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Abstract 

The Voronoi diagram of a set of weighted points (sites) whose visibilities are constrained by a set of line 
segments (obstacles) on the plane is studied. The diagram is called constrained and weighted Voronoi diagram. 
When all the sites are of the same weight, it becomes the constrained Voronoi diagram in which the endpoints of 
the obstacles need not be sites. An ~Q(m2n~2) lower bound on the combinatorial complexity of both constrained 
Voronoi diagram and constrained and weighted Voronoi diagram is established, where n is the number of sites 
and m is the number of obstacles. For constrained Voronoi diagram, an O(m2", 2 + ~z 4) time and space algorithm 
is presented. The algorithm is optimal when m/> crz, for any positive constant c. For constrained and weighted 
Voronoi diagram, an 0(//227z2 ÷ n42 c~('~)) time and 0(m2'/22 ÷ 'i24) space algorithm (where c~(~) is the functional 
inverse of the Ackermann's function) is presented. The algorithm is near-optimal when m/> cn, for any positive 
constant c. © 1998 Elsevier Science B.V. 
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1. Introduction 

The Voronoi diagram is an important geometric structure in computational geometry which has 
attracted a lot of  attention [1]. Given a set of  points (called sites) S in the plane, the standard Voronoi 
diagram of  S consists of  a set of  Voronoi ceils, {V(si )  I si E S}, such that for any point z E V ( s i ) ,  
d(z ,  ,si) ~< d(z ,  s j )  for all sj E S,  where d(z ,  9) denotes the Euclidean distance between z and y. 

Many variations of  the standard Voronoi diagram have been investigated. One of  them is to consider 
the diagram in the presence of  obstacles in the plane. When the distances in such a Voronoi diagram 
are measured by geodesic [8,10], the diagram is called geodesic Voronoi diagram; when the distances 
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are measured by visible straight-line segments, the diagram is called constrained (or bounded) Voronoi 
diagram [3,4,7,9,11]. Another variation is to assign a weight to each site of the standard Voronoi dia- 
gram. This diagram is called weighted Voronoi diagram [2]. In this paper, we consider the constrained 
and weighted Voronoi diagram which is the Voronoi diagram of a set of weighted sites restricted by 
a set of line segments (obstacles) in the plane. In contrast with the diagrams studied in [4,7,9,11], 
our Voronoi diagram does not require that every obstacle endpoint be a site (the Peeper's Voronoi 
diagram [3] also does not make such requirement). This drastically increases the complexity of the 
diagram, resulting in superlinear combinatorial complexity in its structures. 

Practical applications of weighted Voronoi diagram were reported in [2], which cited several other 
papers. The disciplines of applications include economy, geography, communications, and biology. 
In the previous works, the plane is assumed to be without restrictions. In reality, however, the 
plane usually contains obstacles. For instance, in modeling a set of microwave or laser transmit- 
ters with varying strength, it is desirable to determine the regions in which a certain transmitter (if 
any) received best among the others. If the area contains buildings and mountains, then the buildings 
and mountains can be regarded as obstacles because the waves of a transmitter can be blocked by 
them. Since our Voronoi diagram takes obstacles into consideration, it is therefore a better geometric 
model. 

The existence of obstacles makes a simple divide-and-conquer method and a straight-forward sweep- 
line method for constructing the constrained and weighted Voronoi diagram inefficient. We observe 
that there exists a close relationship between the diagram and the arrangement of a set of lines, 
where the lines are completely determined by the sites and obstacles. By constructing a visible-site 
list and a closest-site list for each edge in the arrangement, we are able to construct the diagram 
efficiently. 

This paper is organized as follows. For clarity, we first consider the diagram of equi-weighted sites 
(i.e., constrained Voronoi diagram) in Sections 3 and 4. Section 3 gives an Y)(m2n 2) worst-case lower 
bound on the combinatorial complexity of constrained Voronoi diagrams of n sites and m obstacles. 
Section 4 describes an algorithm for constructing the constrained Voronoi diagram. The algorithm is 
worst-case optimal in both time and space when m /> en, where e is a constant. In Section 5, the 
diagram for sites with different weighs is considered. 

2. Preliminaries 

First, we give several definitions and outline some properties of constrained and weighted Voronoi 
diagram. 

Definition 1. Let O be a set of disjoint line segments representing obstacles. Two arbitrary points x 
and y in the plane are visible to each other in the presence of O iff the open line segment joining 
them does not intersect any obstacle in its interior unless they are collinear. 

Definition 2. Let s be a site in the plane and w(s) be the weight of s. The distance of s to an 
arbitrary point x, denoted by dw(x, s), is defined as d(x, s)/w(s), where d(x, s) is the Euclidean 
distance between s and x. The bisector of two sites s and s t is the locus of all points x satisfying 

= 
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Fig. 1. A constrained and weighted Voronoi diagram. 

Note that if s and s ~ are two sites of different weights, their bisector is a circle with center 
(w2(s)s - w2(s')s ') /(w2(s) - w2(s')), and radius w(s)w(s')d(s,  s ') /(w2(s) - w2(s')) [2]. If they are 
of the same weight, then their bisector is the straight line bisecting the line segment joining them. 

