

SER 301- Análise Espacial de Dados Geográficos

Análise espacial do índice de vegetação EVI2-MODIS de manguezais em diferentes condições ambientais ao longo da costa brasileira

Apresentação - trabalho final

Professores: Dr. Antônio Miguel V. Monteiro; Dr. Eduardo G. Camargo Aluna: Francisca Rocha de Souza Pereira

Roteiro

- Introdução
- Objetivo
- Metodologia
- Resultados
- Conclusões

Manguezal

Manguezais são ecossistemas costeiros de regiões tropicais e subtropicais

Proporcionam condições para a alimentação, proteção e reprodução de muitas espécies animais e são considerados importantes transformadores de matéria orgânica e geradores de bens e serviços

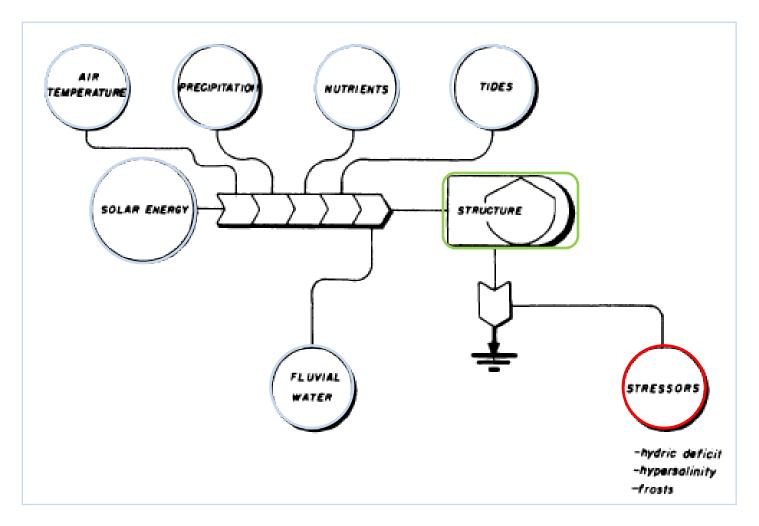
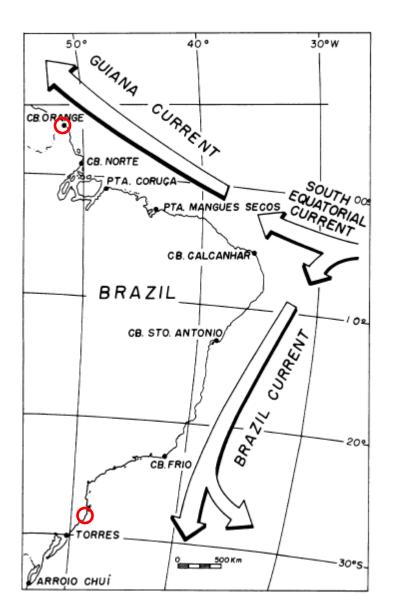
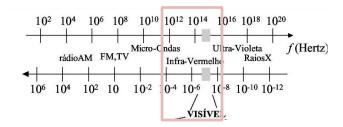



Diagrama ilustrando as forçantes que atuam no desenvolvimento dos manguezais. Modelo de assinatura energética de Odum (1968) (*apud* Shaeffer-Novelli et al.,1990)

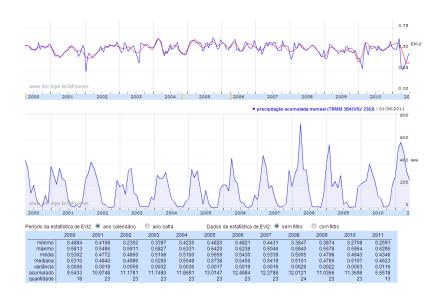
Mapa do Brasil mostrando os 8 seguimentos fiograficos-climáticos costeiros (Shaeffer-Novelli et al. 1990).

