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Abstract

Effective quantitative land surface analyses in soil science need scale-free land surface attributes

(morphometric variables, MVs) to be introduced for making comparable results obtained at different

scales. To investigate the problem in more detail, a conceptual scheme and curvatures studied earlier

in Shary (1995) [Math. Geol. 27 (1995) 373] are further developed in this paper, formulae for a

complete system of 12 curvatures and some other MVs are given, and modified Evans–Young

algorithm for curvature calculation is described that does not emphasize grid directions. The

conceptual scheme is based on that MVs often describe not the land surface itself, but rather the

system ‘‘land surface + vector field’’, where vector fields of common interest are gravitational field

and solar irradiation. Correspondingly, morphometric variables and concepts may (1) refer to this

system description (field-specific), or (2) be invariant with respect to any vector field (field-

invariant), that is, describing the land surface itself, its geometrical form. From the other side, MVs

and concepts may be (1) local, (2) regional, which need extended portions of a restricted part of land

surface for their determination at a given point, or (3) global (planetary), when elevations of all the

Earth are needed for their determination at a given point. Global MVs do not consist subject of this

paper; so, the four classes of MVs are considered here: class A (local field-specific MVs), class B

(regional field-specific), class C (local field-invariant), and class D (regional field-invariant). MVs of

these classes permit description of geometrical land form, pre-requisits of surface runoff, thermal

regime of slopes, and altitude zonality. Class A contains three independent MVs expressed by first

derivatives of elevation Z by plan coordinates (slope steepness, slope direction, solar insolation) and

seven curvatures expressed by second derivatives of Z; class C contains five curvatures; class B

contains two variables (catchment and dispersal areas); MVs of class D are not introduced yet. Also,
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some non-system MVs of class A are described, sense of all MVs is described, and interrelationships

between MVs are shown. Three curvatures are independent, not two, as this is often implied. It is

experimentally shown that average depth of a depression defined in class B may not depend upon

scale, while local MVs may not have limit values for large scales. Scale-free morphometric variables

are defined here as those that have limit values for large scales. It is experimentally shown that

maximal catchment area (class B) is a scale-free variable for thalwegs. These results show that local

MVs are scale-specific (except elevation), but scale-free regional MVs might be introduced as a

generalization of curvature concept. Two surface runoff accumulation mechanisms are considered in

their relation to local and regional field-specific MVs; although the first one is generalized to a

regional MV (catchment area), there is no regional MV for the second one description, although it is

of great importance in soil science as describing slow profile changes. Geometrical forms were little

studied in soil science; arguments are given that they may be useful for studying memory in soils,

which is determined by temporal shifts between land surface formation and soil formation processes.

The following topics are discussed: the current state of morphometry, an ambiguity in land form

definitions, and a possibility to generalize curvature concept for regional scale-free MVs. The

consideration is restricted by methods of the general geomorphometry; partial approaches are

considered only by selection. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Difficulties with detailed soil property description for sufficiently large terrains often

exceed the real possibilities of measurements (McKenzie and Ryan, 1999). For this reason,

and to study soil formation causes, it appears useful to use other environmental features

(Odeh et al., 1991), land surface attributes belonging to the mostly important ones (Odeh

et al., 1992a). For sufficiently strong correlation between soil and environmental features,

soils might be predicted directly from environment (Webster, 1977). McKenzie and Ryan

(1999) noticed in this relation that suitable environmental features are of more importance

than the choice of statistical methods.