Definition 3. Let 8 be a site in the plane with weight w(s) in the presence of obstacle O, the visibility 
distance between s and an arbitrary point x is defined as 

dwo(X, s) = ( d~(x,co, s), otherwise.if x and s are visible to each other, 

Definition 4. Let S be a set of weighted sites and O be a set of obstacles in the plane. The constrained 
and weighted Voronoi diagram, denoted by CWV(S, O), is a set of Voronoi cells {V(si) ] si E S} 
such that V(si) = {x E ~2 ] dwo(X, si) <<, dwo(X, sj) and dwo(X, si) ~ co, for all sj E S, si ~ sj}. 
A Voronoi edge is a maximal straight line segment or circular arc on the boundary of a Voronoi cell. 
The endpoints of the Voronoi edges are called Voronoi vertices. 

An example of constrained and weighted Voronoi diagram of three sites and three obstacles is shown 
in Fig. 1. Clearly, if the weights of the sites in S are all the same, then CWV(S, O) becomes constrained 
Voronoi diagram CV(S, O), and if O -- 0, CWV(S, O) becomes weighted Voronoi diagram WV(S).  
Constrained and weighted Voronoi diagram have some special properties which do not normally exist 
in the other types of Voronoi diagrams. The most notable ones are the following. 
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(i) Every Voronoi edge is a section of the bisector of two sites ( ~  in Fig. 1), or a section of a line 
determined by a site and an endpoint of an obstacle ( v ~  in Fig. 1), or a section of an obstacle 
(v-~-~ in Fig. 1). Note that the last two types of Voronoi edges do not exist in standard or weighted 
Voronoi diagrams and the last type of Voronoi edges does not exist in geodesic Voronoi diagrams 
and bounded Voronoi diagrams, although they do exist in the Peeper's Voronoi diagram [3]. 

(ii) The boundary of a Voronoi cell in CWV(S) consists of circular arcs and/or line segments. 
(iii) A Voronoi cell may consist of several disjoint sub-cells. In Fig. 1, V(Sl) consists of three disjoint 

sub-cells. 
(iv) A Voronoi diagram may not cover the entire plane, i.e., some regions in the plane may not belong 

to any Voronoi cell due to the blockade of obstacles. These regions are called blank regions. In 
Fig. 1, the heavily shaded region is a blank region. 

In the following two sections, we assume that the sites are equi-weighted, i.e., we consider con- 
strained Voronoi diagram. 

3. A lower bound for constrained Voronoi diagram 

We shall show that the number of disjoint Voronoi sub-cells for constrained Voronoi diagrams is 
f2((mn)2). The time and space lower bounds are then immediate. The following notations are used in 
the discussion. X and Y represent respectively the :c-axis and the y-axis of an :cy-orthogonal coordinate 
system. X + = {(x,y)  E I~ 2 I X ~ 0} and X -  = {(x,y)  E R e I x  < 0} (Y+ and Y -  are defined 
similarly). X+(xo,  Yo) = {(x,9) E IR 2 I Y = Yo A x ~> xo} (respectively X - ( z o ,  Yo) = {(x,y)  E IR 2 [ 
y = Yo A x < xo}) represents a ray on the x/l-plane starting at point (:Co, Yo), parallel to X and extends 
towards the positive (respectively negative) end of X. Y+ (:Co, Yo) and Y -  (:Co, Yo) are defined similarly. 

Theorem 1. Let 5; be a set of n sites and 0 be a set of m obstacles. The combinatorial complexity 
of CV(S, O) is Y2((mn) 2) in the worst case. 

Proof. (Refer to Fig. 2.) Let the m obstacles be of the same length, say d' and d ' = d - c for 
some constants d and c such that c << d. Assume without loss of generality that m and z~ are even 
numbers. Divide both S and O into two groups of equal size. Place the first group of m / 2  obstacles 
{ol, o2 , . . . ,  o,~/2 } on ray X + (0, 0) such that o~, 1 ~< i <~ m/2 ,  is placed between the two points ( i -  1)d 
and (i - l )d + d ~. Clearly, every two consecutive obstacles are at a distance c apart. Place the second 
group of m / 2  obstacles {o,~/2+1, om/2+2, • • •, o,,~} on ray Y+(0, 0) in a similar manner. Place the first 

group of n/2 sites {sl, s a , . . . ,  sn/2} on ray X + ( 0 , - m 2 d )  such that si = ((i - 1)2d/(n - 2 ) , - m 2 d ) ,  