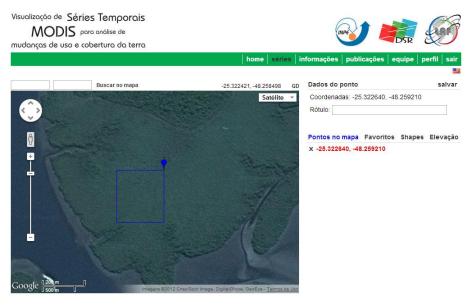

SN	Country	Area (m²)	% of global total	Cumulative %	Region
1	Indonesia	3,112,989	22.6	22.6	Asia
2	Australia	977,975	7.1	29.7	Oceania
3	Brazil	962,683	7.0	36.7	South America
4	Mexico	741,917	5.4	42.1	North and Central
					America
5	Nigeria	653,669	4.7	46.8	Africa
6	Malaysia	505,386	3.7	50.5	Asia
7	Myanmar (Burma)	494,584	3.6	54.1	Asia
8	Papua New Guinea	480,121	3.5	57.6	Oceania
9	Bangladesh	436,570	3.2	60.8	Asia
10	Cuba	421,538	3.1	63.9	North and
					Central America
11	India	368,276	2.7	66.6	Asia
12	Guinea Bissau	338,652	2.5	69.1	Africa
13	Mozambique	318,851	2.3	71.4	Africa
14	Madagascar	278,078	2.0	73.4	Africa
15	Philippines	263,137	1.9	75.3	Asia

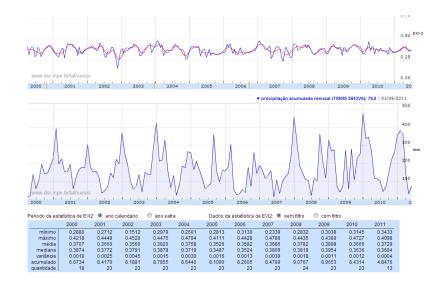
Giri et al. (2010)

Sensoriamento Remoto

Plataforma Terra - Sensor MODIS (Moderate-resolution Imaging Spectroradiometer)


Produtos para o ecossistemas terrestres


MOD09 – EVI2 (Enhanced Vegetation Index)


•Índice sensível a variação na estrutura do dossel, incluindo o índice de área foliar, fisionomia da planta e a arquitetura do dossel (JIANG et al. 2008).

www.dsr.inpe.br/laf/series/index.html

Objetivo

O objetivo do trabalho é averiguar se existe um padrão de distribuição de valores de EVI2, que no contexto representam a estrutura de bosques de mangue ao longo da costa brasileira e correlacionar o EVI2 com as variáveis ambientais tais como temperatura, precipitação e altura da maré

Dados

Produto MOD09 – EVI2

- •580 composições de 8 dias para o cálculo do EVI2 conforme Jiang et al., 2008.
- •A série temporal do EVI2 foi filtrada usando o filtro HANTS (Roerink et al. 2000).
- •Foi extraída a média do EVI2 de todos os pixels (resolução ~250 metros) para o período de dados MODIS 2000 a 2012.
- Polígonos de manguezal foram delimitados baseados no mapeamento do IBAMA (2008).

