
ELSEVIER Computational Geometry 10 (1998) 89-104

C o m p u t a t i o n a l

G e o m e t r y
Theory and Applications

Finding constrained and weighted Voronoi diagrams in the
plane *

Cao An Wang a,., Yung H. Tsin b

a Department of Computer Science, Memorial University of Newfoundland, St. John 3, NewJbundland, Canada A I C 5S7
i, School qf Computer Science, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Communicated by J. Urrutia; submitted 2 July 1996; accepted 14 July 1997

Abstract

The Voronoi diagram of a set of weighted points (sites) whose visibilities are constrained by a set of line
segments (obstacles) on the plane is studied. The diagram is called constrained and weighted Voronoi diagram.
When all the sites are of the same weight, it becomes the constrained Voronoi diagram in which the endpoints of
the obstacles need not be sites. An ~Q(m2n~2) lower bound on the combinatorial complexity of both constrained
Voronoi diagram and constrained and weighted Voronoi diagram is established, where n is the number of sites
and m is the number of obstacles. For constrained Voronoi diagram, an O(m2", 2 + ~z 4) time and space algorithm
is presented. The algorithm is optimal when m/> crz, for any positive constant c. For constrained and weighted
Voronoi diagram, an 0(//227z2 ÷ n42 c~('~)) time and 0(m2'/22 ÷ 'i24) space algorithm (where c~(~) is the functional
inverse of the Ackermann's function) is presented. The algorithm is near-optimal when m/> cn, for any positive
constant c. © 1998 Elsevier Science B.V.

Keywords: Arrangement; Constrained Voronoi diagram; Visibility; Weighted Voronoi diagram

1. Introduction

The Voronoi diagram is an important geometric structure in computational geometry which has
attracted a lot of attention [1]. Given a set of points (called sites) S in the plane, the standard Voronoi
diagram of S consists of a set of Voronoi ceils, {V(si) I si E S}, such that for any point z E V (s i) ,
d(z , ,si) ~< d(z , s j) for all sj E S, where d(z , 9) denotes the Euclidean distance between z and y.

Many variations of the standard Voronoi diagram have been investigated. One of them is to consider
the diagram in the presence of obstacles in the plane. When the distances in such a Voronoi diagram
are measured by geodesic [8,10], the diagram is called geodesic Voronoi diagram; when the distances

'~ Research supported by the Natural Sciences and Engineering Research Council of Canada under Grants NSERC-
OPG0041629 and NSERC-A7811.

* Corresponding author.

0925-7721/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PH S0925-7721 (97)00028-X

90 C.A. Wang, YH. Tsin / Computational Geometry 10 (1998) 89-104

are measured by visible straight-line segments, the diagram is called constrained (or bounded) Voronoi
diagram [3,4,7,9,11]. Another variation is to assign a weight to each site of the standard Voronoi dia-
gram. This diagram is called weighted Voronoi diagram [2]. In this paper, we consider the constrained
and weighted Voronoi diagram which is the Voronoi diagram of a set of weighted sites restricted by
a set of line segments (obstacles) in the plane. In contrast with the diagrams studied in [4,7,9,11],
our Voronoi diagram does not require that every obstacle endpoint be a site (the Peeper's Voronoi
diagram [3] also does not make such requirement). This drastically increases the complexity of the
diagram, resulting in superlinear combinatorial complexity in its structures.

Practical applications of weighted Voronoi diagram were reported in [2], which cited several other
papers. The disciplines of applications include economy, geography, communications, and biology.
In the previous works, the plane is assumed to be without restrictions. In reality, however, the
plane usually contains obstacles. For instance, in modeling a set of microwave or laser transmit-
ters with varying strength, it is desirable to determine the regions in which a certain transmitter (if
any) received best among the others. If the area contains buildings and mountains, then the buildings
and mountains can be regarded as obstacles because the waves of a transmitter can be blocked by
them. Since our Voronoi diagram takes obstacles into consideration, it is therefore a better geometric
model.

The existence of obstacles makes a simple divide-and-conquer method and a straight-forward sweep-
line method for constructing the constrained and weighted Voronoi diagram inefficient. We observe
that there exists a close relationship between the diagram and the arrangement of a set of lines,
where the lines are completely determined by the sites and obstacles. By constructing a visible-site
list and a closest-site list for each edge in the arrangement, we are able to construct the diagram
efficiently.

This paper is organized as follows. For clarity, we first consider the diagram of equi-weighted sites
(i.e., constrained Voronoi diagram) in Sections 3 and 4. Section 3 gives an Y)(m2n 2) worst-case lower
bound on the combinatorial complexity of constrained Voronoi diagrams of n sites and m obstacles.
Section 4 describes an algorithm for constructing the constrained Voronoi diagram. The algorithm is
worst-case optimal in both time and space when m /> en, where e is a constant. In Section 5, the
diagram for sites with different weighs is considered.

2. Preliminaries

First, we give several definitions and outline some properties of constrained and weighted Voronoi
diagram.

Definition 1. Let O be a set of disjoint line segments representing obstacles. Two arbitrary points x
and y in the plane are visible to each other in the presence of O iff the open line segment joining
them does not intersect any obstacle in its interior unless they are collinear.

Definition 2. Let s be a site in the plane and w(s) be the weight of s. The distance of s to an
arbitrary point x, denoted by dw(x, s), is defined as d(x, s)/w(s), where d(x, s) is the Euclidean
distance between s and x. The bisector of two sites s and s t is the locus of all points x satisfying

=

C.A. Wang, Y.H. Tsin / Computational Geometry 10 (1998) 89-104 91

, W(S2)= 2 V(S=)

s,

W(S 1)=3 --m

V(S t)

s~

W: S3)= I

vrs;

Fig. 1. A constrained and weighted Voronoi diagram.