1 ~< i ~< n/2.  Place the second group of n/2 sites {sn/2+t, sn /2+2, . . . ,  sn} on ray Y+( -2mZd ,  0) 

starting at ( -2m2d ,  0) in the same manner. 
Let 2D-box be the quadrilateral determined by rl,  r2, X+(0,  0) and Y+(0, 0), where rl is the line 

joining sl and the rightmost endpoint of era/2, and r2 is the line joining sn/2+l and the upper endpoint 
of era. Based on the above construction, it is easily verified that the region inside the 2D-box visible 
from a site on ray X + ( 0 , - m Z d )  consists of m/2  - 1 distinct strips. Therefore, the n/2 sites on ray 
X + ( 0 , - m 2 d )  determine (m - 2 )n /4  distinct strips inside the 2D-box. Similarly, the n/2 sites on ray 
Y+ ( -2mad ,  0) determine (m - 2 )n /4  distinct strips inside the 2D-box. When c is sufficiently small, 
the first group of strips divides the second group into O((mn) 2) disjoint substrips such that any point 
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Fig. 2. A worst-case lower bound. 

in these substrips is visible from some sites on ray Y+ ( -2m2d ,  0) and is not visible from any site 
on ray X +  (0, -mZd).  Moreover, each of these substrips is bounded by four quadrilaterals, two of 
which are 'blank' regions while the remaining two are intersections of the two groups of strips. By 
the positions of  the sites and the obstacles, it is easily verified that any point in these intersections is 
closer to some sites on ray X + ( 0 , - m 2 d )  than to any site on ray Y+(-2mZd, 0). Hence, each of the 
~((~n) 2) substrips is a Voronoi sub-cell associated with a site on Y+(-2mZd, 0). [] 

4. Constructing the constrained Voronoi diagram 

The algorithm presented in this section uses the construction, called arrangement, of Edelsbrunner 
et al. [6]. We refer the reader to [6] for its definition. 
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Definition 5. A straight line is called the base line of a line segment (or a ray) if it contains the line 
segment (or the ray). An obstacle line is the base line of an obstacle. A visibility line is a straight line 
determined by a site and an endpoint of an obstacle. 

We shall denote the set of all obstacle lines by O t, the set of all bisectors b y / 3  and the set of all 
visibility lines by T. We further let E = O ~ U/3 U T and A(E)  be the arrangement of E. Note that 
IO'l = m, IB I = 72(r~ - 1)/2, IT] = 2mr~ and ]E I = O(mn + 722). 

Lemma 1. The number of  Voronoi edges in CV(S, O) is O((rnn) 2 4- f/4). 

Proof. Every edge of CV(S, O) is either an edge of A(E)  or the union of some edges of A(E).  Since 
IE[ = O(mn + n2), by Lemma 2.5 of Edelsbrunner et al. [6, p. 344], the number of edges and vertices 
in A(E) ,  and hence in CV(S, O), is O( (mn + n2) 2) = O( (mn)  2 q- 724). [] 

Since A(E)  embeds CV(S, O), we may construct CV(S, O) by first constructing A(E)  and then 
deleting all those edges in A(E)  which are not in CV(S, O). The algorithm presented below is based 
on this idea. For the ease of description, we make the following assumptions. 

Assumption 1. Every obstacle line, bisector and visibility line is distinct (consequently, no two lines 
in E coincide). 

Assumption 2. The obstacles are non-intersecting. 

Assumption 1 can be removed by including O((mn) 2 + n 4) testing steps as IEI = O(mn + n2). 
Assumption 2 can also be removed without affecting the time and space bounds. 

Definition 6. The closest-site list of an edge e in A(E),  denoted by CAe, is a list of the n sites 
sorted by their Euclidean distances from a fixed point on e in ascending order, disregarding the 
obstacles. 

From the fact that no bisector intersects the interior of e, it is easily verified the following. 

Proper ty  1. CAe is independent of  the interior point used in calculating the n distances. 

From the fact that no visibility line intersects the interior of any edge in A(E),  we have Property 2. 

Proper ty  2. Each edge of  A(E)  is an 'atomic' element in the sense that it is completely visible or 
invisible from a site. 

Hence, it makes sense to talk about the visible sites of an edge. 

Definition 7. A site s is a closest-visible site of an edge e if s is the first 'visible' site in CA~. 

Lemma 2. Let e be any edge in A(E).  Then e does not lie on a Voronoi edge in CV(S, O) iff e 
has no closest-visible site or e is not on the boundaries of  the Voronoi cells of  its closest-visible 
sites. 

Proof. Trivial. [] 
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Algorithm Find-CV(S,  O) 
Step 1. Construct E.  
Step 2. Construct the arrangement A ( E ) .  
Step 3. (Delete all those edges in A ( E )  not belonging to CV(S,  0 ) 3  

(a) For each edge e of  A ( E ) ,  find the sites visible to e (visible-site list). 
(b) For each edge e of  A ( E ) ,  order the sites according to their Euclidean distances from e (closest- 

site list); 
(c) For each edge e of  A(E) ,  determine the closest-visible sites of  e. If no such site exist, then 

delete e. 
(d) For each undeleted edge e, determine if e appears on the boundaries of  the Voronoi cells of  its 

closest-visible sites. Delete e if it does not. 
Step 4. Construct CV(S,  O) from the edges remaining in A ( E ) .  

The correctness of  algorithm Find-CV(S, O) follows from Lemma 2. 

