mined by employing the following equation

χ2 = ∑
i=n

i=1

ðOi−EiÞ2
Ei

ð30Þ

where the observed frequencies (Oi) and the expected frequencies
(Ei) are determined from the contingency table (Table 3). One
hundred and thirty six pairs were tested. Among 136 pairwise
comparisons, 103 of the pairwise comparison couples were found
independent of each other for all the landslides examined (Table 4).
slope, AS: aspect, EL: elevation, SR: solar radiation, PRC: profile curvature, PLC: plan
er index, TWI: topographic wetness index, DS: distance from streams, and DR: distance
currence of landslides. The chi-square tests were performed with 1 degree of freedom



Table 5
Six possible combinations of the factors based on the chi-square statistics.

Factors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Geology/soil/
land cover

SP GEO SP GEO GEO
LC

Topographic SL SL SR SR SL SL
AS AS AS AS AS AS
TC TC PLC TC/⁎PLC TC TC

EL
Hydrologic ⁎FA/FL FL ⁎SPI/TWI/

FA/FL
TWI DS SPI/TWI/

⁎FA/FLDS DS
DS

DS
DS

Anthropogenic DR DR DR DR

Acronyms same as Table 4.
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The chi-square test evidenced relationships of different factors.
Geology, distance to a fault, and soil plasticity index are conditionally
dependent on each other. Slope and soil plasticity index are dependent on
land cover. Slope is dependent on its derivatives solar radiation, profile
curvature and plan curvature. Likewise hydrologic factors, soil plasticity
index, topographicwetness index, flow accumulation and flow length are
related to eachother. Therefore, amajor question to be answered fromthe
WOE method of mapping susceptibility of landslides is what factors are
important to prepare an accurate map of susceptibility to landslides? To
Fig. 9. Accuracy assessment of the models. A) Total weight map developed using model 1 fa
landslides. C) Accuracy assessment of the four models of susceptibility to landslides. The to
models was evaluated by all 735 landslides.
answer this question, we designed six models, which include combina-
tions of different independent factors representing topographic, hydro-
logic, geologic, land cover and anthropogenic factors (Table 5).
4.4. Combination of weighted maps and selection of the best model

Maps of susceptibility to landslides were prepared from each model
by summing the weight contrast values of different factors pixel by pixel
(e.g. Fig. 9A,B). The accuracy of eachmodelwas testedusing the observed
landslides (Fig. 9C). In addition, the validity of the models was tested by
creating maps of susceptibility to landslides (e.g., Fig. 10A,B) based on
randomly selected 368 observed landslides (training sets), and checking
the accuracy of thesemodels using training sets (Fig. 10C) and validity of
thesemodels (Fig. 10D) against the remaining 367 landslides (validation
sets). The prediction capability of each model is determined by the area
under the curve (Table 6). Based on these values, models 1 and 2 are
considered as accurate models. These two models have five factors in
common; and only two factors are different. Although most of the
distribution patterns of the total weight in these two models (Fig. 9A,B)
are quite similar, the difference results from two factors in each model.
Flow accumulation and flow length aremeasuring the same topographic
character as shown by the very high chi-square statistics of this pair.
Thus, the difference in these models solely depends on the difference in
ctors and 735 landslides. B) Total weight map developed using model 2 factors and 735
tal weights for these models were based on 735 landslides and the performance of the



Fig. 10. Validity assessment of the models. A) Total weight map developed using model 1 factors and 368 landslides (training set). B) Total weight map based on model 2 factors and
368 landslides (training set). C) Accuracy assessment of the four models of susceptibility to landslides. The total weights for these models were based on 368 landslides (training set)
and the performance of the models was evaluated by all 368 landslides. D) Test of validity of the four models. The total weight maps were based on the 368 landslides (training set)
and the accuracy is assessed by using the remaining 367 landslides (validation set). Models 1 and 2 predict more landslides in zones of high susceptibility than the other models.
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the patterns of classes between geology and soil plasticity. A prudent
judgment to obtain abetter resultwouldbe the combinationof these two
factors, but in the WOE method the combination of these factors is
logically impossible because they are conditionally dependent on each
other.