Note that if s and s ~ are two sites of different weights, their bisector is a circle with center
(w2(s)s - w2(s')s ') /(w2(s) - w2(s')), and radius w(s)w(s')d(s, s ') /(w2(s) - w2(s')) [2]. If they are
of the same weight, then their bisector is the straight line bisecting the line segment joining them.

Definition 3. Let 8 be a site in the plane with weight w(s) in the presence of obstacle O, the visibility
distance between s and an arbitrary point x is defined as

dwo(X, s) = (d~(x,co, s), otherwise.if x and s are visible to each other,

Definition 4. Let S be a set of weighted sites and O be a set of obstacles in the plane. The constrained
and weighted Voronoi diagram, denoted by CWV(S, O), is a set of Voronoi cells {V(si)] si E S}
such that V(si) = {x E ~2] dwo(X, si) <<, dwo(X, sj) and dwo(X, si) ~ co, for all sj E S, si ~ sj}.
A Voronoi edge is a maximal straight line segment or circular arc on the boundary of a Voronoi cell.
The endpoints of the Voronoi edges are called Voronoi vertices.

An example of constrained and weighted Voronoi diagram of three sites and three obstacles is shown
in Fig. 1. Clearly, if the weights of the sites in S are all the same, then CWV(S, O) becomes constrained
Voronoi diagram CV(S, O), and if O -- 0, CWV(S, O) becomes weighted Voronoi diagram WV(S).
Constrained and weighted Voronoi diagram have some special properties which do not normally exist
in the other types of Voronoi diagrams. The most notable ones are the following.

92 C.A. Wang, YH. Tsin / Computational Geometry 10 (1998) 89-104

(i) Every Voronoi edge is a section of the bisector of two sites (~ in Fig. 1), or a section of a line
determined by a site and an endpoint of an obstacle (v ~ in Fig. 1), or a section of an obstacle
(v-~-~ in Fig. 1). Note that the last two types of Voronoi edges do not exist in standard or weighted
Voronoi diagrams and the last type of Voronoi edges does not exist in geodesic Voronoi diagrams
and bounded Voronoi diagrams, although they do exist in the Peeper's Voronoi diagram [3].

(ii) The boundary of a Voronoi cell in CWV(S) consists of circular arcs and/or line segments.
(iii) A Voronoi cell may consist of several disjoint sub-cells. In Fig. 1, V(Sl) consists of three disjoint

sub-cells.
(iv) A Voronoi diagram may not cover the entire plane, i.e., some regions in the plane may not belong

to any Voronoi cell due to the blockade of obstacles. These regions are called blank regions. In
Fig. 1, the heavily shaded region is a blank region.

In the following two sections, we assume that the sites are equi-weighted, i.e., we consider con-
strained Voronoi diagram.

3. A lower bound for constrained Voronoi diagram

We shall show that the number of disjoint Voronoi sub-cells for constrained Voronoi diagrams is
f2((mn)2). The time and space lower bounds are then immediate. The following notations are used in
the discussion. X and Y represent respectively the :c-axis and the y-axis of an :cy-orthogonal coordinate
system. X + = {(x,y) E I~ 2 I X ~ 0} and X - = {(x,y) E R e I x < 0} (Y+ and Y - are defined
similarly). X+(xo, Yo) = {(x,9) E IR 2 I Y = Yo A x ~> xo} (respectively X - (z o , Yo) = {(x,y) E IR 2 [
y = Yo A x < xo}) represents a ray on the x/l-plane starting at point (:Co, Yo), parallel to X and extends
towards the positive (respectively negative) end of X. Y+ (:Co, Yo) and Y - (:Co, Yo) are defined similarly.

Theorem 1. Let 5; be a set of n sites and 0 be a set of m obstacles. The combinatorial complexity
of CV(S, O) is Y2((mn) 2) in the worst case.

Proof. (Refer to Fig. 2.) Let the m obstacles be of the same length, say d' and d ' = d - c for
some constants d and c such that c << d. Assume without loss of generality that m and z~ are even
numbers. Divide both S and O into two groups of equal size. Place the first group of m / 2 obstacles
{ol, o2 , . . . , o,~/2 } on ray X + (0, 0) such that o~, 1 ~< i <~ m/2 , is placed between the two points (i - 1)d
and (i - l)d + d ~. Clearly, every two consecutive obstacles are at a distance c apart. Place the second
group of m / 2 obstacles {o,~/2+1, om/2+2, • • •, o,,~} on ray Y+(0, 0) in a similar manner. Place the first

group of n/2 sites {sl, s a , . . . , sn/2} on ray X + (0 , - m 2 d) such that si = ((i - 1)2d/(n - 2) , - m 2 d) ,

1 ~< i ~< n/2. Place the second group of n/2 sites {sn/2+t, sn /2+2, . . . , sn} on ray Y+(-2mZd , 0)

starting at (-2m2d , 0) in the same manner.
Let 2D-box be the quadrilateral determined by rl, r2, X+(0, 0) and Y+(0, 0), where rl is the line

joining sl and the rightmost endpoint of era/2, and r2 is the line joining sn/2+l and the upper endpoint
of era. Based on the above construction, it is easily verified that the region inside the 2D-box visible
from a site on ray X + (0 , - m Z d) consists of m/2 - 1 distinct strips. Therefore, the n/2 sites on ray
X + (0 , - m 2 d) determine (m - 2)n /4 distinct strips inside the 2D-box. Similarly, the n/2 sites on ray
Y+ (-2mad , 0) determine (m - 2)n /4 distinct strips inside the 2D-box. When c is sufficiently small,
the first group of strips divides the second group into O((mn) 2) disjoint substrips such that any point