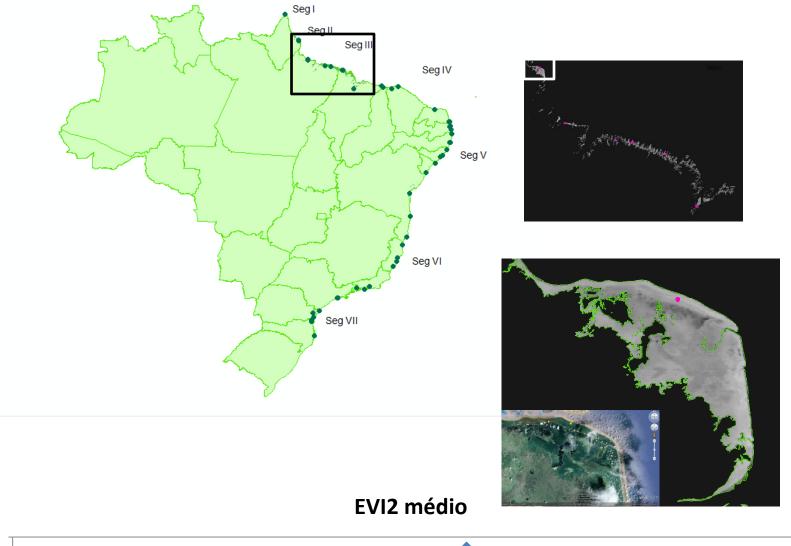
séries temporais MODIS

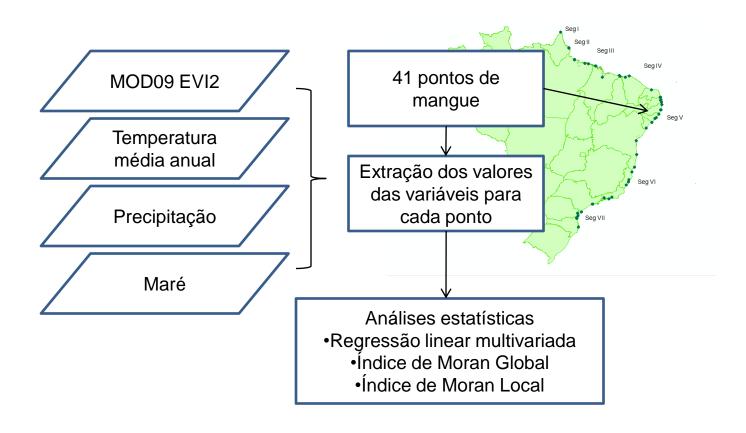
Laboratório Virtual de Séries Temporais de Imagens de Sensoriamento Remoto

www.dsr.inpe.br/laf/series

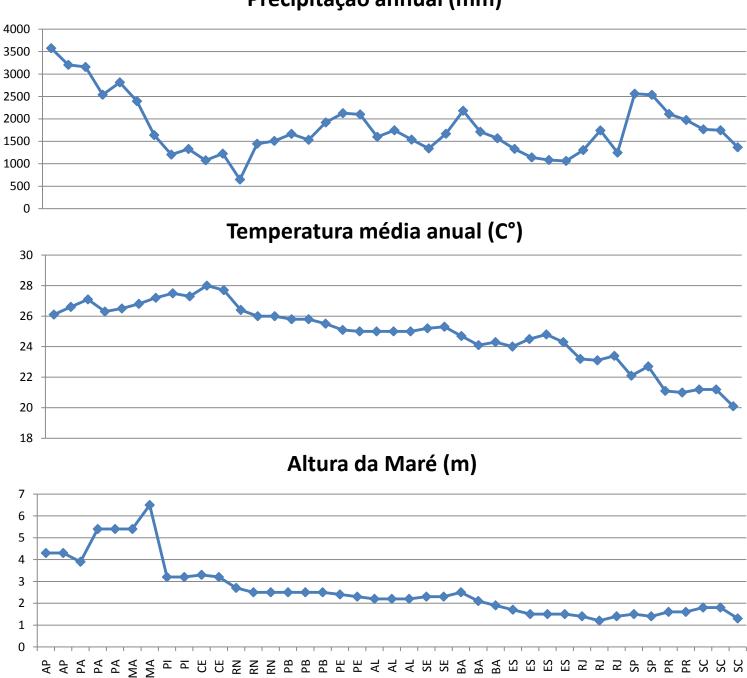
LABORATÓRIO VIRTUAL DE SÉRIES TEMPORAIS

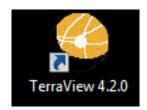
Dados climatológicos:


- Temperatura média anual
- Precipitação anual


(www.worldclim.org)

Altura da maré



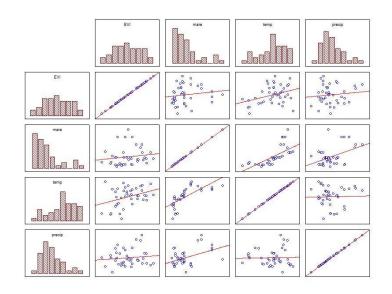


0.55 0.45 0.4 0.35 0.3 0.25

Precipitação annual (mm)

Programas

0																	
	0																
		0		0 (0	0											
							0			0		0					
															0		
																ہ می	0
																φ°	
													0	0			
													,				
											8	1					
								0	0								
			. 0		٥												
		6	°°														
			_														