Quantitative analysis of relationships between land surface and soil variables has been

studied by many authors. Land surface variables were studied, for example, in relation to

soil water content and other hydrological features (Troeh, 1964; Beven and Kirkby, 1979;

Sinai et al., 1981; Moore et al., 1988, 1993; Kuryakova et al., 1992; Bell et al., 1992,

1994; Fiez et al., 1995; Huang, 1995; Tomer and Anderson, 1995; McKenzie and Ryan,

1999), particle-size distribution in soils (Klich et al., 1990; Martz and de Jong, 1990; Odeh

et al., 1991; Tomer and Anderson, 1995), soil horizon depths (Martz and de Jong, 1990;

Pennock and de Jong, 1990; Carter and Ciolkosz, 1991; Tomer and Anderson, 1995; King

et al., 1999; Sinowski and Auerswald, 1999), vegetation features (Sinai et al., 1981;

Simmons et al., 1989; Fiez et al., 1995; Timlin et al., 1998). Some authors attempted to

classify soils and landscapes on such a basis (Troeh, 1964; Pennock and de Jong, 1990;

Odeh et al., 1992a,b; Moore et al., 1993; Stepanov, 1996; McKenzie and Ryan, 1999).

However, these studies have revealed some essential problems in this direction. First,

most of currently known variables for land surface description are scale-specific, making

difficult comparisons of results obtained at different scales. Second, non-classificational
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nature of current land surface analysis methods has resulted in some missing or not

sufficiently recognized ideas, such as those of geometrical form description, which are

known in other sciences (e.g., in physics and mathematics) but were studied very little in

soil science. Third, the system of land surface attributes seems to be not standardized and a

large diversity of non-strictly defined and often interdependent land surface variables,

frequently insufficiently described, seriously hinders comparison of results from different

authors. This encourages the development of a classificational system of concepts of

morphometry, the standardization of a set of morphometric variables, the elucidation of

relationships between them, and conditions for their use in soil and landscape studies for

comparable results. Bearing in mind these purposes, we have restricted consideration in

this paper to the variables and concepts that are based on several invariant properties of

land surface attributes.

Methods of morphometry can be used to analyse the following:

(i) geometrical land surface forms,

(ii) morphometric pre-requisits of surface runoff of dry and liquid materials,

(iii) morphometric pre-requisits of thermal regime of slopes,

(iv) altitude zonality as a pre-requisite of atmospheric temperature and pressure

changes.

In case (i), the land surface itself is a subject of analysis; in cases (ii,iv) and (iii), the

systems ‘‘land surface + gravitational field’’ and ‘‘land surface + solar irradiation’’ are

analysed, respectively. More generally, the system ‘‘land surface + vector field’’ is ana-

lysed in the last three cases. Although the surface itself was a subject of special attention in

physics and mathematics during several centuries, the system ‘‘surface + vector field’’ as a

mathematically double object was not sufficiently studied (see below), and for the real

land surface (which is not smooth, as substantiated in the Section 3 below), it needs special

knowledge on the maximum precision of analysis achievable. Pre-requisits of processes

for the system ‘‘land surface + vector field’’ imply that each kind of vector field acts like a

tendency, not completely defining respective processes. In gravitational field, correspond-

ing land surface attributes are pre-requisits of material movement that do not completely

define the results (i.e., material reposition) with a tendency of results to appear later than

pre-requisits (in land surface formation), after some temporal shift. This concept was

considered in more detail by Stepanov et al. (1991). Wind, snow melting, evapotranspira-

tion, diffusion, inertia (e.g., for water streams), human activities are commonly known

examples of other pre-requisits.

1.1. General geomorphometry

For further considerations, some points of studies on land surface features may be

represented as the following four directions.

(1) Gauss (1827) created the basis of modern differential geometry of surfaces, which is

a theory of surface geometrical forms described locally, that is, by curvatures. Applications

of this approach were developed, for example, in the physics of capillary phenomena

(Finn, 1986).
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(2) Maxwell (1870) tried to develop a quite different approach, considering simulta-

neously the land surface for the whole Earth and its gravitational field. This is the theory of

the system ‘‘land surface + gravitational field’’, considered globally, for the entire planet.

However, variables for basin description have no sense without taking into account land

surface boundaries that are absent for a whole planet, in contrast to a part of it. The first

ideas of restricted land surface portion analysis were suggested by Speight (1968, 1974) in

his studies of the system ‘‘land surface + gravitational field’’ for such portions, which we

term here ‘‘regions’’.