C.A. Wang, YH. Tsin / Computational Geometry 10 (1998) 89-104 93

Y (- 2 m - d , O)

d

n
- - sIldS

2

m
- - o b s t a c l e s

2

E

o

Y

t" 2

i J - - _

__~+ 52

~7
X

d '
m

- - o b s t a c l e s
2

17

2
s i t e s

+

: X (O , - t / d)

Fig. 2. A worst-case lower bound.

in these substrips is visible from some sites on ray Y+ (-2m2d , 0) and is not visible from any site
on ray X + (0, -mZd). Moreover, each of these substrips is bounded by four quadrilaterals, two of
which are 'blank' regions while the remaining two are intersections of the two groups of strips. By
the positions of the sites and the obstacles, it is easily verified that any point in these intersections is
closer to some sites on ray X + (0 , - m 2 d) than to any site on ray Y+(-2mZd, 0). Hence, each of the
~((~n) 2) substrips is a Voronoi sub-cell associated with a site on Y+(-2mZd, 0). []

4. Constructing the constrained Voronoi diagram

The algorithm presented in this section uses the construction, called arrangement, of Edelsbrunner
et al. [6]. We refer the reader to [6] for its definition.

94 C.A. Wang, Y.H. Tsin / Computational Geometry 10 (1998) 89-104

Definition 5. A straight line is called the base line of a line segment (or a ray) if it contains the line
segment (or the ray). An obstacle line is the base line of an obstacle. A visibility line is a straight line
determined by a site and an endpoint of an obstacle.

We shall denote the set of all obstacle lines by O t, the set of all bisectors b y / 3 and the set of all
visibility lines by T. We further let E = O ~ U/3 U T and A(E) be the arrangement of E. Note that
IO'l = m, IB I = 72(r~ - 1)/2, IT] = 2mr~ and]E I = O(mn + 722).

Lemma 1. The number of Voronoi edges in CV(S, O) is O((rnn) 2 4- f/4).

Proof. Every edge of CV(S, O) is either an edge of A(E) or the union of some edges of A(E). Since
IE[= O(mn + n2), by Lemma 2.5 of Edelsbrunner et al. [6, p. 344], the number of edges and vertices
in A(E) , and hence in CV(S, O), is O((mn + n2) 2) = O((mn) 2 q- 724). []

Since A(E) embeds CV(S, O), we may construct CV(S, O) by first constructing A(E) and then
deleting all those edges in A(E) which are not in CV(S, O). The algorithm presented below is based
on this idea. For the ease of description, we make the following assumptions.

Assumption 1. Every obstacle line, bisector and visibility line is distinct (consequently, no two lines
in E coincide).

Assumption 2. The obstacles are non-intersecting.

Assumption 1 can be removed by including O((mn) 2 + n 4) testing steps as IEI = O(mn + n2).
Assumption 2 can also be removed without affecting the time and space bounds.

Definition 6. The closest-site list of an edge e in A(E), denoted by CAe, is a list of the n sites
sorted by their Euclidean distances from a fixed point on e in ascending order, disregarding the
obstacles.

From the fact that no bisector intersects the interior of e, it is easily verified the following.

Proper ty 1. CAe is independent of the interior point used in calculating the n distances.

From the fact that no visibility line intersects the interior of any edge in A(E), we have Property 2.

Proper ty 2. Each edge of A(E) is an 'atomic' element in the sense that it is completely visible or
invisible from a site.

Hence, it makes sense to talk about the visible sites of an edge.

Definition 7. A site s is a closest-visible site of an edge e if s is the first 'visible' site in CA~.

Lemma 2. Let e be any edge in A(E). Then e does not lie on a Voronoi edge in CV(S, O) iff e
has no closest-visible site or e is not on the boundaries of the Voronoi cells of its closest-visible
sites.

Proof. Trivial. []

C.A. Wang, YH. Tsin / Computational Geometry 10 (1998) 89-104 95

Algorithm Find-CV(S, O)
Step 1. Construct E.
Step 2. Construct the arrangement A (E) .
Step 3. (Delete all those edges in A (E) not belonging to CV(S, 0) 3

(a) For each edge e of A (E) , find the sites visible to e (visible-site list).
(b) For each edge e of A (E) , order the sites according to their Euclidean distances from e (closest-

site list);
(c) For each edge e of A(E) , determine the closest-visible sites of e. If no such site exist, then

delete e.
(d) For each undeleted edge e, determine if e appears on the boundaries of the Voronoi cells of its

closest-visible sites. Delete e if it does not.
Step 4. Construct CV(S, O) from the edges remaining in A (E) .

The correctness of algorithm Find-CV(S, O) follows from Lemma 2.

Details of the steps
Step 1 is straight-forward and can be done in O (m n + n 2) time and space.
Step 2 can be done in O ((m n) 2 ÷ n 4) time and space [6]. The data structure used in representing

the arrangement A (E) is the conventional incidence graph. Additional information are associated with
each node as described later.

The implementation of Step 3 is most complicated. For ease of description, we shall first present a
non-optimal algorithm and then reduce its time and space to the desired optimal bounds.