Table							X
	ID	EVI	TEMPERATUR	PRECIP	MARE	LATITUDE	Ī
8		0.4940000000000000	25.0000000000000000	00.0000000000000000	2.3000000000000000	-8.414240000000000	0
9		0.456000000000000	25.0000000000000000	00.0000000000000000	2.2000000000000000	-9.149330000000000	1
10		0.4500000000000000	26.6000000000000001	3.0000000000000000	4.300000000000000	1.765330000000000	0
11		0.417000000000000	25.0000000000000000	16.000000000000000	2.2000000000000000	-9.66304000000000	1
12		0.459000000000000	25.0000000000000000	38.000000000000000	2.2000000000000000	-9.83714000000000	0
13		0.428000000000000	25.3000000000000001	8.000000000000000	2.300000000000000	1.406200000000000	0
14		0.364000000000000	24.699999999999999	31.0000000000000000	2.5000000000000000	.3.504000000000000	0
15		0.4550000000000000	24.3000000000000001	57.0000000000000000	1.9000000000000000	.7.860900000000000	1
16		0.384000000000000	24.5000000000000000	1.0000000000000000	1.5000000000000000	9.915700000000000	1
17		0.402000000000000	24.8000000000000001	35.000000000000000	1.5000000000000000	20.253100000000000	0
18		0.428000000000000	24.3000000000000001	33.0000000000000000	1.5000000000000000	20.779699999999999	8
19		0.432000000000000	23.199999999999999)5.000000000000000	1.4000000000000000	22.731400000000000	1
20		0.468000000000000	27.1000000000000001	6.000000000000000	3.900000000000000	-0.162685000000000	0
21		0.373000000000000	23.399999999999999	18.000000000000000	1.4000000000000000	23.013000000000000	2
22		0.394000000000000	22.10000000000000001	51.0000000000000000	1.5000000000000000	23.900700000000000	1
23		0.360000000000000	2.699999999999999	35.000000000000000	1.4000000000000000	25.205400000000000	1
24		0.3790000000000000	21.1000000000000001	9.00000000000000	1.6000000000000000	25.420300000000000	1
25		0.338000000000000	21.0000000000000000	74.0000000000000000	1.6000000000000000	25.852300000000000	0
26		0.300000000000000	1.199999999999999	57.000000000000000	1.8000000000000000	26.144700000000000	0
27		0.3410000000000000	1.199999999999999	16.000000000000000	1.8000000000000000	26.260700000000000	0
28		0.387000000000000	20.1000000000000001	57.0000000000000000	1.3000000000000000	27.649200000000000	0
29		0.3460000000000000	26.399999999999999	19.000000000000000	2.7000000000000000	-5.106300000000000	0
30		0.432000000000000	26.3000000000000001	38.000000000000000	5.4000000000000000	-0.809655000000000	0
21		0.3650000000000000	23 1000000000000001	13 000000000000000	1 200000000000000	22 92269999999999	Q

Etapas

- Análise exploratória dos dados:
 - Correlações entre variáveis
 - Teste de normalidade Shapiro-Wilk
- Análise de regressão linear multivariada:
 - Normalidade dos resíduos, Shapiro-Wilk
 - Identificação de outliers,
 - Teste de autocorrelação espacial- Índice de Moran dos resíduos
- Autocorrelação Espacial
 - Índice de Moran Global
 - Índice de Moran Local

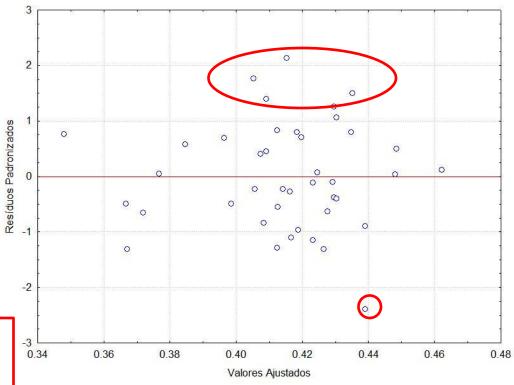
Correlação entre variáveis e normalidade dos dados

	EVI2	Altura maré	Temperatura	Precipitação
EVI2		0.1439	0.3471	0.1134
		p=0.369	p=0.026	p=0.480
Altura maré	0.1439		0.6877	0.4396
	p=0.369		p=.000	p=0.004
Temperatura	0.3471	0.6877		0.0268
	p=0.026	p=0.000		p=0.868
Precipitação	0.1134	0.4396	0.0268	
	p=0.480	p=0.004	p=0.868	