Details of the steps 
Step 1 is straight-forward and can be done in O ( m n  + n 2) time and space. 
Step 2 can be done in O ( ( m n )  2 ÷ n 4) time and space [6]. The data structure used in representing 

the arrangement A ( E )  is the conventional incidence graph. Additional information are associated with 
each node as described later. 

The implementation of  Step 3 is most complicated. For ease of  description, we shall first present a 
non-optimal algorithm and then reduce its time and space to the desired optimal bounds. 

In Step 3(a), the list of  all visible sites for every edge in A ( E )  is determined. A brute-force method 
requires testing the visibility of  each edge against every site of  S. This results in an O(m3n  3 + m n  5) 
time algorithm. The observations made in Lemma 3 below support a faster method. 

Definition 8. Let e and e" be two edges in arrangement A ( E )  which share an endpoint v. e" is said 
to be the (clockwise) successor of e if e" is the first edge that e encounters when e rotates around v 
clockwise. If the base line l of  e" (e, respectively) is a visibility line determined by site s and obstacle 
o, then o is up (down, respectively) if o and e (e ' ,  respectively) are on the opposite sides of  l. o is 
down (up, respectively) otherwise. Let 1 be a visibility line determined by site s and endpoint p of  
an obstacle. An edge e on I is unmasked if e is visible from s and is on that half-line on 1 which is 
originated from p and does not contain s. Edge e is masked, otherwise. 

Lemma 3. Let vis(e) denote the set o f  all sites visible from edge e. Let e and e" be two edges in A ( E )  
such that e and e" share an endpoint v and e" is the successor o f  e. Let l (respectively I t) be the base 
line o f  e (respectively e") and in cases where l (respectively 1 t) is a visibility line, 1 (respectively I t) is 
determined by obstacle o and site s (o t and s t, respectively). 
(1) Suppose that none o f  l and l' is a visibility line, then vis(e") -- vis(e). 
(2) Suppose that exactly one o f  l and l t is a visibility line. Then, 

(i) i f l  is a visibility line and o is up, then vis(e") -- v i s ( e ) - { s }  t fe  is unmasked," vis(e") -- vis(e) 
i f  e is masked; 

(ii) i f  l' is a visibility line and o' is down, then vis(e") = vis(e) U {s'} i f  e" is unmasked; 
vis(e") = vis(e) /f e t' is masked; 

(iii) in the remaining cases, vis(e") = vis(e). 



9 6  C.A. Wang, Y.H. Tsin / Computational Geomet O, 10 (1998) 89-104 

(a) 

s' l' 

s o ~ (d) 

(b) 

s (e) 

S' l '  

s ~ (c) 

F ig .  3. S o m e  i l l u s t r a t i o n s  o f  L e m m a  3. 

(3) Suppose that both l and l ~ are visibility lines. Then, 

(i) /f both o and o' are down, then vis(e")  = vis(e) to {s'} /f  e" is unmasked; vis(e")  = vis(e) 
if  e n is masked; 

(ii) if  o is up and o t is down, then vis(e")  = vis(e) - {s} if e" is masked and e is unmasked; 
vis(e") = vis(e) U {s'} if  e" is unmasked and e is masked; vis(e")  = (vis(e) - {s}) tO {s'} 
i f  e" and e are unmasked; vis(e")  = vis(e) i f  both e and e" are masked; 

(iii) i f  o is down and o' is up, then vis(e")  = vis(e); 
(iv) if both o and o' are up, then vis(e t') = v i s ( e ) -  {s} if  e is unmasked; vis(e")  = vis(e) if e 

is masked. 

Proof .  (1) Suppose that v is not on any obstacle, then l and I t divide the plane into four regions 
(Fig. 3(a)). Every site in region (II) or region (IV) is either visible or invisible to both e and e n. For 
each site s in region (I) or region (III), since e" is the successor of  e, no visibility line created by s 
can pass through v. Again, s is either visible or invisible to both e and e". Thus, vis(e n) = vis(e). 
A similar analysis can be applied to the case where v lies in the interior of  an obstacle. For the case 
where v is an endpoint of  an obstacle (Fig. 3(b)), the base lines and the obstacle divide the plane into 
five regions. Every site in region (II) or region (V) is either visible or invisible to both e and e n. Every 
site in region (III) is invisible to both e and e n due to the blockade of  the obstacle. There is no site 
in region (I) or (IV) as e" is the successor of  e. Thus, vis(e")  = vis(e). 

(3)(i) When v is not on any obstacle. Since e n is the successor of  e and o is down, regardless of  
whether e is masked or unmasked, s is either visible or invisible to both e and e n. Moreover,  s t is 
visible to e" and not to e if e n is unmasked (Fig. 3(c)) and is visible or invisible to both e and e n if 
e n is masked (Fig. 3(d)). For every site other than s and s ~, the site is either visible or invisible to 
both e and e n. Hence, vis(e n) = vis(e) U {s I} if e" is unmasked and vis(e n) = vis(e) if e n is masked. 
When v lies in the interior of  an obstacle, the above analysis can be applied similarly. When v is an 
endpoint of  an obstacle, o and o ~ must coincide with that obstacle due to Assumption 1 (Fig. 3(e)). 
The rest of  the analysis is similar to the above one. 