In Step 3(a), the list of all visible sites for every edge in A (E) is determined. A brute-force method
requires testing the visibility of each edge against every site of S. This results in an O(m3n 3 + m n 5)
time algorithm. The observations made in Lemma 3 below support a faster method.

Definition 8. Let e and e" be two edges in arrangement A (E) which share an endpoint v. e" is said
to be the (clockwise) successor of e if e" is the first edge that e encounters when e rotates around v
clockwise. If the base line l of e" (e, respectively) is a visibility line determined by site s and obstacle
o, then o is up (down, respectively) if o and e (e ' , respectively) are on the opposite sides of l. o is
down (up, respectively) otherwise. Let 1 be a visibility line determined by site s and endpoint p of
an obstacle. An edge e on I is unmasked if e is visible from s and is on that half-line on 1 which is
originated from p and does not contain s. Edge e is masked, otherwise.

Lemma 3. Let vis(e) denote the set o f all sites visible from edge e. Let e and e" be two edges in A (E)
such that e and e" share an endpoint v and e" is the successor o f e. Let l (respectively I t) be the base
line o f e (respectively e") and in cases where l (respectively 1 t) is a visibility line, 1 (respectively I t) is
determined by obstacle o and site s (o t and s t, respectively).
(1) Suppose that none o f l and l' is a visibility line, then vis(e") -- vis(e).
(2) Suppose that exactly one o f l and l t is a visibility line. Then,

(i) i f l is a visibility line and o is up, then vis(e") -- v i s (e) - { s } t fe is unmasked," vis(e") -- vis(e)
i f e is masked;

(ii) i f l' is a visibility line and o' is down, then vis(e") = vis(e) U {s'} i f e" is unmasked;
vis(e") = vis(e) /f e t' is masked;

(iii) in the remaining cases, vis(e") = vis(e).

9 6 C.A. Wang, Y.H. Tsin / Computational Geomet O, 10 (1998) 89-104

(a)

s' l'

s o ~ (d)

(b)

s (e)

S' l '

s ~ (c)

F ig . 3. S o m e i l l u s t r a t i o n s o f L e m m a 3.

(3) Suppose that both l and l ~ are visibility lines. Then,

(i) /f both o and o' are down, then vis(e") = vis(e) to {s'} /f e" is unmasked; vis(e") = vis(e)
if e n is masked;

(ii) if o is up and o t is down, then vis(e") = vis(e) - {s} if e" is masked and e is unmasked;
vis(e") = vis(e) U {s'} if e" is unmasked and e is masked; vis(e") = (vis(e) - {s}) tO {s'}
i f e" and e are unmasked; vis(e") = vis(e) i f both e and e" are masked;

(iii) i f o is down and o' is up, then vis(e") = vis(e);
(iv) if both o and o' are up, then vis(e t') = v i s (e) - {s} if e is unmasked; vis(e") = vis(e) if e

is masked.

Proof . (1) Suppose that v is not on any obstacle, then l and I t divide the plane into four regions
(Fig. 3(a)). Every site in region (II) or region (IV) is either visible or invisible to both e and e n. For
each site s in region (I) or region (III), since e" is the successor of e, no visibility line created by s
can pass through v. Again, s is either visible or invisible to both e and e". Thus, vis(e n) = vis(e).
A similar analysis can be applied to the case where v lies in the interior of an obstacle. For the case
where v is an endpoint of an obstacle (Fig. 3(b)), the base lines and the obstacle divide the plane into
five regions. Every site in region (II) or region (V) is either visible or invisible to both e and e n. Every
site in region (III) is invisible to both e and e n due to the blockade of the obstacle. There is no site
in region (I) or (IV) as e" is the successor of e. Thus, vis(e") = vis(e).

(3)(i) When v is not on any obstacle. Since e n is the successor of e and o is down, regardless of
whether e is masked or unmasked, s is either visible or invisible to both e and e n. Moreover, s t is
visible to e" and not to e if e n is unmasked (Fig. 3(c)) and is visible or invisible to both e and e n if
e n is masked (Fig. 3(d)). For every site other than s and s ~, the site is either visible or invisible to
both e and e n. Hence, vis(e n) = vis(e) U {s I} if e" is unmasked and vis(e n) = vis(e) if e n is masked.
When v lies in the interior of an obstacle, the above analysis can be applied similarly. When v is an
endpoint of an obstacle, o and o ~ must coincide with that obstacle due to Assumption 1 (Fig. 3(e)).
The rest of the analysis is similar to the above one.

Subcases (ii)-(iv) of case (3) and case (2) can be analyzed in a similar way. []

C.A. Wang, Y.H. Tsin / Computational Geometry lO (1998) 89-104 97

For each edge e in E, we represent vis(e) by an n-bit bucket, VB~, such that the kth bit of VB~ is
clear iff e is visible from site sk. Moreover, if e is on an obstacle, then e is considered as having two
sides each of which is associated with a distinct bucket. In Lemma 3, if e (e", respectively) is on an
obstacle, then vis(e) (vis(e"), respectively) refers to the VB bucket of that side of e (e", respectively)
which e" (e, respectively) encounters when e rotates around v clockwise. Since the successor of e
can be determined in O(1) time using the data structure of arrangement A(E), Lemma 3 implies that
given vis(e) for any edge e, vis(e"), where e" is the successor of e, can be determined in O(1) time.

