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Geographically Based Data 

Statistics calculated using the means of geographic areas can di fer  substantially 
f rom the corresponding statistics based on data f rom individuals. Analysts who 
base their conclusions about individual-level relationships on area-level analyses 
run the risk of committing the ecological fallacy. Statistical models are proposed 
that capture the essential features of the structure of a population composed of 
geographically defned groups and can encompass grouping processes and con- 
textual efects. These models are used to show how small efects in the analysis of 
individual-level data can be magnijied substantially when the corresponding 
analysis based on aggregated data is carried out. Thus the source of aggrega- 
tion efects is exposed. While aggregation efects have been studied by  many 
authors, no general approach has been ofered to the problem of adjusting an 
area-level analysis so as to correct for aggregation effects and hence remove, or 
at least reduce, the bias that leads to the ecological fallacy. The statistical models 
proposed are used to provide an approach to this problem. Data f rom the 1991 
U.K. Census of Housing and Population are used to illustrate the size of the ag- 
gregation effects and the extent to which the proposed adjustments succeed in 
their objective. 

1. INTRODUCTION 

Statistics calculated using the means of geographic areas are often very differ- 
ent from those calculated directly from data on individuals. For example, the cor- 
relation coefficient between two variables calculated from the means of Census 
Enumeration Districts (EDs) can be quite different from the corresponding corre- 
lation coefficient calculated between the two variables measured on individuals. 
The same effect can apply to the regression coefficient of one variable on another. 
These differences are referred to as aggregation or ecological effects. If we calcu- 
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late a statistic using area means and assume that the result is an estimate of the 
corresponding unit-level parameter, then we run the risk of committing the ecolog- 
ical fallacy. Moreover, the results of the analysis of area-level data may vary 
according to the number of areas used and their boundaries; this is referred to 
as the modifiable areal unit problem (MAUP). 

These effects are well known and have been investigated empirically in vari- 
ous studies such as those by Gehlke and Biehl (1934), Yule and Kendall (1950), 
Robinson (1950), Blalock (1964), Clark and Avery (1976), Openshaw and Taylor 
(1979), Openshaw (1984), and Fotheringham and Wong (1991). While these 
studies have investigated the possible effects empirically they have not provided 
any generally applicable theory through which the results can be interpreted 
or generalized. To make progress in understanding and interpreting aggrega- 
tion effects we need to incorporate area effects and the way in which relation- 
ships between variables vary across areas into the statistical model upon which 
the analysis is based. Any model of area effects must try to account for the fact 
that, generally, individuals within the same area tend to be more alike than in- 
dividuals in different areas. 

Amhrein (1995) made a useful first step by studying aggregation effects 
through a simulation study in which individuals were assigned to areas and the 
variable values associated with them were generated randomly. This empirical 
study aimed to isolate the aggregation effect due to using area means from 
other factors, such as the fact that in practice individuals will not be assigned 
to areas at random but will tend to be located with others who have character- 
istics similar to themselves. 

Steel and Holt (1996b) develop the statistical theory that applies to this 
“random grouping” case and obtain the statistical properties of some standard 
estimators, tests of hypotheses, and confidence intervals. They provide a set of 
rules of analysis that are applicable to this case. 

However, random grouping does not usually occur in practice and more com- 
plex structures must be introduced into the statistical model to allow for the 
fact that individuals within any area tend to be more alike than those from dif- 
ferent areas. Steel and Holt (1996a) identify two extensions to the statistical 
model that underpins the analysis, either of which would lead to individuals as- 
sociated with the same area being more alike. These two models are combined 
into a single model which can cover a wide variety of situations. In particular: 

(i) Grouping Models-in which individuals with similar characteristics choose 
to live in the same area, and 

(ii) Group Dependent Models-in which individuals living in the same area are 
exposed to common influences and as a result exhibit similarities. This class 
of models includes contextual, multilevel, and variance components models. 

This combined model allows a deeper understanding of how aggregation effects 
occur and the situations in which they will be strongest. 

It is useful to understand the cause of aggregation effects but this does not 
solve the problem of how to adjust the results of an area-level analysis to pro- 
vide reliable estimates of individual-level relationships. Duncan and Davis (1953) 
developed a method for calculating the possible range of a correlation coeffi- 
cient from a 2 x 2 table with known margins. Goodman (1959) showed that eco- 
logical regression analysis could provide unbiased estimates of the corresponding 
individual-level parameters if the regression parameters in each area were to vary 
randomly about an overall value. Langbein and Lichtman (1978) considered some 
methods that can be applied when area membership is determined by the values 
of the dependent variable, and when unit-level variances are available for the 
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dependent variable and all the independent variables in a regression model. How- 
ever, no generally applicable method of adjustment has been available. 

We use the proposed combined model, together with some additional infor- 
mation to be specified in due course, to provide a general method of adjusting 
the area-level analysis to provide better estimates of relationships between var- 
iables at the individual level. We demonstrate the effectiveness of the methods 
proposed using U.K. Census Data. 