Test of validity implies that model 1 is the best model. The total
weightedmap ofmodel 1was converted into three classes representing
Table 6
Accuracy assessments of the six models of susceptibility to landslides based on the area
under the curve approach.

Models Predicted area % under
the curve (case A)

Predicted area % under
the curve (case B)

Predicted area % under
the curve (case C)

1 78.3 77.4 78.4
2 78.7 77.2 77.6
3 75.7 72.3 75.0
4 77.0 72.5 73.8
5 79.0 76.5 77.0
6 75.2 76.9 73.9

Case A: the prediction accuracy of the models represented by the curves in Fig. 9C. Case
B: the prediction accuracy of the models represented by the curves in Fig. 10C. Case C:
the prediction accuracy of the models represented by the curves in Fig. 10D.
high susceptibility, medium susceptibility and low susceptibility
(Fig. 11). The classification is based on the natural break in the
frequency distribution curve of the total weight (Fig. 12). These values
were slightly modified so that optimum amount of landslides falls into
zones of high susceptibility and flat terrain like river floodplain and
upland plateau falls into zones of low susceptibility.

5. Results and discussion

The predictive capability of model 1 for known and unknown
landslides (Table 6) suggests that slope, aspect, tangential curvature,
soil plasticity index, flow accumulation, distance to streams, and
distance to roads are sufficient to create an optimum and valid map of
susceptibility to landslides of the study area. The high susceptibility
zone has a value of weight ranging from 5 to 0, the medium
susceptibility has a value of weight ranging from 0 to −2.5 and the
low susceptibility has a value of weight ranging from −2.5 to −8.2.
On the susceptibility map, 28% of the area is shown as high
susceptibility, 42% is shown as medium susceptibility and 30% is
shown as low susceptibility (Fig. 11). Most of the high susceptibility
zones are primarily located in the areas adjacent to streams and roads,
have steep slopes with shrubland and woodland vegetative covers,



Fig. 11. Susceptibility to landslides based onmodel 1 factors and 735 landslides. This model has the highest rate of prediction. The high susceptibility (HS) area consists of 28% of the
study area; it includes 70% of the total area of landslides. The medium susceptibility (MS) area, consists of 42% of the study area and comprises 27% of the total area of landslides. The
low susceptibility (LS) area, consists of 30% of the study area and contains 3% of the total area of landslides.
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and consist of non-plastic to low plastic soils. Observed and predicted
landslides are found on the slopes of the inner gorges of the North
Fork Gunnison River and its associated streamswhich are incising into
upland plateaus. These characteristics of landslides represent poten-
tial for the first order prediction of the landslides in this landscape.