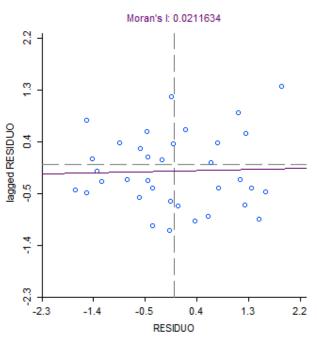
Normalidade	Maré	EVI2	Temperatura	Precipitação
Shapiro-Wilk	0.8371	0.9867	0.9466	0.9283
<i>p</i> (normal)	3.657E-05	0.9047	0.05315	0.0127

Regressão linear multivariada

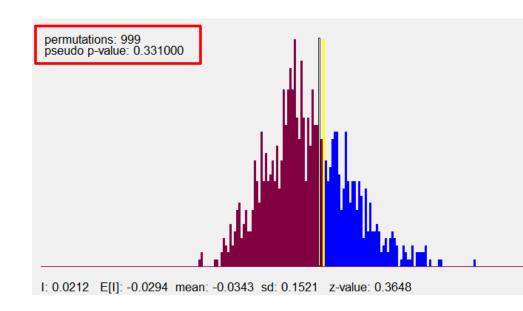
Com Outliers


R	0.431698
R ²	0.186363
R²ajustado	0.120392
F(3,37)	2.824939
р	0.051908

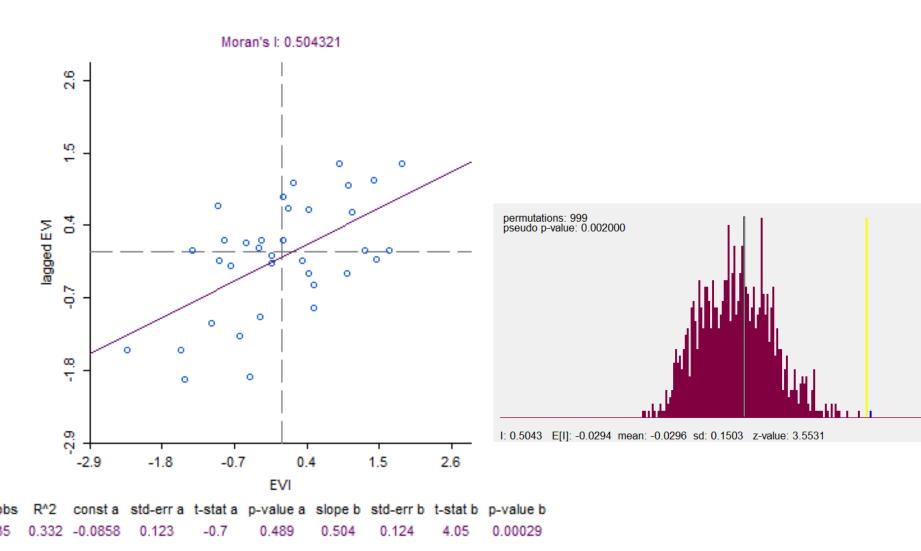
Normalidade	Resíduos
N	41
Shapiro-Wilk W	0.9891
p(normal)	0.9582