Subcases (ii)-(iv) of  case (3) and case (2) can be analyzed in a similar way. [] 
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For each edge e in E, we represent vis(e) by an n-bit bucket, VB~, such that the kth bit of VB~ is 
clear iff e is visible from site sk. Moreover, if e is on an obstacle, then e is considered as having two 
sides each of which is associated with a distinct bucket. In Lemma 3, if e (e", respectively) is on an 
obstacle, then vis(e) (vis(e"), respectively) refers to the VB bucket of that side of e (e", respectively) 
which e" (e, respectively) encounters when e rotates around v clockwise. Since the successor of e 
can be determined in O(1) time using the data structure of arrangement A(E),  Lemma 3 implies that 
given vis(e) for any edge e, vis(e"), where e" is the successor of e, can be determined in O(1) time. 

To construct the VB buckets, we first preprocess the visibility lines to mark or to mask out some 
of the edges. Let l be a visibility line determined by site s and endpoint p of an obstacle. Traverse l 
to locate the edges forming the line segment ~pp and check if any obstacle crosses sT. If a crossing is 
detected, then the entire 1 is masked. Otherwise, the edge on ,~p incident upon p is marked. Moreover, 

____+ 

let p~ be the point on ray sp which is nearest to p and at which an obstacle crosses the ray. Then all 
those edges of I which are not on pp~ are masked. Note that when p/does not exist, pp~ is the ray on 
_____> 

sp with end-point p. 
Next, we construct the VB buckets for all the edges on or incident upon the obstacles. Let o be 

an obstacle with endpoints p and q. We shall call the halfplane to the left (right) of the ray q~ the 
left halfplane of  (right halfplane) o. For every edge e on o, the leftside (rightside) of e is that side of 
e facing the left halfplane (right halfplane) of o. Let e be the edge on o that has p as an endpoint. 
We begin with computing the VB bucket of the leftside of e, denoted by VB~(L). Clearly, VB~(L) 
consists of all those sites which lie in the left halfplane of o and are visible to e. Since each of those 
sites contributes a marked edge incident upon p, VB~(L) can be easily determined. Once VB~(L) is 
determined, we proceed around p clockwise to determine the VB buckets of all the edges incident 
upon p by using Lemma 3. When all these buckets are determined, the endpoint p is marked. Clearly, 
the VB bucket that is determined last is that of the rightside of e. Let r be the other endpoint of e. 
We proceed around r clockwise to determine the VB bucket of every edge incident upon r and lies 
in the right halfplane of o until an edge on o is encountered. Endpoint r is then marked. This process 
is repeated around o until we are back to p. Obviously, by that time, the VB buckets for all the edges 
on or incident upon o are determined. 

Now, for each line l E E, we traverse l, starting at an extreme edge .f. First, if VBf has not been 
determined, we determine it by testing, for each site, if an obstacle blocks the view of the site from f .  
In general, let p be the endpoint of the current edge which has not been examined. If p has been 
marked, then the VB buckets of all the edges incident upon p have been determined. So, we proceed 
immediately to the tollowing edge on 1. If p is unmarked, We compute the VB buckets for all the 
other edges incident upon p by using Lemma 3; mark p and then proceed to the following edge. In 
the case where p does not exist, we have reached the other end of 1 and we are done with 1. 

Lemma 4. The VB buckets of  the edges in A(E) can be determined in O(((~n~n) 2 + ~Z4)TZ) time and 
space. 

Proof. Preprocessing each visibility line l takes O(mn + 7Z 2) time as there are O(rr~n + Tfl) lines 
intersecting 1 creating at most that many edges on l and examining each such line and edge takes 
O(1) time. Preprocessing all the visibility lines thus takes O((n~n + n2)mn) = O(z~z2n 2 q- ~4) time. 
The maximum number of edges incident upon endpoint p of obstacle o is O(m + zz2). Using the 
marked edges determined in the preprocessing step, and the structure of arrangement A(E),  VB¢ (L) 
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can be determined in O(m + 12 2) time. Therefore, determining the VB~(L) buckets for all the m 
obstacles takes O(m 2 ÷ ran2). Determining the VB bucket for the extreme edge f of 1 can be done 
in O(mn)  time as there are m n  site-obstacle pairs and testing each such pair could be done in 
O(1) time. Since ]E I = O(mn + n2), the total time required to compute the VB buckets for all 
those extreme edges is O(/7/,2n 2 ÷ n4). For the remaining edges, as each of their VB buckets can 
be determined by copying the VB buckets of the (clockwise) predecessors and making a O(1) time 
modification, it takes O(n) time to determine the VB bucket for each of them. Let V be the set of all 
the vertices in A(E). The total time spent on determining the VB buckets of all the edges in A(E) 
is thus O((mz/z 2 ÷/3,4) ÷ (m2 ÷ m n  2) ÷ (~-~pEV deg(p))n) = O((/7~2n 2 ÷ n4)~), where deg(p) is the 

degree of p in A(E). The space usage is obviously O(m2n 2 ÷ n 4) n-bit buckets giving rise to the 
O(((mn) 2 ÷ n4)n) space bound. [] 

Lemma 5. The closest-site list, CAe, for the edges in A(E) can be determined in O(((mn)  2 ÷ n4)n) 
time and space. 