2. MODELS FOR AREA EFFECTS 

We consider a population of N individuals in some region. Associated with 
each individual is a set of variables of interest which we represent as a vector 
y. The population is distributed over M areas within the region and for each 
individual the vector ci indicates the area to which the ith individual belongs. 
The number of individuals in the gth area is Ng. 

We assume that over the whole population y has a distribution with mean 
vector py and covariance matrix Zyy, which has elements a,b for the covariance 
between the a and bth elements of y. In general, we are interested in the rela- 
tionships between the variables in y so our primary target for estimation is Z,,. 
Once this has been considered, the theory can, in principle, be extended to the 
estimation of functions of Zyy, such as the correlation matrix R,,, the regression 
coefficients of components of y on others and principal components of the y 
variables. 

We assume that there is a data set consisting of a sample of n individuals in m 
areas for which yi, i = 1. .  .n has been observed but that these individual-level 
observations are unavailable to the analyst. Instead the data have been aggre- 
gated to provide a set of m vectors of area-level means, Yg, 9 = 1 . . . m that are 
available for analysis together with the sample size, ng, upon which each vector 
is based. Thus the following area-level statistics can be calculated: 

The sample mean of the gth area : gg (1) 

The overall sample mean : 
1 g = - Cnggg. 
n g  

The weighted area-level sample covariance matrix: 

Analogous individual-level statistics may be defined but will be unavailable to the 
analyst. For example, the individual-level sample covariance matrix is 

Throughout this paper it is assumed that the sample design can depend on the 
areas but not on y or any variable which is related to y, given area membership. 
For example, a census or a simple random sample of areas and individuals within 
areas may be used. 
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2.1 Random Composition of Areas 
Amrhein (1996) simplified the usual situation by investigating empirically the 

effect of using area means when the allocation of individuals to areas is com- 
pletely random. Steel and Holt (1996b) provide the statistical theory for this 
situation and obtain the properties of statistics such as means, variances, and 
regression and correlation coefficients. This leads to the properties of aggre- 
gated statistics calculated from randomly formed areas and rules for the analy- 
sis of such data. 

For a member of the gth area the underlying model assumption that is con- 
sistent with randomly formed areas is that 

y i=p ,+&i  for icg( tha t i s ,q=g)  (5) 

where the components of the vector of individual deviations Q may be correlated, 
but for different individuals these random terms are independent, irrespective of 
the area to which they belong. 

Let ZEE be the covariance matrix of the individual deviations; then 

V(Q) = Z&& = Zw; 

COV(Q, Q) = O for alli # i’. 

For common statistics such as means, variances, and regression and correlation 
coefficients, calculated using area sample sizes as weights, the expectation is not 
affected by aggregation and we continue to obtain unbiased estimates of the cor- 
responding population parameters. In particular: 

E(g) = p,, and E(S,) = Zw 

However, there is an aggregation effect since the variation of some statistics is 
affected in a way that is mainly related to the number of areas used in the analysis. 
The usual number of degrees of freedom will be reduced and confidence intervals 
will be wider than if individual data had been used. Hence, procedures such as 
tests of hypotheses and estimation of confidence intervals must be modified. 

To illustrate some of the effects, consider the mean calculated from area data, 

1 
n 

g = - C nggg. 
9 

This is arithmetically identical to the sample mean of the original individual obser- 
vations. The fact that it is based on the area means has not led to any loss of 
information at all and there is no aggregation effect whatsoever. Hence, 

=w V(Y) = - 
n 

which is precisely the variance that would have been achieved if individual obser- 
vations had been used. 

However, the same is not true for S,, since, to a first approximation, V(S,,) is 
n/m times as large as V(S,), the corresponding sample covariance based on 
individual observations. Similar effects apply to regression and correlation coef- 
ficient derived from S,,. 
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Even for inferences about py we must be careful. The point estimate y for pLa, 
is unbiased and has the same variance we would obtain from individual data. 
However, if we wish to estimate a (1 - a)  100 percent confidence interval for 
one element of jj, say pa, based on individual-level data, the standard method 
would be to use 

where saa is the (a,a)th element of S,, and is the individual-level variance for ya. 
ta,n-l is the appropriate (1 - a)lOO percent point of the t distribution with n - 1 
degrees of freedom. If we use the corresponding area-level statistic 
appropriate confidence interval is 

Even though the mean and variance of ya are the same whether 
aggregated data are used, the confidence interval is widened by using m, the num- 
ber of areas, rather than n, the number of observations, to determine the degrees 
of freedom of the relevant t distribution. Note that for Y a  the only difference in 
the confidence interval is the use of m, rather than n, for the degrees of freedom 
for the t distribution. When m is large (that is, greater than forty) this will not be 
important. However, this illustrates that care is needed when analyzing aggregated 
data. For other statistics such as regression coefficients the impact can be much 
greater. 

With proper allowance for the variation associated with the area-level analy- 
ses, Steel and Holt (1996b) provide methods for point estimation, estimation of 
standard errors and confidence intervals, and modifications to tests of hypothe- 
ses for randomly composed areas. 