Com a retirada dos Outliers


R	0.618890
R²	0.383025
R²ajustado	0.323318
F(3,31)	6.415051
р	0.001654

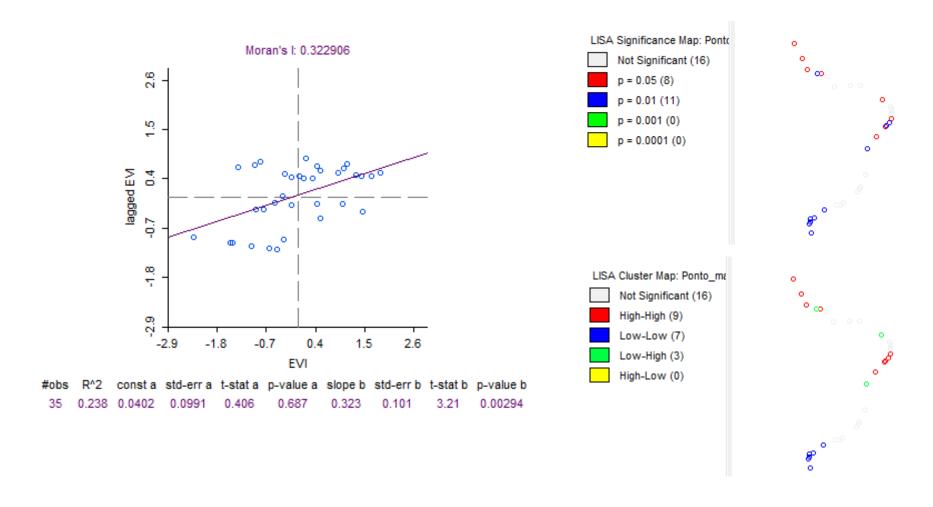

Outliers

I Moran para os resíduos da regressão linear multivariada

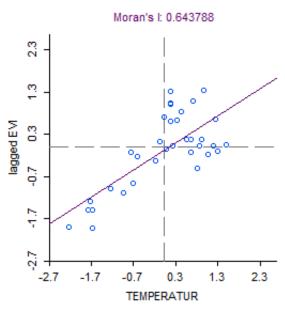


Regressão linear multivariada

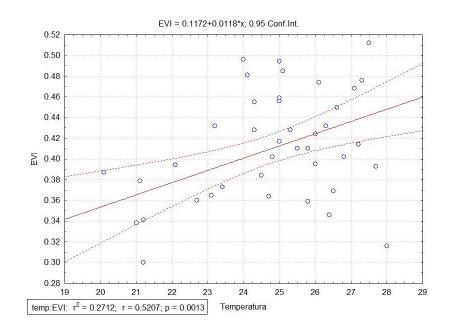
R	0.618890
R ²	0.383025
R²ajustado	0.323318
F(3,31)	6.415051
р	0.001654


EVI2 = -0.052056 + 0.018512**Temperatura* -0.016386**Maré* + 0.000025**Precipitação*

I Moran Global – EVI2

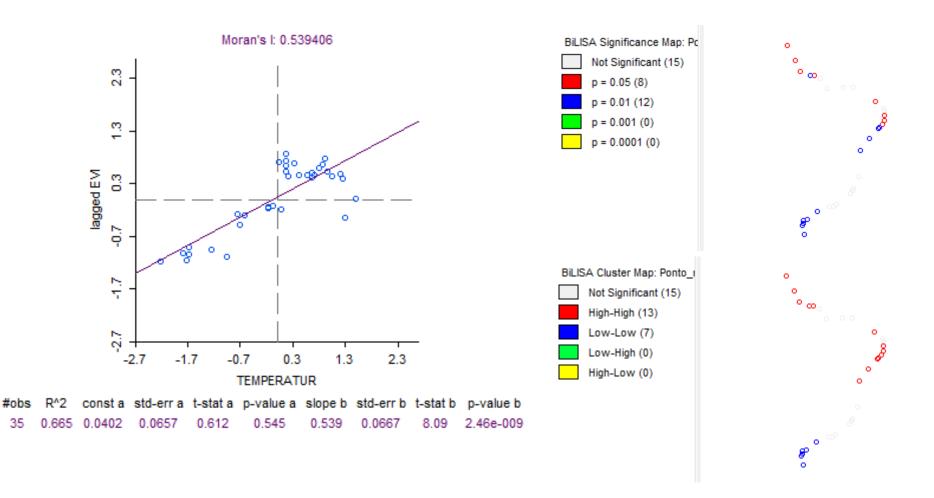

Matriz de proximidade espacial (Moran Global) – 2 vizinhos mais próximos

I Moran Local – EVI2

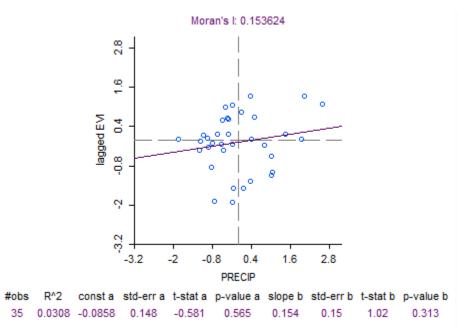


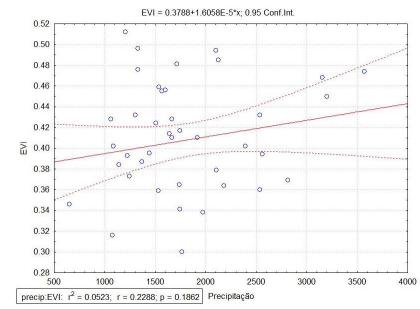
Matriz de proximidade espacial (Moran Local) – 7 vizinhos mais próximos