Based on our results, some of the pros-and-cons of theWOEmethod
in predicting zones of landslide susceptibility are as follows. Advantages
of the method are: 1) the method calculates the weighted value of the
factor based on the statistical formula, i.e. Eqs. (12) and (15), and avoids
the subjective choice of weighting factors; 2) in GIS these multiple
weightedmaps canbe combinedbywriting a script; 3)weightedvalues,
calculated from Eqs. (12) and (15), can be used to categorize the
continuous data; 4) input maps with missing data (incomplete
coverage) can be accommodated in the model; 5) undersampled
landslide data donot significantly impact the results; and 6) themethod
provides a technique to avoid the use of data that are intercorrelated.
Fig. 12. The frequency distribution of the total weight values. Natural breaks of the
curve were used to classify the total weight map (Fig. 9A) into a map of susceptibility
(Fig. 11). The high susceptibility zone has a value of weight ranging from 5 to 0, the
medium susceptibility has a value of weight ranging from 0 to −2.5 and the low
susceptibility has a value of weight ranging from −2.5 to −8.2.
The WOE method has three major disadvantages: 1) Because the
weight is dependent on the number of landslide pixels used on the
modeling, the method overestimates or underestimates weights if
the area of a factor class is very small and the landslides are not
evenly distributed. 2) The method creates a number of possible
combinations of the conditionally independent factors. To determine
what combination of factors is appropriate, assessment of the
performance of each combination is necessary, which is a lengthy
process. 3) The weight values calculated for different areas are not
comparable in terms of the degree of susceptibility. This is possible
only if the weights are standardized or converted to the probability.
The effect of overestimation and underestimation of weights can be
reduced either by excluding the factor class from the analysis by
assigning 0 weight value or by reclassifying the factor maps. In this
study we excluded two classes of geology (talus and rock glacier
deposits and plutonic rock) from the analysis by assigning them 0
weight value. The cutoff values of weight depend on the priori
knowledge of the study area. The commonly usedmethod for the test
of the conditional independence in the WOE method is pairwise
comparison. When the analysis consists of a large number of factors
and factor classes, the pairwise comparison becomes complicated
because of the numerous possible combinations of the classes of the
factors. For example, we observed only seven factors being
conditionally independent of each other, but we can combine the
factors in different ways to develop different models (Table 3). So
which model performs better? A solution is to assess the prediction
capabilities of the possible models based on the landslides consid-
ered in the analysis, as well as landslides not considered in the
analysis. We observed that model 1 is the best model for our study
area. In this regard, this method is more complicated than variable
selection by factor analysis or linear and non-linear regression
analyses. Other limitations of the method are: 1) the method is only
applicable in areas where the landslides are fairly well known, and 2)
it is impossible to enter the interaction of two different factors in
the analysis.
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We think this method can provide a better result if the landslides
are classified into different types, and a map of weighted values is
created for each landslide type. For example, using the WOE method
Neuhauser and Terhorst (2007) obtained ∼95% prediction accuracy
for a single type of landslide in south-west Germany; Dahal et al.
(2008a) obtained 85.5% prediction accuracy for newly formed debris
flows in the Lesser Himalaya of Nepal; Dahal et al. (2008b) obtained
80.7% and 77.6% prediction accuracy for landslides comprising the
translational and flow types of slides in the Moriyuki and Monnyu
catchments in Japan, respectively. Although a WOE-based map of
susceptibility to a single type of landslide performs better then a map
of susceptibility to various types of landslides, a map showing zones of
susceptibility to all kinds of landslides would be the choice of
the decision makers. Combination of maps of susceptibility to
landslides of different types into a single map would be a solution,
but in the WOE method the combination of two or more maps of
weighted values is impossible because the weighted values are not
comparable.

Nevertheless, the map of susceptibility to landslides developed by
this method is effective in predicting known and unknown landslides.
The prediction accuracy of our best model is 78.4%. The model predicts
70% of the known as well as unknown landslides in high susceptibility
zones when 28% of the study area is defined as high susceptibility
(Figs. 9C and 10D). The performance of our model is slightly different
than the performance of the models suggested by other investigators
(e.g., Lee et al., 2002; Van Westen et al., 2003; Lee and Choi, 2004;
Mathew et al., 2007; Dahal et al., 2008a,b). It should be understood that
model performance depends on the correct identification of the major
factors of landslides, quality of the data collected, number of landslides,
scale and size of the study and uncertainties associated with the
digitization of the data. Moreover, highly generalized data, like geology
and the soil plasticity index, do not distinguish individual soil and rock
types, which may introduce large amounts of uncertainties in the
analysis. Our study consisted of a large area and highly generalized
geology and soil data. Furthermore, wewere unable to evaluate the role
of rainfall and snowmelt in landslides of our study area. Many rainfall
and snowmelt induced landslides have been reported in Colorado
(Rogers, 2003). In spite of not being able to evaluate the role of rainfall
and snowmelt, we think the result we obtained from the analysis is
satisfactory for a regional-scale (815 km2) study.
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