To construct the VB buckets, we first preprocess the visibility lines to mark or to mask out some
of the edges. Let l be a visibility line determined by site s and endpoint p of an obstacle. Traverse l
to locate the edges forming the line segment ~pp and check if any obstacle crosses sT. If a crossing is
detected, then the entire 1 is masked. Otherwise, the edge on ,~p incident upon p is marked. Moreover,

____+

let p~ be the point on ray sp which is nearest to p and at which an obstacle crosses the ray. Then all
those edges of I which are not on pp~ are masked. Note that when p/does not exist, pp~ is the ray on
_____>

sp with end-point p.
Next, we construct the VB buckets for all the edges on or incident upon the obstacles. Let o be

an obstacle with endpoints p and q. We shall call the halfplane to the left (right) of the ray q~ the
left halfplane of (right halfplane) o. For every edge e on o, the leftside (rightside) of e is that side of
e facing the left halfplane (right halfplane) of o. Let e be the edge on o that has p as an endpoint.
We begin with computing the VB bucket of the leftside of e, denoted by VB~(L). Clearly, VB~(L)
consists of all those sites which lie in the left halfplane of o and are visible to e. Since each of those
sites contributes a marked edge incident upon p, VB~(L) can be easily determined. Once VB~(L) is
determined, we proceed around p clockwise to determine the VB buckets of all the edges incident
upon p by using Lemma 3. When all these buckets are determined, the endpoint p is marked. Clearly,
the VB bucket that is determined last is that of the rightside of e. Let r be the other endpoint of e.
We proceed around r clockwise to determine the VB bucket of every edge incident upon r and lies
in the right halfplane of o until an edge on o is encountered. Endpoint r is then marked. This process
is repeated around o until we are back to p. Obviously, by that time, the VB buckets for all the edges
on or incident upon o are determined.

Now, for each line l E E, we traverse l, starting at an extreme edge .f. First, if VBf has not been
determined, we determine it by testing, for each site, if an obstacle blocks the view of the site from f .
In general, let p be the endpoint of the current edge which has not been examined. If p has been
marked, then the VB buckets of all the edges incident upon p have been determined. So, we proceed
immediately to the tollowing edge on 1. If p is unmarked, We compute the VB buckets for all the
other edges incident upon p by using Lemma 3; mark p and then proceed to the following edge. In
the case where p does not exist, we have reached the other end of 1 and we are done with 1.

Lemma 4. The VB buckets of the edges in A(E) can be determined in O(((~n~n) 2 + ~Z4)TZ) time and
space.

Proof. Preprocessing each visibility line l takes O(mn + 7Z 2) time as there are O(rr~n + Tfl) lines
intersecting 1 creating at most that many edges on l and examining each such line and edge takes
O(1) time. Preprocessing all the visibility lines thus takes O((n~n + n2)mn) = O(z~z2n 2 q- ~4) time.
The maximum number of edges incident upon endpoint p of obstacle o is O(m + zz2). Using the
marked edges determined in the preprocessing step, and the structure of arrangement A(E), VB¢ (L)

98 C.A. Wang, Y.H. Tsin / Computational Geometry 10 (1998) 89-104

can be determined in O(m + 12 2) time. Therefore, determining the VB~(L) buckets for all the m
obstacles takes O(m 2 ÷ ran2). Determining the VB bucket for the extreme edge f of 1 can be done
in O(mn) time as there are m n site-obstacle pairs and testing each such pair could be done in
O(1) time. Since]E I = O(mn + n2), the total time required to compute the VB buckets for all
those extreme edges is O(/7/,2n 2 ÷ n4). For the remaining edges, as each of their VB buckets can
be determined by copying the VB buckets of the (clockwise) predecessors and making a O(1) time
modification, it takes O(n) time to determine the VB bucket for each of them. Let V be the set of all
the vertices in A(E). The total time spent on determining the VB buckets of all the edges in A(E)
is thus O((mz/z 2 ÷/3,4) ÷ (m2 ÷ m n 2) ÷ (~-~pEV deg(p))n) = O((/7~2n 2 ÷ n4)~), where deg(p) is the

degree of p in A(E). The space usage is obviously O(m2n 2 ÷ n 4) n-bit buckets giving rise to the
O(((mn) 2 ÷ n4)n) space bound. []

Lemma 5. The closest-site list, CAe, for the edges in A(E) can be determined in O(((mn) 2 ÷ n4)n)
time and space.

Proof. Consider any line l c E. l is divided by the other lines in E into a sequence of edges
(e l , . . . , ek), where k <<, O(mn + n2). To compute CA~, 1 ~< i ~< k, we first determine CA~. To do
so, we compute the distances from an arbitrary point of el to the sites (Property 1) and then sort the
sites by these distances in ascending order. The resulting list is CAel. From CA~, we create an array of
n pointers, ptrej [l..n], such that ptr~j [i] points to the position of site si in CAe~. In general, ptre[i] --- j
iff site si is the jth element in CA~ where e is the edge being examined. Clearly, this process takes
O(n logn) time. To determine CAe~ for i > 1, we traverse l, edge by edge, starting at el. Suppose
CAe~_~ has just been determined. Let p be the common endpoint of ei-1 and ei. We copy CA~ ~ into
CA~ i and ptr~_, into ptr~ and then examine all the lines passing through p. For each of the lines
which ;is a bisector, we swap the pair of sites determining that bisector in CAe~. This could be done in
O(1) time with the help of ptr~. We also swap the two corresponding pointers in ptr~. Lines which
are not bisectors are ignored. When all the lines passing through p are examined, CAe~ is determined.
Since copying each CA and ptr takes O(n) time and swapping a pair of sites takes O(1) time, it takes
O(n) time to process each line intersecting 1. As there are O(mn + n 2) lines in E intersecting l, the
time required to determine the CA lists for all the edges on 1 is thus O(n log n + (ran + n2)n). The
total time required to determine the CA lists of all the edges in A(E) is thus O(((mn) 2 + nn)n). The
space bound is obviously O(((mn) 2 ÷ ~,~4)/~). []

The VB buckets and CA lists of some of the edges on a line are shown in Fig. 4.