I Moran Global bivariado (EVI2 x Temperatura)

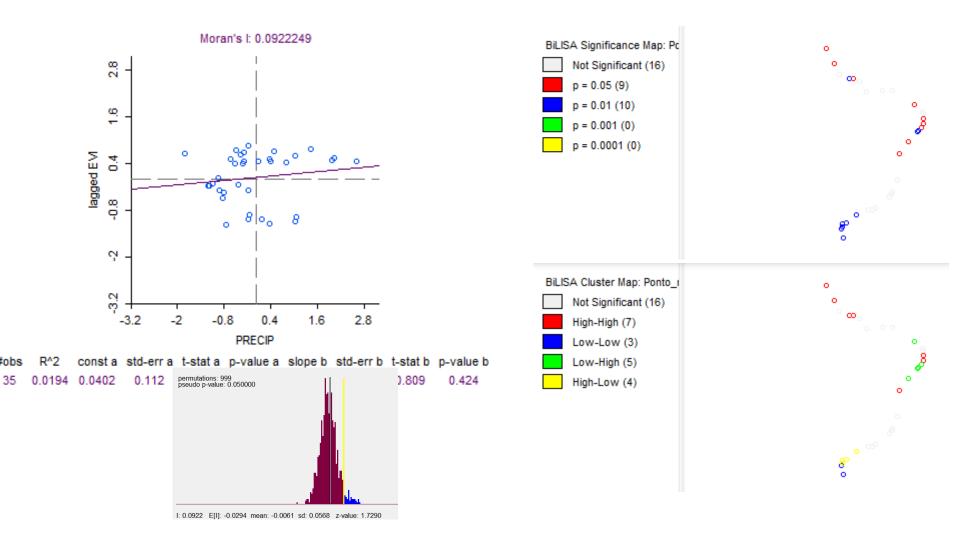


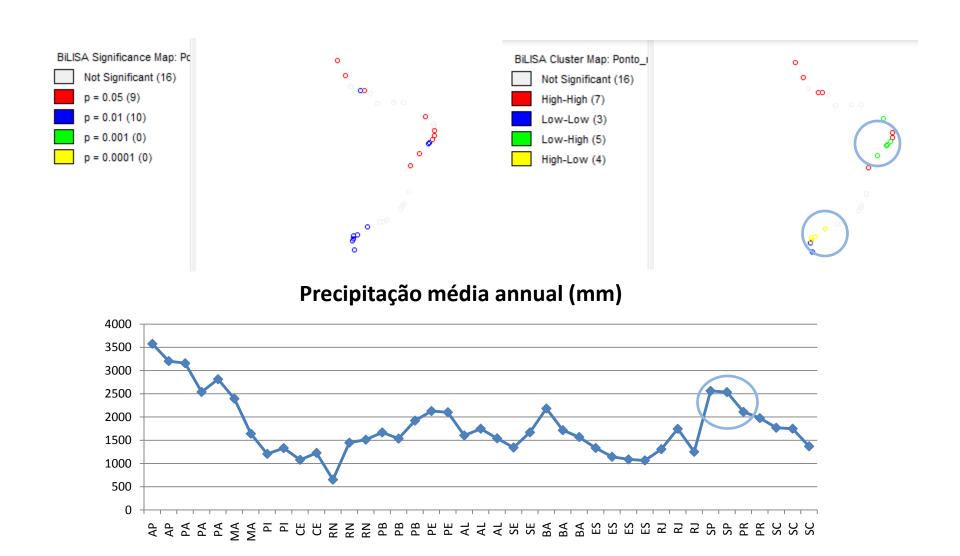
#obs R^2 const a std-err a t-stat a p-value a slope b std-err b t-stat b p-value b 35 0.542 -0.0858 0.102 -0.844 0.405 0.644 0.103 6.24 4.72e-007