Proof. Consider any line l c E. l is divided by the other lines in E into a sequence of edges 
( e l , . . . ,  ek), where k <<, O(mn + n2). To compute CA~, 1 ~< i ~< k, we first determine CA~. To do 
so, we compute the distances from an arbitrary point of el to the sites (Property 1) and then sort the 
sites by these distances in ascending order. The resulting list is CAel. From CA~, we create an array of 
n pointers, ptrej [l..n], such that ptr~j [i] points to the position of site si in CAe~. In general, ptre[i ] --- j 
iff site si is the jth element in CA~ where e is the edge being examined. Clearly, this process takes 
O(n logn)  time. To determine CAe~ for i > 1, we traverse l, edge by edge, starting at el. Suppose 
CAe~_~ has just been determined. Let p be the common endpoint of ei-1 and ei. We copy CA~ ~ into 
CA~ i and ptr~_, into ptr~ and then examine all the lines passing through p. For each of the lines 
which ;is a bisector, we swap the pair of sites determining that bisector in CAe~. This could be done in 
O(1) time with the help of ptr~. We also swap the two corresponding pointers in ptr~. Lines which 
are not bisectors are ignored. When all the lines passing through p are examined, CAe~ is determined. 
Since copying each CA and ptr takes O(n) time and swapping a pair of sites takes O(1) time, it takes 
O(n) time to process each line intersecting 1. As there are O(mn + n 2) lines in E intersecting l, the 
time required to determine the CA lists for all the edges on 1 is thus O(n log n + (ran + n2)n). The 
total time required to determine the CA lists of all the edges in A(E) is thus O(((mn) 2 + nn)n). The 
space bound is obviously O(( (mn)  2 ÷ ~,~4)/~). [] 

The VB buckets and CA lists of some of the edges on a line are shown in Fig. 4. 

Lemma 6. The closest-visible sites for the edges in A(E) can be determined in O(((mn)  2 ÷ n4)n) 
time and space. 

Proof. By scanning CA¢ and examining the VB~ bucket for each entry encountered, the closest-visible 
sites of e can be determined in O(n) time (note: when e is on an obstacle, the closest-visible sites of 
each of its two sides are determined separately). Hence, the closest-visible sites of the edges of A(E) 
can be determined in O((m2n 2 ÷ n4)n) time and space. [] 

In determining whether an undeleted edge belongs to the boundary of the Voronoi cell of its closest- 
visible site in Step 3(d), we use the following lemma. 
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Fig. 4. The VB buckets and CA lists for some edges in CV(S, O). 

L e m m a  7. Let e be an edge of  A ( E )  and s be its closest-visible site. Then e is on the boundar3., of  
the Voronoi cell V(s )  iff 
(1) e is on an obstacle; or 
(2) e is on a bisector and has two closest-visible sites; or 
(3) e is an unmasked edge on a visibility line determined by s. 

Proof.  Trivial. [] 

L e m m a  8. Determining the edges of  A ( E )  that lies on the Voronoi edges of  CV(S, O) takes 
O((mn)  2 + n 4) time and space. 

Proof.  Clearly, determining into which of  the three cases an edge falls takes O(1) time. As there are 
O((mn) 2 + n 4) edges in A ( E ) ,  Step 3(d) can be done in O( (mn)  2 + n 4) time and space. [] 

Step 4 is obvious and can be done in O( (mn)  2 + I"Z 4) time and space. 

Theorem 2. The constrained Voronoi diagram CV(S, O) can be constructed in O(((mn)  2 + n4)z~) 
time and space. 

Proof.  Immediate. [] 

Reducing the time and space used in Find-CV(S, O). To reduce the time and space bounds by 
a factor of  n, we must maintain and copy no more than O(m2n + m n  2) VB buckets, CA lists 
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Fig. 5. Two illustrations of Lemma 9. 

and ptr arrays. This can be achieved by combining Steps 3(a), (b) and (c), and having the edges 
to share buckets, lists and arrays. First, as edges on obstacles have two sides, we shall deal with 
them separately. Specifically, we determine the VB buckets of all the edges on or incident upon 
the obstacles using the same method described in Step 3(a). Following the analysis given there, this 
process takes O((m2n 2 + n 4) + (m 2 + ~1~?~ 2) %- (~-~pc'V' deg(p))n) time where V' is the set of vertices 

on the obstacles. Clearly, ~-~p~v' deg(p) is the number of edges on or incident upon the obstacles 

which is bounded above by o(mZn, + ~rnT~2). Hence, setting the buckets of all these edges takes 
O((mzn + mnz)n) = O(77zzTz2 %- z14) time. Similarly, computing the CA arrays and the ptr pointers 
for these edges take O(~rr~2712 %- 7~4) time. Using VB~ and CA~, for each e on or incident upon the 
obstacles, a doubly-linked list, called CCAe, is created which chains all the sites in CA~ that are visible 
to e. The sites in CCA~, are ordered according to their order in CA~. Computing the CCA lists can 
clearly be done in o ( m Z n  2 + 'n 4) time. Since the closest-visible site of e is the first node in CCA~, it 
can thus be determined in O(1) time. 