Lemma 6. The closest-visible sites for the edges in A(E) can be determined in O(((mn) 2 ÷ n4)n)
time and space.

Proof. By scanning CA¢ and examining the VB~ bucket for each entry encountered, the closest-visible
sites of e can be determined in O(n) time (note: when e is on an obstacle, the closest-visible sites of
each of its two sides are determined separately). Hence, the closest-visible sites of the edges of A(E)
can be determined in O((m2n 2 ÷ n4)n) time and space. []

In determining whether an undeleted edge belongs to the boundary of the Voronoi cell of its closest-
visible site in Step 3(d), we use the following lemma.

C.A. Wang, Y.H. Tsin / Computational Geometry 10 (1998) 89-104 99

VB e t

CA %

VB %
CA e,

VB e~
CA e¢

VB e 4

CA %

VB %

CA e~

VB %
CA e~

VB e z

CA e z

VB e~

CA e~

VB %

CA %

0 o l

S~ S , S~

S~ R~ R~

St R~ g,

R~ S~ R ,
0 ~ j 0

S S ,

S~ R~ R~

S~ g~ £~

S~ SI S?
l ~ + / 0

S ~ S v $1

e / " " e e3 e4 ~ e6 ~ e7 e~
[. 3 - - •

j--

- , , . . j f . - . " ""

--. . j ...,..--

' ' . . . !ij...f
~ ~ .5 ',~ •

....... %

..- " ~ S ,e i j ..," "".,,.
b~2 X~

. \

Fig. 4. The VB buckets and CA lists for some edges in CV(S, O).

L e m m a 7. Let e be an edge of A (E) and s be its closest-visible site. Then e is on the boundar3., of
the Voronoi cell V(s) iff
(1) e is on an obstacle; or
(2) e is on a bisector and has two closest-visible sites; or
(3) e is an unmasked edge on a visibility line determined by s.

Proof. Trivial. []

L e m m a 8. Determining the edges of A (E) that lies on the Voronoi edges of CV(S, O) takes
O((mn) 2 + n 4) time and space.

Proof. Clearly, determining into which of the three cases an edge falls takes O(1) time. As there are
O((mn) 2 + n 4) edges in A (E) , Step 3(d) can be done in O((mn) 2 + n 4) time and space. []

Step 4 is obvious and can be done in O((mn) 2 + I"Z 4) time and space.

Theorem 2. The constrained Voronoi diagram CV(S, O) can be constructed in O(((mn) 2 + n4)z~)
time and space.

Proof. Immediate. []

Reducing the time and space used in Find-CV(S, O). To reduce the time and space bounds by
a factor of n, we must maintain and copy no more than O(m2n + m n 2) VB buckets, CA lists

100 C.A. Wang, Y.H. Tsin / Computational Geometry lO (1998) 89-104

• S" l

l '=b.~..,
(a)

~ " r

(b)

Fig. 5. Two illustrations of Lemma 9.

and ptr arrays. This can be achieved by combining Steps 3(a), (b) and (c), and having the edges
to share buckets, lists and arrays. First, as edges on obstacles have two sides, we shall deal with
them separately. Specifically, we determine the VB buckets of all the edges on or incident upon
the obstacles using the same method described in Step 3(a). Following the analysis given there, this
process takes O((m2n 2 + n 4) + (m 2 + ~1~?~ 2) %- (~-~pc'V' deg(p))n) time where V' is the set of vertices

on the obstacles. Clearly, ~-~p~v' deg(p) is the number of edges on or incident upon the obstacles

which is bounded above by o(mZn, + ~rnT~2). Hence, setting the buckets of all these edges takes
O((mzn + mnz)n) = O(77zzTz2 %- z14) time. Similarly, computing the CA arrays and the ptr pointers
for these edges take O(~rr~2712 %- 7~4) time. Using VB~ and CA~, for each e on or incident upon the
obstacles, a doubly-linked list, called CCAe, is created which chains all the sites in CA~ that are visible
to e. The sites in CCA~, are ordered according to their order in CA~. Computing the CCA lists can
clearly be done in o (m Z n 2 + 'n 4) time. Since the closest-visible site of e is the first node in CCA~, it
can thus be determined in O(1) time.

For the remaining edges in A (E) , our strategy is to share among the edges no more than O(zr~Z~z %-
mn 2) VB's, CA's, ptr's and CCA's. For clarity, we shall assume without loss of generality that
deg('~,) = 4 for every vertex ~, in A (E) .

Lemma 9. Let v be a common endpoint o f edges e, e ~, e" and e'" in A (E) where e and e t (respectively

e" and e'") are on the same base line l (respectively l"). Given CCA(e) and CCA(e"), CCA(e') and

CCA(e") can be determined in O(1) time.

Proof. Without loss of generality, we assume e " is the successor of e. We consider three cases
separately.