(3) Evans (1972) and Krcho (1973) studied morphometric variables (local, such as

plan and profile curvatures) that are absent in the theory of Gauss (1827). This is

because Gauss studied the geometrical form of surfaces, while the listed geomorphol-

ogists studied features of the system ‘‘land surface + gravitational field’’ (or field-specific

forms).

(4) In Earth sciences, to our knowledge, nobody has studied geometrical land surface

forms for a whole planet; the corresponding direction in mathematics is known as

topology. Matheron (1965, 1975) used for regions ‘‘regionalized variables’’, which are

better known in geostatistics, than in morphometry.

Evans has attributed the approaches under consideration to a discipline that he termed

general geomorphometry. He wrote (Evans, 1972): ‘‘General geomorphometry as a whole

provides a basis for the quantitative comparison even of qualitatively different landscapes,

and it can adapt methods of surface analysis used outside geomorphology. Specific

geomorphometry is more limited; it involves more arbitrary decisions, and leaves more

room for subjectivity in the quantification of its concepts.’’ Nevertheless, in spite of some

attempts to integrate approaches known in physics and mathematics (e.g., Koenderink and

van Doorn, 1994), general geomorphometry has remained a non-systematical set of

methods, which is developing mostly as a continuation of the ideas of Evans and Speight,

but does not use the achievements of Gauss; the problem of scale-free morphometric

variables also remains at its beginning.

The general physico-mathematical theory of this discipline received further develop-

ment in the works of Shary (1991, 1995), where an integrating approach was outlined with

the purpose of joining and systematizing the directions listed above. In Shary (1995), a

classification of surface points by signs of curvatures was constructed, and its complete-

ness was proved.

In this paper, we describe this system of methods together with their formulae, de-

velop the system of concepts of general geomorphometry as a science, and analyse

questions of maximally possible precision and the possible existence of limits for

morphometric variables at large scales. A special attention is paid to various invariants,

and to the problem of how and where (in which class) might scale-free variables be

introduced.

1.2. Coordinate system invariants

Three kinds of variables might be considered, which describe land surface and are

coordinate system invariants: those with respect to surface shift, to surface inversion (i.e.,

replacing elevation Z by � Z ), and to surface rotation. Some statistical results based on the
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first two were studied by Shary (1995); consider now the third kind of variables. The

following three types of such variables are considered here as being of special value:

(i) variables that are invariant with respect to surface rotation around any axis (for

geometrical form description);

(ii) isotropic variables that are invariant with respect to surface rotation around vertical

axis (e.g., for surface runoff description);

(iii) not invariant anisotropic variables that depend on some geographical direction

(e.g., slope aspect or slope insolation).

Variables (i) that lie in the basis of the differential geometry of surfaces describe what is

termed geometrical forms here; such variables are field-invariant because they do not

depend on a specific field direction. Since topographic maps and digital elevation models

(DEMs) are always given in coordinate systems, where one of axes is vertical (i.e.,

coordinates are linked to the gravitational field), most variables for surface runoff

description are isotropic. Variables for solar irradiation are usually anisotropic (except

for the Sun position in zenith, when one of axes direction and solar irradiation vector field

coincide). Considering variables (ii) for surface runoff description, Martz and de Jong

(1988) noticed that land surface attribute usually ‘‘is described in the context of some

process or flow to be taking place within the landscape’’; this is not necessary for

geometrical form attributes introduction because no surface runoff is considered. As Gauss

(1827) showed, special efforts are needed to make variables field-invariant; because of

this, numerous land form attributes studied in Earth sciences appeared not field-invariant

and do not describe geometrical form. The concept of geometrical and field-specific land

form is explained in more detail in the following section.

Correspondingly, geometrical form attributes (variables of classes C and D in the

consideration below) were studied very little in soil science. In some studies (e.g., Sinai et

al., 1981; Timlin et al., 1998), soil and vegetation properties were compared with elevation

Laplacian, approximately equal to minus double mean curvature (as shown in Section 5

below), which is one of important characteristics of geometrical form; similar comparisons

with mean curvature were reported by Kuryakova et al. (1992). Nevertheless, no

explanations of unexpectedly high correlations and no understanding of this variable

were reported.