2.2 Area Effects 
While the case of randomly allocating individuals to areas is informative and 

can strengthen our understanding, it is not a situation that usually occurs in 
practice. It is well known that two individuals who live in the same area have 
characteristics in common and tend to be more alike in terms of a wide range 
of socioeconomic and health-related variables than two individuals drawn at 
random from the whole population. Thus the group of individuals who live in 
an area are more homogeneous than the population as a whole. This phenom- 
enon has been observed in surveys employing cluster or multistage sampling for 
many years, where the areas are described as exhibiting a positive intracluster 
correlation. 

A simple way to represent this positive clustering is through a variance- 
components model in which area-level random effects are introduced to allow 
for positive intra-area correlation. Thus ( 5 )  is extended as follows: 

Saa, then the 

individual or 

yi = py + vg + ~i for i c 9. ( 6 )  

Here vg is a vector of unobserved area-level effects that vary randomly between 
groups (one component of the vector corresponding to each variable of interest). 
The random effects in vg may be correlated across variables within the same 
area but the vectors of random effects for two different areas are assumed to be 
independent; 
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COV(V,, Vgf) = A, g = 9’ 

= o  Otherwise. 

In matrix notation this model may be written as follows: 
Model A: 

E(9i I4  = Pya 

Cov(yi, gj I c) = A,, if ci = cj i # j (9) 

= O  otherwise. 

The notation V(. I c) implies the covariance matrix conditional on the group labels 
c but unconditional over group-level random effects. Thus Xyy contains the within- 
group covariance matrix ZCE = Z, - A, plus the area-level covariance matrix A,. 

This model allows for spatial autocorrelation at the individual level, in which 
the values of individuals within the same area are equally correlated due to the 
A,, term. Each small area is treated as a neighborhood within which individuals 
are correlated. Each individual in group g is “connected” with each of the other 
n9-1. In practice there may be correlations between individuals in different 
areas, such as adjacent areas. However, the model proposed here will be a use- 
ful first approximation to the more complex correlation structure that may ap- 
ply. Furthermore, in the next section we propose a way of accounting for the 
between-individual correlations through certain auxiliary variables. Once this is 
done effectively there should be less between-individual correlation. 

Steel and Holt (1996a) show that, for the sample selected s, the properties of 
the individual- and area-level statistics under Model A, for the groups formed, 
are 

f i o  - 1 
E[S,, Icl  =Z,,-- n - 1  AYY 

E[Syy I C ]  = Xvy + (fi* - l ) A ,  (12) 

where fi=n/m, fio=iCg ni=fi( l+c:) ,  fi*=fi(l-&) and c: = $Xg(ng-fi)2/ 
fi2 is the square of the coefficient of variation of the group sample sizes in the 
sample. 

These results show the effect of introducing components of variance to allow 
for area effects. The aggregate estimate of the mean is still unbiased for par but 
the estimator of variance is affected. The individual-level sample covariance ma- 
trix s,, cannot, of course, be calculated from the area means, but we note that 
it is biased for Xyy by a term determined by Ayy. However, typically the compo- 
nents of A,, are much smaller than those of Z,,. From sample survey experi- 
ence, if the components of Ayy are as much as one-tenth of those of X,,, this 
would be a very strong area effect. Furthermore, the coefficient of A,, in (11) 
is approximately l /m so that if a large number of areas are used (say, a hun- 
dred) and a component of A,, is one-tenth of the corresponding term in C,,, 
then the bias will be very small indeed, that is, a bias of 0.1 percent of C,,. 
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However, when we consider the aggregate analysis the picture is changed 
considerably. The bias of S, in (12) is also a multiple of Ayg but the coefficient 
is approximately ii. Hence, if a component of A, is one-tenth of the corre- 
sponding component of Zvy, an average area sample size of ten will lead to a 
bias that is as large as the term we are trying to estimate. This illustrates how 
a small bias for the analysis based on individual observations can be magnified 
into a much larger bias in the area-level analysis and of a different sign. This is 
the source of the aggregation effect and hence the ecological fallacy. Many anal- 
yses of geographically aggregated data are effectively based on a complete cen- 
sus and the average population of areas can often be hundreds or thousands of 
people, leading to very large aggregation effects. The model introduced here 
has important implications for the MAUP, which are discussed by Holt, Steel, 
and Tranmer (1996). 
2.3 Area Composition Models 

The previous section shows that when we make allowance for area homoge- 
neity through a set of random effects for areas, the effect on the area-level anal- 
ysis can be very great. The bias that is introduced will distort the area-level 
analysis and lead to aggregation effects and the ecological fallacy. Essentially 
the between-area differences, and hence the within-area homogeneity, is drawn 
in to the area-level analysis and confounded with the individual-level effects. 