Case (i): both I and l" are not visibility lines. Then by Lemma 3(1), VBe, = VBe VBe. If
l" is an obstacle line, then obviously, CAe, = C A c . Hence, CCAe, = CCA~. If l" is a bisector line,
then CCA~, can be obtained from CCAe by swapping sites s and s", where s and s" determine l"
(Fig. 5(a)). Therefore, CCAe, can be computed in O(1) time from CCAe. Similarly, CCAe,,, can be
obtained from CCA~,, in O(1) time.

C.A. Wang, YH. Tsin / Computational Geometry 10 (1998) 89-104 101

Case (ii): both 1 and l" are visibility lines. Clearly, CA~ = CA~, = CA~,, = CA~ Let I (respectively
l") be determined by site ,s (respectively s") and obstacle o (respectively o").

(a) Suppose o, o" are both down without restriction to e and e'" (Fig. 5(b)). Then o" is down while
o is up without restriction to e'" and e'. By Lemma 3(3)(i) and (iii), VB~ and VB~,,, differ in at most
the site s" whereas VB~, = VB~. Hence, CCA~, can be obtained from CCA~ by inserting, at most,
the site s" into the list. The insertion can be done in O(1) time as the neighboring sites of s" in CCA~.,
can be determined by referring to CCA~,, (Fig. 5(b)). Similarly, CCAc,,, can be obtained from CCA~,,
in O(1) time.

(b) In the remaining cases, it is easily verified that CCA~, and CCA~,,, can be obtained from CCA~
and CCA~,, in O(1) time by deleting or inserting at most one site (s or ,s") each.

Case (iii): exactly one of l, l" is a visibility line. The argument is similar to those for the above
two cases. []

Algorithm Closest-visible sites
(Remark: For clarity, we assume without loss of generality that no two lines in A(E) are parallel.)
Step O. Compute CCA~ and determine the closest-visible sites for every edge e on or incident upon

an obstacle.
Step 1. Pick a line, say l, from E and compute CCA~ for every edge e on or incident upon I. Determine

the closes-visible sites for each such e and mark the edge. For every edge incident upon l,
mark its end-vertex on l and partially-mark its other end-vertex (if exists) once.

Step 2.
(a) Examine all the edges incident upon l to determine all those vertices which are partially,-

marked twice. Insert all those vertices into a queue Q.
(b) repeat

while (the queue Q is non-empty) do
remove a vertex v from Q and mark the vertex;
let the four edges incidenting upon v be e, e', e" and e'" and e, e" be marked;
for each of e' and e'" do

if the edge has not been processed in Step 0
then obtain its CCA list from one of e, e" and modify' it according to

Lemma 9;
determine the closest-visible sites of the edge;

mark both e ~ and e ~''
endwhile;
for each of the newly marked edges do

if the edge is not an extreme edge (i.e., a ray)
then let v' be the other endpoint; partially-mark vt;

if v' has thus been partially-marked twice then add v' into the queue Q.
until (Q is empty).

To prove the correctness of the above algorithm, it suffices to prove the following assertion: "at
the end of the dth execution of the while loop, all the edges whose longest paths from l has length
at most d have been marked and all those edges whose longest paths from l has length exactly d are
newly marked", where a path from l to an edge is defined as follows: convert every edge in A(E)

102 C.A. Wang, YH. Tsin / Computational Geometry 10 (1998) 89-104

to a directed edge so that the edge is pointing away from the line I. A path from 1 to an edge e is a
directed path from a vertex on l to the tail of e. The length of a path is the number of edges on it.
The assertion can be easily proved by induction on d.

Let D be the maximum length of the paths from l to the edges. By the above assertion, after the
Dth execution of the while loop, all edges are marked, indicating that their closest-visible sites are
determined. Moreover, all the newly marked edges must be extreme edges (i.e., rays). As a result, no
vertex is added to Q. Consequently, execution of the algorithm terminates at the until statement.

Lemma 10. Algorithm Closest-visible sites computes the closest-visible sites for ever), edge of A(E)
in O(rr~zn 2 + n 4) time and space.

Proof. As was mentioned earlier, Step 0 takes O((?Tzn) 2 --/Z 4) time and space. In Step 1, the methods
described in Lemmas 4-6 can be used. Since l is the only line to be processed, this step can be done
in O(mn 2 . . n3) time and space. In Step 2, as no marked vertex is re-marked, no vertex is inserted
into Q more than once. Consequently, no edge is examined more than twice. Since examining an edge
and computing the CCA list for an edge in this step each takes O(1) time (Lemma 9), Step 2 thus
takes O(mn 2 . . n 4) time. The space used by the CCA lists in this step are those allocated in Steps 0
and 1 which is bounded by O(Tnn 2 -- n,4). []

Theorem 3. The constrained Voronoi diagram, CV(S, 0), can be constructed in O(m2n 2 Jr- 7z 4) time
and space which is worst-case optimal when m ~ cn for any constant c.

Proof. Immediate. []

5. Constructing the constrained and weighted Voronoi diagrams

In this section, we first discuss the combinatorial complexity of constrained and weighted Voronoi
diagram. We then show how to modify algorithm Find-CV(S, O) to construct such diagrams.

5.1. Preliminaries

Since the set of constrained and weighted Voronoi diagrams includes the set of constrained Voronoi
diagrams as a proper subset, Theorem 1 immediately provides an Y2((mn) 2) worst-case lower bound
on the combinatorial complexity of constrained and weighted Voronoi diagram.

Let Ec = (0 ~ U C U T) where O' is the set of obstacle lines; C is the set of circular bisectors and T
is the set of visibility lines. Let A(Ec) be the arrangement of Ec. From the fact that A(Ec) embeds
CWV(S, O), we immediately obtain the following lemma.