1.3. Principles of a general classification

The land surface exists in several vector fields—solar irradiation, gravitational,

magnetic, electrical, etc. The most important in practice is the gravitational field, since

it controls the formation of surface runoff of dry and liquid materials, and corresponding

level sets of the system ‘‘land surface� gravitational field’’ (contour lines) are plotted on

topographic maps, providing giant sets of data, including those available as DEMs. For

this reason, all morphometric variables can be subdivided into two groups, namely

variables characterizing land surface without taking the vector field into account, and

variables that take it into account. In this relation, Shary (1995) has suggested subdivision

all of morphometric variables and related concepts by their relation to the gravitational or
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other field, also taking into account their local or non-local nature. Such classification for

regions is shown in Table 1. This classification corresponds (except for planetary aspects)

to the four directions, listed above.

To carry out calculations and morphometric maps construction in this paper, a

Geographical Informational System (GIS) ‘‘ECO’’ for IBM PCs was used, developed

by one of the authors.

2. The four classes of morphometric variables and concepts

The classification of Table 1 is based on morphometric variables (MVs) that are defined

in each surface point. Morphometric characteristics (such as contour area, or an MV) that

do not necessarily refer to some surface point are considered as more general concept.

According to the above consideration, also global (planetary) classes BVand DVcan be

introduced for global field-specific (class BV) and global field-invariant (class DV) MVs in

the general classification that can be defined only for a whole planet, not for a region. MVs

of these global classes will not be considered in this paper.

2.1. Geometrical and field-specific land forms

Concepts and variables of classes C and D characterize geometrical forms of a land

surface that are invariant with respect to any coordinate system rotation. In this case, the

form of a body is understood as the relative position of points on the surface that bounds it,

and is defined by distances between these points. A depression of the class D, which is not

able to hold water (Fig. 1a), is an example of a geometrical form. From a geometrical point

of view, concepts of the classes A and B describe forms that arise on the land surface by

means of a vector field (that are termed here field-specific forms), such as a B-depression

(Fig. 1b) defined by its ability to hold water. Clearly, it is impossible to give a definition of

a B-depression (i.e., a depression defined in the class B) without taking Earth gravitational

field into account. A shadow from a hill is a commonly known example of a field-specific

form for the system ‘‘land surface + solar irradiation’’. From the other side, as mentioned in

the Introduction, in the gravitational field MVs and concepts of classes A and B describe

morphometric pre-requisits of land surface material runoff, and in solar irradiation—those

of the thermal regime of slopes.

2.2. Local and regional morphometric variables

At a given point, local MVs are defined by consideration of a fixed size (not

defined by terrain specifics) portion of the terrain immediately surrounding that point,

Table 1

Classes of morphometric variables and concepts

Morphometric variables and concepts Local Regional

Field-specific Class A Class B

Field-invariant Class C Class D
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in contrast to regional MVs, for which this portion principally depends upon the terrain

specifics.

In other words, filters of a fixed size (convenient through their simplicity) are used in

local morphometric analysis, and they delineate land surface forms. For example, at the

grid mesh 10 m, forms of larger sizes are delineated, information on forms of smaller sizes

is lost. Information on larger land forms in this case may be revealed by visual observation

of maps, for example, a group of hills detected at some given filter size may be associated

by an observer with a ridge of much larger size, in comparison with the grid mesh.

With regional MVs, a principle of ‘‘searching’’ filter is used; filter size is not specified

in advance, but is determined by terrain specifics (for example, by a B-depression size), or

by map boundaries. In the case of global variables (and also of land surface elevation), the

concept of precision of some land surface form determination may have the same sense, as

in carrying out a geodetic survey. For example, a B-depression’s boundary is the largest

closed contour line, precision in determination of which coincides with that of elevations;

the situation is similar in the case of a D-depression, the boundary of which, however, does

not coincide with a contour line (Fig. 1a).