For the remaining edges in A ( E ) ,  our strategy is to share among the edges no more than  O(zr~Z~z %- 
mn  2) VB's, CA's, ptr's and CCA's. For clarity, we shall assume without loss of generality that 
deg('~,) = 4 for every vertex ~, in A ( E ) .  

Lemma 9. Let v be a common endpoint o f  edges e, e ~, e" and e'" in A ( E )  where e and e t (respectively 

e" and e'") are on the same base line l (respectively l"). Given CCA(e) and CCA(e"), CCA(e') and 

CCA(e")  can be determined in O(1) time. 

Proof. Without loss of generality, we assume e "  is the successor of e. We consider three cases 
separately. 

Case (i): both I and l" are not visibility lines. Then by Lemma 3(1), VBe, = VBe . . . .  VBe. If 
l" is an obstacle line, then obviously, CAe, = C A c .  Hence, CCAe, = CCA~. If l" is a bisector line, 
then CCA~, can be obtained from CCAe by swapping sites s and s", where s and s" determine l" 
(Fig. 5(a)). Therefore, CCAe, can be computed in O(1) time from CCAe. Similarly, CCAe,,, can be 
obtained from CCA~,, in O(1) time. 
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Case (ii): both 1 and l" are visibility lines. Clearly, CA~ = CA~, = CA~,, = CA~ .... Let I (respectively 
l") be determined by site ,s (respectively s") and obstacle o (respectively o"). 

(a) Suppose o, o" are both down without restriction to e and e'" (Fig. 5(b)). Then o" is down while 
o is up without restriction to e'" and e'. By Lemma 3(3)(i) and (iii), VB~ and VB~,,, differ in at most 
the site s" whereas VB~, = VB~. .... Hence, CCA~, can be obtained from CCA~ by inserting, at most, 
the site s" into the list. The insertion can be done in O(1) time as the neighboring sites of s" in CCA~., 
can be determined by referring to CCA~,, (Fig. 5(b)). Similarly, CCAc,,, can be obtained from CCA~,, 
in O(1) time. 

(b) In the remaining cases, it is easily verified that CCA~, and CCA~,,, can be obtained from CCA~ 
and CCA~,, in O(1) time by deleting or inserting at most one site (s or ,s") each. 

Case (iii): exactly one of l, l" is a visibility line. The argument is similar to those for the above 
two cases. [] 

Algorithm Closest-visible sites 
(Remark: For clarity, we assume without loss of generality that no two lines in A(E) are parallel.) 
Step O. Compute CCA~ and determine the closest-visible sites for every edge e on or incident upon 

an obstacle. 
Step 1. Pick a line, say l, from E and compute CCA~ for every edge e on or incident upon I. Determine 

the closes-visible sites for each such e and mark the edge. For every edge incident upon l, 
mark its end-vertex on l and partially-mark its other end-vertex (if exists) once. 

Step 2. 
(a) Examine all the edges incident upon l to determine all those vertices which are partially,- 

marked twice. Insert all those vertices into a queue Q. 
(b) repeat 

while (the queue Q is non-empty) do 
remove a vertex v from Q and mark the vertex; 
let the four edges incidenting upon v be e, e', e" and e'" and e, e" be marked; 
for each of e' and e'" do 

if the edge has not been processed in Step 0 
then obtain its CCA list from one of e, e" and modify' it according to 

Lemma 9; 
determine the closest-visible sites of the edge; 

mark both e ~ and e ~'' 
endwhile; 
for each of the newly marked edges do 

if the edge is not an extreme edge (i.e., a ray) 
then let v' be the other endpoint; partially-mark vt; 

if v' has thus been partially-marked twice then add v' into the queue Q. 
until (Q is empty). 

To prove the correctness of the above algorithm, it suffices to prove the following assertion: "at 
the end of the dth execution of the while loop, all the edges whose longest paths from l has length 
at most d have been marked and all those edges whose longest paths from l has length exactly d are 
newly marked", where a path from l to an edge is defined as follows: convert every edge in A(E) 
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to a directed edge so that the edge is pointing away from the line I. A path from 1 to an edge e is a 
directed path from a vertex on l to the tail of e. The length of a path is the number of edges on it. 
The assertion can be easily proved by induction on d. 

Let D be the maximum length of the paths from l to the edges. By the above assertion, after the 
Dth execution of the while loop, all edges are marked, indicating that their closest-visible sites are 
determined. Moreover, all the newly marked edges must be extreme edges (i.e., rays). As a result, no 
vertex is added to Q. Consequently, execution of the algorithm terminates at the until statement. 

Lemma 10. Algorithm Closest-visible sites computes the closest-visible sites for ever), edge of  A(E)  
in O(rr~zn 2 + n 4) time and space. 