In the discussion of ecological analysis, models have been proposed that take 
into account the area formation process. In such an approach it is assumed that 
there is a grouping process that allocates individuals to areas according to a vec- 
tor of grouping or auxiliary variables, zi, either stochastically or deterministi- 
cally. This approach is implicit in Blalock’s (1964) analysis and used explicitly 
by Hannan and Burstein (1974), Lichtman (1974), Langbein and Lichtman 
(1978), Smith (1977), and Blalock (1979, 1985). 

We propose in this section an explicit formulation of the relationship between 
the variables of interest and the grouping variables while still making provision 
for residual area homogeneity. 

In such models it is assumed that area membership arises by some process 
involving the grouping variables that are associated with the variables of inter- 
est. The multivariate version of this model that combines both the effect of the 
grouping variables, zi, and random effects for residual within-area correlation is 

Model B 

= 0 otherwise. 

This model allows for area formation processes that are characterized by the aux- 
iliary variables zi. The same model can take account of contextual variables that 
influence individuals who live in a specific area by including them as components 
of z. Variables used in the sample design, for example, stratification variables, may 
also be included in z. The area effects of Model A, Am are now replaced by resid- 
ual within-area covariances A:w.z that reflect random effects after allowing for the 
grouping variables, zi. Hence, this model combines grouping- and area-level 
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effects into a single combined model. This model seeks to at least partly explain 
the within-area correlations observed in the y variables through the within-area 
correlations of the auxiliary variables. 

For the sample selected, the properties of the individual- and area-level sta- 
tistics under Model B are (Steel and Holt 1994) as follows: 

Equations (17) and (18) show the effect of introducing grouping variables to 
explain some of the between-area differences. If we consider S,, for example, 
the bias shown in Model A of 

has been partitioned into two components 

and 

The first term depends on the difference between the sample covariance matrix 
S,, for the grouping variables and the population covariance matrix Zzz. This 
term also depends on the strength of the relationship between the variables of 
interest, y, and the grouping variables, z, as determined by the matrix of regres- 
sion coefficients of y on z, By,. 

The second term in the bias of S,, is exactly the same as in Model A except 
that the covariance matrix of area-level effects A,, has been replaced by the 
covariance matrix of residual area effects A,,.,. If z is successful in explaining 
much of the between-area differences of the y variables, then the elements of 

will be much smaller than those of A,, and this second term will be 
much smaller than the bias term in Model A. The difference between the bias 
under Model A and the residual bias under Model B will be taken up by the 
first component of bias (20) .  

Equation (18) shows that the aggregation bias can be partitioned into two com- 
ponents. The first component depends on the aggregation effect for the auxili- 
ary variables, which can be considerable. The second component is a multiple 
of the residual area effects, Ayy.z, with coefficient of order ii. 

The weighted group-level matrix syy is intended to estimate Z,,. The first bias 
term in (18) is due to the effect of the grouping variables and will be zero if 4, = 0 
or approximately so if s,, is approximately equal to Zzz. These conditions are 
quite strong and unlikely to apply in practice so that this first term is likely 
to contribute substantially to the bias of s,, in many situations. The effect of 
aggregation on the random effects for Model B is similar to Model A since the 
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coefficient of Ayy.= is approximately ii. However, we expect that the effect of z is 
to reduce the size of elements of AYy.* compared with Ayy and thus reduce this 
component of the bias. Hence, introduction of the auxiliary variables enables us 
to explain at least some of the aggregation effects. 

3. AN EMPIRICAL ANALYSIS OF AGGREGATION EFFECTS 

To show how these models enable the aggregation effects to be investigated 
and decomposed, we consider an analysis of the 1991 U.K. population census 
data for the Local Authority District (LAD) of Reigate, Banstead, and Tan- 
dridge which is in Surrey, south of London. The district contains approximately 
188,700 people living in 371 Census Enumeration Districts (EDs), giving an 
average number of people per ED of ii = 508.63. These EDs are taken to be 
the geographic areas for the analysis. For this LAD the coefficient of variation 
of the ED population sizes, ng, is C, = 0.227 and since m = 371 is large, 6' = 
508.56 is effectively the same as f i .  Area-level data are available from the census 
on a complete count basis for each ED in the LAD. Corresponding unit-level 
data for the LAD, but not for individual EDs, are obtained from a 2 percent 
sample of anonymized records (SAR) released from the census as a public use 
sample. Hence the SAR contains approximately 3,700 individual records for this 
region. The following analysis is based on seventeen census variables observed 
for each person. 

3.1 No Auxilia y Variables 

For each variable, a, the area-level data were used to calculate the area-level 
variance 8,,, and the individual-level (SAR) data were used to calculate the indi- 
vidual-level variance-s,,. A simple measure of the aggregation effect for variable 
a is obtained using Qaa = saa/saa, the ratio of the area-level and individual-level 
variance. The aggregation bias is Saa - s,,. Based on (12) we can also calculate an 
estimate, A,,, of the element of Ayy corresponding to variable a and hence the 
bias due to aggregation (fi* - l )Aaa.  Furthermore, it is easy to convert these 
values into an estimate of the intra-area correlation, a,, = Aaa/aaa, of each vari- 
able. The intra-area correlation is the correlation of values of the variable a be- 
tween different individuals in the same area and is a measure of the within-area 
homogeneity commonly used in sample surveys (see Hansen, Hunvitz, and 
Madow 1953). The estimated intra-area correlation is 

Table 1 summarizes the effect of aggregation for these seventeen variables 
included in the study by giving the estimated unit-level variance, s,,, and area- 
level va+nces, s,,, the aggregation effect Qaa, and the estimated intra-area corre- 
lation, aaa. 