Consider B-depression depth as an example of a regional MV. This depth is calculated

from the lowest outlet elevation of the B-depression (Fig. 1b, point N) and can be chosen

equal to zero outside B-depressions. For determination of this MV at a point M, it is not

enough to consider its restricted vicinity, because even if in this vicinity of M a hill is

detected, this does not mean that this hill is not on the bottom of the B-depression (for

example, a hill at the bottom of a foundation pit). This is implied by the regional feature of

the considered variable.

Fig. 1. On the concepts of D- and B-depressions (i.e., depressions of classes D and B). This is an example of two

surfaces equal by form, but differently oriented in the gravitational field. 1— rocks, 2— air, 3—water. The left is

a D-depression (a broadly concave piece of land surface, it may have locally convex parts), right is a B-depression

(a part of broadly concave land surface piece that is able to hold water).
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In a more strict understanding, when one takes into account a band of land surface that

borders the considered part of terrain V, this does not change values of local variables in

points of V. In contrast to this, taking this border into account may essentially change

values of regional MVs in points of V. For example, if elevation values of the border are

sufficiently large, taking it into account will result in increase of B-depression depths in all

points of V.

At this time, a system of dependent from first and second derivatives variables of the

general geomorphometry is introduced for classes A and C, the completeness of which

was substantiated by Shary (1995), two variables are known for class B (see below), and

no variables are known for class D.

2.3. Discrete forms

It is not too difficult on the basis of the B-depression concept, for which algorithm of

calculation for the regional case was described by Martz and de Jong (1988), to introduce

the concept and algorithm for a B-hill. The latter can be obtained by the inversion of an

elevation matrix (replacing Z by � Z ), after which for calculation of B-hills, the same

algorithm can be used, as for B-depressions.

Consider a copy of land surface in which all B-depressions were filled by water, and

after that, this water has been frozen. One may take these pieces of ice as discrete entities

(separately one from another), measure their volumes, sizes, and so on. For this reason, we

term such land forms discrete forms of the land surface; they have precisely determined

characteristics (see below) and have a volume. Another example of a discrete form (for the

system ‘‘land surface + solar irradiation’’) is a shadow from a hill during a sunny day.

Although shadows change relatively fast, any land form is changing, and we cannot see

reasons why geometry (geomorphometry) cannot be applied to instantaneous form of

shadows.

2.4. Boundary effects

When DEMs are available only for a part of B-depression (e.g., for a half of

lake), it is impossible to calculate correct depths of that depression (because a half of

lake is not a lake). Boundary effects are of special importance for regional MVs. For

example, when an up-slope part of a basin is outside given DEMs, MVs that

describe the basin (such as maximal catchment area, see below) may have incorrect

values. In this case, one should use additional DEMs to improve the situation (in the

example, DEMs which include all the up-slope part of the basin); in general, regional

MVs use needs some preliminary evaluation of DEMs for a particular purpose of

investigation.

2.5. Scale-specific and scale-free variables

MVs that do not depend on a particular scale (at least, for sufficiently large scales), are

termed ‘scale-free’ here, other MVs being scale-specific. Scale-free MVs are of great

importance in soil science because they provide a way to make results of terrain analyses

P.A. Shary et al. / Geoderma 107 (2002) 1–328



comparable. Clearly for very small scales (say, only several contour lines for all the Earth),

any MV will be scale-specific; so, it is expected that, when some MV appear scale-free,

this means that such MV has a limit value in each land surface point for large scales. An

essential question considered below in this paper is: where (in which class) and how might

such scale-free MVs be introduced?