Lemma 11. Every edge of CWV(S, O) is an edge of A(Ec) or the union of some edges of A(Ec).

The above lemma indicates that constructing CWV(S, O) based on A(Ec) is justifiable. Moreover,
as IEc] = O(mn + rfl), by using a result of [5], we obtain the following counterpart of Lemma 1.

Lemma 12. The number of edges and vertices in CWV(S, O) is O((mzz) 2 -- n4).

CA. Wang, KH. Tsin / Computational Geometry 10 (1998) 89-104

position p(w) 4(-W) r(@4) s(-3,O) f(2,2)

weight -
W(P) W(Y) W(T) w(s) w(t)

1 2 3 0.5 2.5

\

103

Fig. 6. The CA lists of the edges on a line in CWV(S, 0). CA, can be obtained from CA,_1 by swapping the pair of sites
within the parentheses.

5.2. An algorithm for constructing CWV(S, 0)

Owing to the fact that both CV(S, 0) and CWV(S, 0) are embedded in the arrangement of a set
of lines determined by the sites and obstacles, and that they differ only in the shape of Voronoi edges
originated from bisectors (specifically, those from the former can only be line segments whereas those
from the latter can be either circular arcs or line segments), we shall attempt to modify algorithm
Find-CV(S, 0) to produce an algorithm for constructing CWV(S, 0).

After a careful inspection of algorithm Find-CV(S, 0), we identify the following three key issues
which must be addressed in order to facilitate such modification: (1) how to insert C into arrangement
A(0’ u T) to form A(&); (2) h ow to find the visible-site list for each edge in A(,!&); and (3) how
to find the closest-site list for each edge in A(Ec). We consider each issue separately below.

104 C.A. Wang, YH. Ts'in / Computational Geometry 10 (1998) 89--104

(1) Let ci,j denote the circular bisector determined by two weighted sites si and ,sj. Suppose
w(s~) > w(sj) , then site sj lies inside q,j and the visibility lines passing through sj must cross
ci,j. Therefore, the insertion of Ci,j can begin at the intersection of q,j with one of those visibility
lines. Starting from that intersection, we traverse aid and insert it, arc by arc, into A (U © T). As q j
intersects each line and each circle at most twice, using the result of Edelsbrunner et al. [5], inserting
n(n - 1)/2 such ci,j into A(O'UT) can be done in O(m2~'?, 2 +n42 c~(n)) time and O(~~t2n 2 q ,/~4) space
where ct(n) is the functional inverse of the Ackermann's function.

(2) Note that the visible-site list tbr an edge in A(Ec:) is completely determined by the structure of
A(O' U T) and the position of the edge in the plane. Therefore, Step 3(a) of algorithm Find-CV(S, O)
can be applied directly with slight modification.

(3) Again, Step 3(b) of algorithm Find-CV(S, O) can be applied directly with slight modification.
(Refer to Fig. 6)

Hence, with slight modification, we can convert algorithm Find-CV(S,O) into an algorithm for
constructing CWV(S, O). The resulting algorithm has O(((lrt2n 2 4-~42a0~))n)) time complexity and
O(((m2n 2 + n4)n)) space complexity.

Finally, it is easily verified that with slight modification, algorithm Closest-visible sites can also be
used to reduce the time and space bounds by a factor of 7~, resulting in the next theorem.

Theorem 4. The constrained and weighted Voronoi diagram CWV(S, O) can be constructed in
O(lrg27~ 2 -- n42 c~(n)) time and 0(~'1~27), 2 -F 12, 4) space.

References

[1] F. Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure, ACM Comput.
Surv. 23 (3) (1991) 345-405.

[2] E Aurenhammer, H. Edelsbrunner, An optimal algorithm for constructing the weighted Voronoi diagram in
the plane, Pattern Recognition 17 (2) (1984) 251-257.

[3] F. Aurenhammer, G. Stockl, On the Peeper's Voronoi diagram, SIGACT News 22 (1991) 50-59.
[4] L. Chew, Constrained Delaunay triangulations, in: Proc. 3rd ACM Symposium on Computational Geometry,

1987, pp. 215-222.
[5] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, M. Sharir, Arrangements of curves in the plane:

Combinatorial topology and algorithms, in: Proc. 15th International Colloquium on Automata, Languages
and Programming, 1988, pp. 214-229.

[6] H. Edelsbrunner, J. O'Rourke, R. Seidel, Constructing arrangements of lines and hyperplanes with
applications, SIAM J. Comput. 15 (2) (1986) 341-363.

[7] A. Lingas, Voronoi diagrams with barriers and their applications, Inform. Process. Lett. 32 (1989) 191-198.
[8] E. Papadopoulou, D.T. Lee, Efficient computation of the geodesic Voronoi diagram of points in a simple

polygon, in: Proc. ESA '95, Lecture Notes in Computer Science, Springer, Berlin, 1995, pp. 238-251.
[9] R. Seidel, Constrained Delaunay triangulations and Voronoi diagrams with obstacles, Rep. 260, IIG-TU

Graz, Austria, 1988, pp. 178-191.
[10] Y.H. Tsin, C. Wang, Geodesic Voronoi diagram in the presence of rectilinear barriers, Nordic J. Comput. 3

(1996) 1-26.
[11] C.Wang, L. Schubert, Optimal algorithm for constructing the Delaunay triangulation of a set of line segments,

in: Proc. 3rd ACM Symposium on Computational Geometry, 1987, pp. 223-233.