From Table 1 we see that the intra-area correlations are generally small, with 
all values below 0.07, and most less than 0.02. The median value is 0.012. From 
practical experience of sample surveys, a value of 0.1 represents a strong area 
effect for most socioeconomic variables. However, the impact of (ii* - 1) when 
fi* - 1 = 507 is very strong and the resulting aggregation effects and the bias of 
s,, are extremely large. This illustrates numerically the theoretical consequence 
that large aggregation bias can occur even when area effects are small, if the 
area means are based upon large numbers of observations. The aggregation 
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TABLE 1 
Aggregation Effects for Variances of Variables of Interest 

Unit-Level Area-Level 
Variable Variance Variance 

Female 0.25 0.27 
Unemployed 0.03 0.06 
HoH born N.C.t 0.02 0.08 
Student 2 18 0.02 0.08 
HoH born U.K. 0.06 0.27 
Aged 30-44 0.18 0.82 

Married 0.25 1.56 
Long-term illness 0.08 0.58 
Non-white’ 0.03 0.22 
Fulltime Employment 0.22 1.88 
Migrant HoH 0.09 0.82 
Aged 18-29 0.13 1.18 
Other employment status 0.19 2.14 
Aged 60 and over* 0.17 2.87 
5 0.5 personshoom 0.25 6.93 
0 car households 0.10 3.19 

Aged 45-59’ 0.15 0.90 

Aggregation Intra-area 
Effect Correlation 

1.08 0.0002 
2.27 0.0025 
3.59 0.0051 
4.17 0.0062 
4.48 0.0068 
4.56 0.0070 
5.97 0.0098 
6.24 0.0103 
7.24 0.0123 
8.27 0.0143 
8.55 0.0149 
9.04 0.0158 
9.20 0.0162 
11.20 0.0201 
17.17 0.0319 
27.96 0.0531 
32.98 0.0630 

NOTES:’ Chosen as auxiliary variables. t HoH is an abbreviation for Head of Household. NC is an abbreviation for New Common- 
wealth. 
Source: Derived from 1991 Census SAS and SAR data; Crown Copyright. 

effects vary from only 1.08 for “Females” to 33 for the variable “0 Car House- 
hold.” The median aggregation effect is 7.24. 

To understand the effects of aggregation on statistics such as regression and 
correlation coefficients we must also examine the effect of aggregation on cova- 
riances. A similar approach may be applied to every combination of two varia- 
bles of interest. We may identify the aggregation effects as the ratio of the area- 
level estimates of covariances to the individual-level estimates from the SAR, 
that is, Qab = & / & b .  The bias due to aggregation is given by (fi* - 1 )  Aab, where 
Aab is the abth element of Ayv and is estimated by Aab = (Sab - S a b ) / ( f i *  - 1 ) .  
Since there are seventeen variables of interest there are 136 combinations of 
two different variables and a tabular presentation of the aggregation effects 
and area components of variavce is inappropriate. The estimated intra-area 
cross-correlation, analogous to d,,, is given by 

which estimates the intra-area correlation for variables a-and b. Figure I b  shows a 
histogram of the estimated intra-area cross-correlations dab; for comparjson Figure 
l a  shows the corresponding histogram of the inpa-area correlations 6,, given Ain 
Table 1. We note that in general the values of dab are smaller than those for d,, 
and most of the former fall in the range -0.01 to 0.01. We can express the aggre- 
gation effect for a covariance as 

where r,b is the individual-level correlation between variables a and b. Figure 2b 
contains a histogram of the aggregation effects for covariances and Figure 2a con- 
tains the aggregation effects for variances from Table 1. 



0.0 0.02 0.04 0.06 0.08 
Estimated Intra-area Correlation, &, 

-0.03 -0.02 -0.01 0.0 0.01 0.02 0.03 
Estimated Intra-area Cross Correlation, 

FIG. 1. Fig. l a  (top): Histogram of Intra-area Correlations. Fig. 1b (bottom): Histogram of Intra- 
area Cross-correlations. 