3. The basic problem in geomorphometry

Data sources for calculation of maps of MVs are usually DEMs in the form of elevation

matrices (e.g., Evans, 1972; Tomer and Anderson, 1995; McKenzie and Ryan, 1999). A

grid mesh is explicitly defined in an elevation matrix, on the value of which some MVat a

given point may depend. It was experimentally and theoretically shown (Mandelbrot,

1967; Clarke, 1988) that the model of a smooth land surface is not in agreement with

observation. For example, the existence of contour line length that follows from the

smooth model is in contradiction with L.F. Richardson’s measurements (see Mandelbrot,

1967). For this reason, the land surface cannot be regarded as smooth, and therefore, MVs

obtained by differentiation have no objective values without relation to grid mesh or scale

because a non-smooth surface has no derivatives.

This phenomenon results in dependence of such MVs on grid mesh. Evans (1975),

who studied methods of the class A, has characterized the situation in the following

way: ‘‘A basic problem in geomorphometry is that any measurement varies with scale,

i.e. with the extent of the area or line involved.’’ However, the elevation (at a given

point, not average for some area) forms an obvious exception from this non-obvious

rule. In addition, in contrast to this common belief, the situation does not seem so

hopeless for regional concepts. Here, we demonstrate this experimentally for a B-

depression (below also an example is given for an MV of class B). Compare now the

dependence of B-depression average depth on the grid mesh w with the similar

dependence for average slope gradient (Fig. 2). The increase of grid mesh was achieved

by means of matrix thinning using a technique, similar to that described in Evans

(1995), the size of the initial matrix (with grid mesh 20 m) being 1065 by 510 elements.

To exclude boundary effects, the studied matrix was taken as a part of a larger one, with

a reserve of rows and columns on each side (this reserve was also used in calculations

for Fig. 3).

This experiment (and also that given below) shows that, at least for one character-

istic of class B, the basic problem in geomorphometry is not so insurmountable.

Essentially, this problem is that of presence or absence of a limit value for a given

morphometric characteristic as w! 0. For B-depression average depth and also for

some another characteristics (e.g., for maximal depth and area), such limit values do

exist because these characteristics are expressed through precisely defined elevations

and need no differentiation of a non-smooth surface. It follows from land surface

continuity that a difference between this limit value and real one (for given w) is very

small for sufficiently small w, and may appear not valid for some terrains, for which

land surface cannot be considered as continuous (e.g., in mountainous terrains with

essential continuity breaks). Thus, to find close to limit characteristics of a B-
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depression, one needs to choose sufficiently small grid mesh (or sufficiently large

scale). It will now be demonstrated that for average slope gradient a corresponding

finite limit may be absent.

If elevation does not depend upon the plan coordinate y, when determined at grid mesh

w slope gradient is Dz/w, where Dz is the corresponding change in elevation. The average

slope gradient is Z/w, where Z is average value of Dzi (the index i counts matrix elements).

If the trend of a quasi-stochastic, ‘‘noisy’’ surface is a horizontal plane, all Dzi may have

the same order of value and Z may not depend on w. In this case, the slope gradient is

proportional to 1/w, that is, it infinitely increases as w! 0, and tends to 0 as w!l; the

logarithm of average slope gradient as a function of w will be a straight line with a

negative slope in this case. The quasi-stochastic surface can be modelled by adding

pseudorandom numbers to a horizontal plane and the average slope gradient can be

calculated for a matrix with a grid mesh w by the Evans–Young method (Pennock et al.,

1987) for grid meshes w,2w,. . .,nw. The experimental results are shown in Fig. 3. The

dependence of average slope gradient on grid mesh, first noted by Evans (1975), is

confirmed, with some addition on its origin.

The linear dependence of the average slope gradient on w for the quasi-stochastic

surface with a horizontal trend in logarithmic coordinates shows that, at least for this case,

average slope gradient may be considered as tending to infinity as w! 0. Dependencies

Fig. 2. The dependence of average depth of the lake Königssee in Germany and average slope steepness for the

same terrain on grid mesh w. The scale of initial topographic map is 1:50,000 and it contains data on the lake

bathymetry. For both the variables, their ratios (in %) to their initial value at grid mesh 20 m (6.23 m and 17.4B,
respectively) are shown. It is seen that the average depth of the lake practically does not depend on w, while the

average slope steepness essentially decreases with w.
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for real terrains differ from linear; nevertheless, the average slope gradient does not

demonstrate a tendency to tend to some finite limit as w! 0.