Proof. As was mentioned earlier, Step 0 takes O((?Tzn) 2 --/Z 4) time and space. In Step 1, the methods 
described in Lemmas 4-6 can be used. Since l is the only line to be processed, this step can be done 
in O(mn 2 . .  n3) time and space. In Step 2, as no marked vertex is re-marked, no vertex is inserted 
into Q more than once. Consequently, no edge is examined more than twice. Since examining an edge 
and computing the CCA list for an edge in this step each takes O(1) time (Lemma 9), Step 2 thus 
takes O(mn 2 . .  n 4) time. The space used by the CCA lists in this step are those allocated in Steps 0 
and 1 which is bounded by O(Tnn 2 -- n,4). [] 

Theorem 3. The constrained Voronoi diagram, CV(S, 0), can be constructed in O(m2n 2 Jr- 7z 4) time 
and space which is worst-case optimal when m ~ cn for any constant c. 

Proof. Immediate. [] 

5. Constructing the constrained and weighted Voronoi diagrams 

In this section, we first discuss the combinatorial complexity of constrained and weighted Voronoi 
diagram. We then show how to modify algorithm Find-CV(S, O) to construct such diagrams. 

5.1. Preliminaries 

Since the set of constrained and weighted Voronoi diagrams includes the set of constrained Voronoi 
diagrams as a proper subset, Theorem 1 immediately provides an Y2((mn) 2) worst-case lower bound 
on the combinatorial complexity of constrained and weighted Voronoi diagram. 

Let Ec  = (0  ~ U C U T) where O' is the set of obstacle lines; C is the set of circular bisectors and T 
is the set of visibility lines. Let A(Ec)  be the arrangement of Ec.  From the fact that A(Ec)  embeds 
CWV(S, O), we immediately obtain the following lemma. 

Lemma 11. Every edge of  CWV(S,  O) is an edge of  A(Ec)  or the union of  some edges of  A(Ec).  

The above lemma indicates that constructing CWV(S, O) based on A(Ec)  is justifiable. Moreover, 
as IEc] = O(mn + rfl), by using a result of [5], we obtain the following counterpart of Lemma 1. 

Lemma 12. The number of  edges and vertices in CWV(S, O) is O((mzz) 2 -- n4). 
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Fig. 6. The CA lists of the edges on a line in CWV(S, 0). CA, can be obtained from CA,_1 by swapping the pair of sites 
within the parentheses. 

5.2. An algorithm for constructing CWV(S, 0) 

Owing to the fact that both CV(S, 0) and CWV(S, 0) are embedded in the arrangement of a set 
of lines determined by the sites and obstacles, and that they differ only in the shape of Voronoi edges 
originated from bisectors (specifically, those from the former can only be line segments whereas those 
from the latter can be either circular arcs or line segments), we shall attempt to modify algorithm 
Find-CV(S, 0) to produce an algorithm for constructing CWV(S, 0). 

After a careful inspection of algorithm Find-CV(S, 0), we identify the following three key issues 
which must be addressed in order to facilitate such modification: (1) how to insert C into arrangement 
A(0’ u T) to form A(&); (2) h ow to find the visible-site list for each edge in A(,!&); and (3) how 
to find the closest-site list for each edge in A(Ec). We consider each issue separately below. 
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(1) Let ci,j denote the circular bisector determined by two weighted sites si and ,sj. Suppose 
w(s~) > w(sj) ,  then site sj lies inside q,j and the visibility lines passing through sj must cross 
ci,j. Therefore, the insertion of Ci,j can begin at the intersection of q,j with one of those visibility 
lines. Starting from that intersection, we traverse aid and insert it, arc by arc, into A ( U  © T). As q j  
intersects each line and each circle at most twice, using the result of Edelsbrunner et al. [5], inserting 
n(n - 1)/2 such ci,j into A(O'UT)  can be done in O(m2~'?, 2 +n42  c~(n)) time and O(~~t2n 2 q ,/~4) space 
where ct(n) is the functional inverse of the Ackermann's function. 

(2) Note that the visible-site list tbr an edge in A(Ec:) is completely determined by the structure of 
A(O' U T) and the position of the edge in the plane. Therefore, Step 3(a) of algorithm Find-CV(S, O) 
can be applied directly with slight modification. 

(3) Again, Step 3(b) of algorithm Find-CV(S, O) can be applied directly with slight modification. 
(Refer to Fig. 6) 

Hence, with slight modification, we can convert algorithm Find-CV(S,O) into an algorithm for 
constructing CWV(S, O). The resulting algorithm has O(((lrt2n 2 4-~42a0~))n)) time complexity and 
O(((m2n 2 + n4)n)) space complexity. 

Finally, it is easily verified that with slight modification, algorithm Closest-visible sites can also be 
used to reduce the time and space bounds by a factor of 7~, resulting in the next theorem. 

Theorem 4. The constrained and weighted Voronoi diagram CWV(S, O) can be constructed in 
O(lrg27~ 2 -- n42 c~(n)) time and 0(~'1~27), 2 -F 12, 4) space. 
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