0 10 20 30 
Aggregation Effect 

40 

-200 .I 00 0 100 

Aggregation Effect 

200 

FIG. 2. Fig. 2a (top): Histogram of Aggregation Effects on Variances. Fig. 2b (bottom): Histogram 
of Aggregation Effects on Covariances. 
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Because of the impact of (fi* - 1) andArab the resulting aggregation effect can be 
considerable even though the values of dab are very small. The median aggregation 
effect on covariances is 19.3 although the range covers high positive and nega- 
tive values. Some extreme values of the ratis are obtained due to small unit- 
level covariances. If r,b is close to zero then Q a b  can be extremely large in abso- 
lute value. Generally, however, the aggregation effect is between 0 and 80. Five 
values outside the range -200 to 200 are not shown and correspond to very 
small individual-level covariances. 
3.2 Zntroducing Auxiliary Variables 

Model B allows for the possibility that some of the area effects may be ex- 
plained by a set of auxiliary variables z. As a result, the aggregation bias esti- 
mated under Model A can be partitioned into two components: one related to 
the auxiliary variables and the other determined by residual intra-area effects, 
after allowing for the effects of the auxiliary variables. 

To illustrate the approach we identify a set of basic demographic and housing 
variables for use as auxiliary variables. Some of these are contained in the seven- 
teen variables of interest, namely, the age categories 45-59 and 60 and over, 
and nonwhite (as indicated in Table 1). The other variables are characteristics 
of housing and are not contained in the variables of interest. These are listed 
in Table 2 together with the aggregation effects on their variances and this dem- 
onstrates the much higher within-area homogeneity found for housing charac- 
teristics. The housing variables are known to be strongly related to a wide vari- 
ety of socioeconomic variables in the United Kingdom and therefore should be 
valuable auxiliary variables. 

Using the partition of bias expressed in (18) we can estimate the extent to 
which the original aggregation bias can be attributed to the auxiliary variables 
z, that is, S&,($, - Zzz)/?yz, and that which remains in the residual term 
(fi’ - 1) Ayy.,. Let Tab be the ratio of the bias due to the auxiliary variables to 
the original bias. That is Tat, is the (ab)th element of j?&, (S,, - Zzz) Pyz divided 

Table 3 contains the area-level variances, S,,, together with the unit-level var- 
iances, s,,, the component of bias due to the chosen auxiliary variables, and the 
residual bias term. The final three columns sum to the first. In many cases the 
bias due to the auxiliary variables is a large component of the total bias. Exclud- 
ing the three variables chosen as auxiliary variables, the median percentage of 
the total bias attributed to the auxiliary variables is 75 percent. For the three 
variables chosen as auxiliary variables, this component accounts for 100 percent 
of the bias and the residual bias is zero. Notice that for “Females,” for which 
the bias is very small, the bias attributed to the auxiliary variables exceeds the 

by (fi* - I)&. 

TABLE 2 
Aggregation Effects for Housing Variables 

Unit-Level Area-Level Aggregation Intra-area 
Variable Variance Variance Effect Correlation 

Tenure: 
Owned’ 0.16 14.44 90.83 0.1770 
Local Authority Rented’ 0.11 14.25 133.43 0.2609 
Stock: 
Amenities. 0.11 6.26 58.52 0.1133 
Type’ 0.12 10.44 90.03 0.1754 

N~TKs:’ Chosen as audlialy variables. 
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TABLE 3 
Decomposition of Aggregation Bias for Variances 

Area-Level Uni t -he1  Bipl due Residual 
Variable Variance Variance to z Bias 

Female 
Unemployed 
HoH born N.C. 
Student 2 18 
HoH born U.K. 
Aged 30-44 
Aged 45-59' 
Married 
Long-term illness 
Nonwhite' 
Fulltime Employment 
Migrant HoH 
Aged 18-29 
Other employment status 
Aged 60 and over' 
5 0.5 persons/room 
0 car households 

0.27 
0.06 
0.08 
0.08 
0.27 
0.82 
0.90 
1.56 
0.58 
0.22 
1.88 
0.82 
1.18 
2.14 
2.87 
6.93 
3.19 

0.25 
0.03 
0.02 
0.02 
0.06 
0.18 
0.15 
0.25 
0.08 
0.03 
0.22 
0.09 
0.13 
0.19 
0.17 
0.25 
0.10 

0.10 
0.02 
0.05 
0.03 
0.12 
0.60 
0.75 
1.10 
0.40 
0.19 
0.73 
0.21 
0.65 
1.83 
2.71 
4.19 
2.58 

-0.08 
0.01 
0.01 
0.03 
0.09 
0.05 
0.00 
0.21 
0.10 
0.00 
0.93 
0.52 
0.40 
0.13 
0.00 
2.50 
0.51 

Footnotes to Table 1 apply. 
Source: Derived from 1991 Census SAS and SAR data; Crow Copyright 

original bias and hence a negative residual bias is estimated. This is consistent 
with statistical theory for variables such as this since the proportion of females 
in each area may be less variable than one would expect if individuals were allo- 
cated to areas completely randomly without regard to sex. 