4. Modified Evans–Young method

The basis of the Evans–Young method is that for derivative calculation using an

elevation matrix ‘‘quadratic trend surfaces should be fitted to the neighbourhood (3� 3) of

each sample point’’ (Evans, 1972). Calculation formulae for this algorithm were suggested

by Young (1978) in a joint investigation with Evans (1979). The method was later

described in Geoderma (Pennock et al., 1987) with a reference to these studies.

The essence of the Evans–Young method consists in the following. The non-smooth

land surface in a vicinity of a given point is replaced by a ‘‘sheet’’ of a smooth surface (the

second-order polynomial) that is fitted to the real surface by a least squares criterion. After

that, this smooth surface (‘‘sheet’’) is used for calculations of MVs that are expressed by

first and second partial derivatives.

In the original variant, the Evans–Young method provides good results for first

derivative maps, but essentially emphasizes grid directions for second derivatives (i.e.,

for land surface curvatures), as can be seen on maps of these MVs (e.g., Evans, 1979,

1980, 1990). Although a set of finite difference methods have been suggested later (see

Evans and Cox, 1999), there is no commonly used solution for the question of Evans–

Fig. 3. The dependence of average slope gradient on grid mesh w. Results are shown for seven terrains and for a

quasi-stochastic surface with ‘‘noise’’ amplitude 10 m (denoted as Noise-50), double logarithmic coordinates.

Size of each matrix was 300 by 300 elements (a number after terrain abbreviation means grid mesh in meters).

Grid mesh used for calculations is expressed as ratio to initial matrix grid mesh.
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Young method modification. A modification of this method, developed by P.A. Shary, is

now suggested.

In the first phase of calculation, points of a subgrid 5� 5 are used for parametric

(weak) isotropic surface smoothing of the nine internal points of the subgrid. This

smoothing complies with the following criteria: (i) a plane piece of surface is transformed

into a plane one, (ii) the smoothing filter is isotropic, (iii) the filter weights decrease

linearly with the distance from the center of the subgrid. In the second phase, the original

Evans–Young method is used for the smoothed subgrid 3� 3. As a result, grid directions

on maps disappear (see example of map images below). Deduction and formulae of the

modified Evans–Young method are given in the Appendix A.

This method was successfully (with no essential grid directions visible) used with

DEMs at grid meshes from 1 m to 2.5 km containing in a whole about 5 millions of

elements. When some DEM is interpolated to a smaller grid mesh, say from 20 to 1 m, grid

directions visibility depends on an interpolation process used, but such interpolated data

does not contain information on these small land forms and curvature maps may reflect

details not found in the original DEM. Another item is that for too large grid meshes ( > 1

km), no extended, multi-pixel structures may appear for some curvatures, such as spurs of

hills given by horizontal curvature (see below), because these hills may appear of the same

order in their plan size.

5. The system of morphometric variables

The system of MVs under consideration in this paper includes: (1) elevation (used as

initial data for calculation of other MVs), class A; (2) MVs expressed by first derivatives,

class A; (3) MVs expressed by second derivatives, including the complete system of land

surface curvatures in classes A and C; (4) contour line and flow line curvatures that are

considered as being outside the complete system of curvatures, partially repeating

properties of MVs of the latter; (5) the two currently known regional MVs: maximal

catchment area and maximal dispersal area, class B; and also (6) described below in this

paper hydrodynamic area and daily solar radiation dose, class B. To our knowledge, the

described set of MVs for geometrical land form description (class C) has not been used in

soil science in any systematical way.

5.1. First derivatives

Slope steepness (GA) is a quantitative measure of maximal rate of elevation change in

gravitational field; it ranges from 0 to 90B. Geometrically, it is an angle between horizontal

plane and tangential to the surface plane. It is calculated using a commonly known formula

(e.g., Krcho, 1973), which represents this angle through first partial derivatives (Table 2).