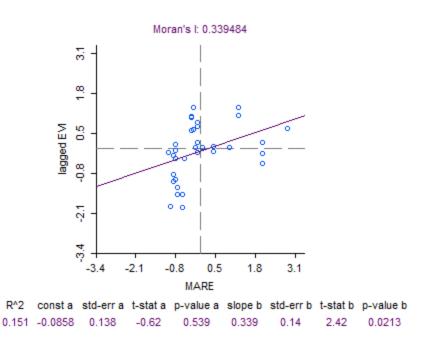

X	Y	I Moran	<i>p</i> valor	R²	Regressão R ²	<i>p</i> valor
Temperatura	Lag EVI2	0,643788	0,001	0,542	0,2712	0,0013

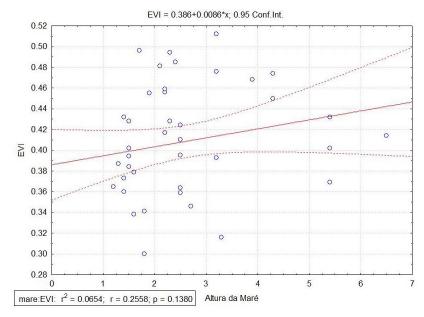
I Moran Local bivariado (EVI2 x temperatura)


I Moran Global bivariado (EVI2 x Precipitação)

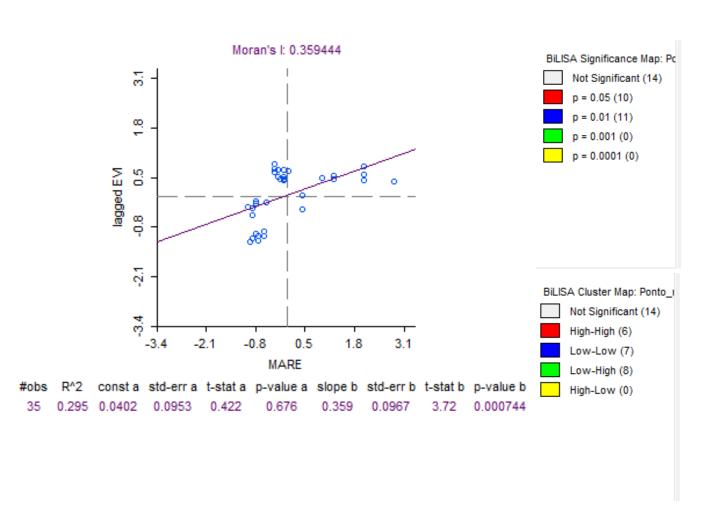


X	Υ	I Moran	p valor	R²	Regressão R ²	p valor
Precipitação	Lag EVI2	0,153624	0,097	0,0308	0,0523	0,1862


I Moran Local bivariado (EVI2 x precipitação)



I Moran Local bivariado (EVI2 x precipitação)


I Moran Global bivariado (EVI2 x Altura maré)

Х	Υ	I Moran	p valor	R²	Regressão R ²	<i>p</i> valor
Altura maré	Lag EVI2	0,339484	0,004	0,151	0,0654	0,1380

I Moran Local bivariado (EVI2 x Altura maré)

Conclusão

- Os resultados mostraram uma autocorrelação positiva entre os valores de EVI2 e as variáveis ambientais
- Bosques de mangue estruturalmente maiores, como no norte do litoral brasileiro, apresentaram uma relação espacial positiva com valores mais altos de temperatura, o mesmo ocorreu para os bosques estruturalmente menores, como na região sul, que apresentam temperaturas mais baixas
- A variável precipitação mostrou em alguns pontos comportamento espacial distinto devido a ocorrência de valores altos de precipitação em SP e PR

Conclusão

- A análise de regressão linear multivariada apresentou resultados significativos explicando a relação entre o EVI2 e as variáveis ambientais, com maior influência da temperatura
- A aplicação de métodos de análise espacial proporcionou observar padrões espaciais dos valores de EVI2, que aqui representam a estrutura dos bosques de mangue, relacionando com as variáveis ambientais
- Sugere-se incluir variáveis referentes aos parâmetros estruturais dos bosques de mangue obtidos em campanhas de campo