The same partition of the aggregation bias can be provided for the covariance 
terms although there are too many to report as a tabulation. Figure 3b shows a 
histogram of Tab, the ratio of the bias attributed to the auxiliary variables to the 
original bias. Figure 3a shows the corresponding histogram of 7aa for the varian- 
ces presented in Table 3. In Figure 3b we note that for a small number of cases 
the ratio is greater than one. This arises if the bias term due to the auxiliary 
variables is larger in absolute value than the original bias and will leave a resid- 
ual bias of opposite sign. However, the residual bias will be smaller in absolute 
value than the original bias for all cases where the ratio shown is less than 2. 
The median ratio of the bias due to the auxiliary variables compared with the 
original bias is 0.94, showing that the auxiliary variables account for a very sig- 
nificant component of the original aggregation bias in many cases. In almost all 
cases the auxiliary variables account for over 60 ercent of the original bias. 

bias would be removed if we could take account of the bias due to the auxiliary 
variables as part of the estimation process. This approach is developed in the 
next section. 

Moellering and Tobler (1972) used analysis of variance techniques to parti- 
tion the total variation between the lowest level of geographic areas into com- 
ponents attributable to various scale in situations where they had a nested hier- 
archical geographic data structure. For the case of two levels their approaches is 
based on a statistical model equivalent to equation (6) in which vg and Eg are 
treated as fixed effects. They consider the single variable case and use unit- 
level data with geographic indicatives to estimate the variance components. By 
treating the components vg and zg as random effects the variance components 
can be given a useful interpretation in terms of intra-area correlations. Our ap- 
proach is multivariate and seeks to attribute some of the variance components, 

It follows from these results that a substantia P proportion of the aggregation 
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FIG. 3. Fig. 3a (top): Bias due to 2 as a Ratio of Original Bias: Variances. Fig. 3b (bottom): Bias 
due to 2 as a Ratio of Original Bias: Covariances. 

and hence the causes of the aggregation effects, to the auxiliary variables. More- 
over, the ,estimation method proposed here does not require unit-level data 
with small area indicatives, but only data that allows the overall unit-level cova- 
riance matrix S,, to be calculated. 

4. ADJUSTMENT OF AGGREGATION BIAS 

Model A provides a framework through which we may understand the factors 
which influence aggregation bias and demonstrate how small effects that exist at 
the individual level are magnified through the area-level analysis to result in 
substantial bias effects. Model B introduces the idea of a set of auxiliary or 
grouping variables, which account for a substantial proportion .of the aggrega- 
tion bias. These results lead to a possibility, not previously suggested, that in 
certain circumstances, we may adjust an area-level analysis to remove a substan- 
tial proportion of the aggregation bias (that is, that attributable to a). This would 
result in an ecological analysis that is a better estimation procedure for the 
target of inference Xvv.  

The aggregation bias attributed to the auxiliary variables, z, is given in (18): 

If we could obtain an estimate of this component, then it could be subtracted 
from 3, and so remove a major component of bias. 

From Model B it may be shown that we may obtain an unbiased estimate of 
syz from the area-level data so long as the area means for z are available as well 
as those for y. Steel and Holt (1996a) show that the area-level estimator 
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is an unbiased estimator for by,. 
Since S,, is available from the area-level data, the only remaining unknown 

element of (23) is C,,. This is the individual-level covariance matrix of the z 
variables. 

Sup ose that the set of auxiliary variables are such that an estimate k,, of the 

some source. This source may be quite separate from the data used in the rest 
of the analysis. 

In our illustration, for example, we chose for z the basic demographic varia- 
bles and housing-related variables described in section 3.2. Whatever the set of 
variables of interest, there will often exist variables for which an estimate C,, of 
the individual-level covariance matrix Czz can be obtained from census data or 
some other published source. We may then obtain an estimate of this compo- 
nent of the aggregation bias by using 

indivi 0 ual-level covariance matrix C,, for the LAD as a whole is available from 

Hence, 

will be an estimator for C, that has residual bias (ii* - l)A,., and will be a sub- 
stantial improvement on the unadjusted area-level analysis. The residual bias will 
be greatly reduced if z can be chosen to explain as much as possible of the aggre- 
gation bias and hence reduce A,., as closely as possible to zero. 

We illustrate how this approach works by returning to the previous numerical 
example and the auxiliary variables discussed there. From the original area-level 
analysis and the corresponding individual-level analysis we may obtain the cor- 
relation between each pair of variables of interest. We denote these Tab and Fab, 
respectively. 

Figure 4a shows a plot of the area-level correlations, Fab, versus the individual- 
level correlations, Tab, without taking any account of the auxiliary variables. If 
there were no aggregation effects, the points would be clustered around the 
line Fab = Tab shown in Figure 4a but we see instead a characteristic S-shaped 
plot. The plot shows that in general the area-level correlations fab are of the 
same sign but larger in absolute value than the individual-level correlations Tab. 

If we take into accou_nt the auxiliary variables z, then we may adjust the area- 
level analysis by using C,, in (24) to calculate the adjusted correlation a b .  Fig- 
ure 4b shows the plot corresponding to Figure 4a except that the adjusted cor- 
relations ?ab are plotted against Tab. We note that the size of the aggregation bias 
has been greatly reduced and the S-shaped plot has been replaced by a cloud of 
points that essentially follow the line ?ab = Tab. In fact, the deviations away from 
this line are enerally consistent with the size of sampling variation that would 

Our conclusion is that, for this example at least, the auxiliary variables are 
extremely successful at removing the aggregation bias and the results of the 
adjusted analysis will not be as misleading as results based on the unadjusted 
analysis. Conclusions based on the adjusted analysis will significantly reduce 
the impact of the ecological fallacy. 

In practice the identification of an effective set of auxiliary variables is a key 
part of the proposed methodology. Several approaches can be used (see Steel, 

be observed f rom correlations based on m = 371 observations. 
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FIG. 4. Fig. 4a (left): Group-Level versus Unit-Level Correlations. Fig. 4b (right): Adjusted 
Group-Level versus Unit-Level Correlations. 

Holt, and Tranmer 1996). The auxiliary variables must be those for which it is 
possible to obtain a reasonable estimate of the individual-level covariance matrix 
X Z z .  For many variables it may be possible to obtain estimates of the individual- 
level variances. Potential auxiliary variables can thsn be identified from those 
variables with relatively large aggregation effects Qaa. Previous substantive re- 
search on these factors which are important determinants of where people live 
can also be a guide. 

Occasionally it is possible to calculate a unit-level covariance matrix, S, for a 
range of sociodemographic and other variables, as well as the corresponding 
area-level covariance matrix S, for example, from the population census. Steel 
and Holt (1996a) proposed using the eigenvectors of S-’ S to identify the 
key variables accounting for the aggregation effect in this set of variables. The 
variables identified in this way could then be considered as potential auxiliary var- 
iables to be used in adjusting the analysis of aggregate data for other sets of 
variables in the future. This method identifies those linear combinations of 
the variables with successively maximum aggregation effect, subject to being 
independent of each other. Steel and Holt (1996a) call these linear combinations 
“canonical grouping variables” (CGVs). The CGVs take into account the 
relationships between variables at the individual level and can help identify var- 
iables whose a regation effects are mainly due to related variables. For exam- 
ple, ap lying t Bg is method to the seventeen variables listed in Table 1 supple- 
mente C f  by the housing variables listed in Table 2 suggests that much of the 
aggregation effect of the variables “0 Car Households” and “50.5 persons/ 
room” can be explained by the housing variables. For this reason, combined 
with the fact that individual-level data on the variables indicating car access and 
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TABLE 4 
Components of Bias of Group-Level Variance 

Unit-Level Bias due Residual 
Variable Variance Biaa to z Bias 

Fulltime Employment 0.1170 0.8830 0.3896 0.4934 
Unemployed 0.4402 0.5598 0.3936 0.1662 
other employment status 0.0893 0.9107 0.8516 0.0591 
Nonwhite 0.1209 0.8791 0.8791 -0.0000 
Female 0.9256 0.0744 0.3583 -0.2839 
Aged 18-29 0.1087 0.8913 0.5545 0.3368 
Aged 30-44 0.2192 0.7808 0.7241 0.0568 
Aged 45-59 0.1674 0.8326 0.8326 0.0000 
Aged 60 and over 0.0583 0.9417 0.9417 0.0000 
HoH born U.K. 0.2234 0.7766 0.4274 0.3492 
HoH born N.C. 0.2786 0.7214 0.6004 0.1211 
Married 0.1602 0.8398 0.7078 0.1320 
Limiting long-term illness 0.1381 0.8619 0.6938 0.1681 
Migrant HoH 0.1106 0.8894 0.2558 0.6336 
0 car households 0.2401 0.7599 0.3796 0.3803 
Student 2 18 0.0303 0.9697 0.8090 0.1607 
5 0.5 persons/room 0.0358 0.9642 0.6039 0.3603 

Source: Derived from 1991 Census SAS and SAR data; Crown Copyright. 

density of occupancy are unlikely to be readily available in the years between 
population censuses, these variables were not included in the set of auxiliary 
variables considered in sections 3 and 4. See Table 4. 

5. DISCUSSION 

Statistical models that lead to a deeper understanding of aggregation effects 
and the cause of the ecological fallacy have been proposed for populations com- 
posed of geographic groups. The aggregation effects depend upon the sample 
sizes upon which the area means are based, the number of areas used in the 
analysis, and the strength of intra-area homogeneity on both variances and co- 
variances for the variables of interest. 

Auxiliary variables may be introduced that explain much of the intra-area ho- 
mogeneity and hence the causes of the ecological fallacy. This leads to a decom- 
position of the aggregation bias into two components-one attributed to a set of 
grouping variables and the other a residual source of aggregation bias condi- 
tional on the grouping variables. If the grouping variables are powerful, the re- 
sidual bias may be negligible and in many cases ought to be much smaller than 
the total aggregation bias. 

With some additional information about the individual-level covariance ma- 
trix of the grouping variables, an adjustment is proposed that eliminates the 
first component of the aggregation bias, The empirical study suggests that this 
is a fruitful modification to ecological analyses. 
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