The slope gradient G is tan(GA); it ranges from 0 to infinity. Some authors (e.g., Moore et

al., 1993; McKenzie and Ryan, 1999) use GP= 100G%, which equals 100% for GA= 45B
and have the same range as G. Runoff on the land surface occurs under tangential to the

land surface component of the gravitational force. It is known (e.g., Strahler, 1952) that

this component is proportional not to the slope steepness or gradient, but to the gradient
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Table 2

Formulae for calculation of local morphometric variables; in these formulae, p=Dz/Dx; q=Dz/Dy; r =D2z/Dx2, s =D2z/DxDy; t =D2z/Dy2 are designations for partial

derivatives of the surface z = z(x,y); the function sign(x) equals 1 for x > 0, 0 for x= 0, and � 1 for x< 0

Variable name Class Unit Formula Reference

Slope steepness A B GA= arctan( p2 + q2)1/2 –

Slope gradient A – G = ( p2 + q2)1/2 –

Gradient factor A – GF = ( p2 + q2)1/2/[1 + p2 + q2]1/2 –

Slope direction (or aspect) A B A0 =� 90[1� sign( q)](1�Asign( p)A) + 180[1 + sign( p)]�
180sign( p)arccos[� q/( p2 + q2)1/2]/p

–

Mean curvature C 1/m H =� [(1 + q2)r� 2pqs+(1 + p2)t]/[2(1 + p2 + q2)3/2] (Gauss, 1827)

Unsphericity C 1/m M = [{r[(1 + q2)/(1 + p2)]1/2� t/[(1 + q2)/(1 + p2)]1/2}2/(1 + p2 + q2) +

{pqr[(1 + q2)/(1 + p2)]1/2� 2[(1 + q2)(1 + p2)]1/2s + pqt/[(1 + q2)/

(1 + p2)]1/2}2]1/2/[2(1 + p2 + q2)3/2]

(Shary, 1995)

Difference curvature A 1/m E = ( q2r� 2pqs+ p2t)/[( p2 + q2)(1 + p2 + q2)1/2]� [(1 + q2)r� 2pqs +

(1 + p2)t]/[2(1 + p2 + q2)3/2]

(Shary, 1995)

Horizontal curvature A 1/m kh =� ( q2r� 2pqs+ p2t)/[( p2 + q2)(1 + p2 + q2)1/2] (Krcho, 1983)

Plan curvaturea A 1/m kp =� ( q2r� 2pqs+ p2t)/( p2 + q2)3/2 (Evans, 1972)

Vertical ( = profile) curvature A 1/m kv =� ( p2r + 2pqs+ q2t)/[( p2 + q2)(1 + p2 + q2)3/2] (Evans, 1972)

Rotora A 1/m rot= [( p2� q2)s� pq(r� t)]/( p2 + q2)3/2 (Shary, 1991)

Horizontal excess curvature A 1/m khe =M�E (Shary, 1995)

Vertical excess curvature A 1/m kve =M +E (Shary, 1995)

Minimal curvature C 1/m kmin =H�M –

Maximal curvature C 1/m kmax =H +M –

Total Gaussian curvature C 1/m2 K = (rt� s2)/(1 + p2 + q2)2 (Gauss, 1827)

Total ring curvature A 1/m2 KR= [( p2� q2)s� pq(r� t)]2/[( p2 + q2)2(1 + p2 + q2)2] (Shary, 1995)

Total accumulation curvature A 1/m2 KA=H 2�E2 (Shary, 1995)

Slope insolationb A % F = 50{1 + sign[cos a� sin a*( p sin b+ q cos b)]}[cos a�
sina*( p sin b+ q cos b)]/(1 + p2 + q2)

(e.g., Onorati

et al., 1992)

a These curvatures do not belong to the complete system of 12 curvatures (Shary, 1995).
b Here 90B� a is Sun vertical angle from horizon, b is Sun azimuth counted from northern direction clockwise.
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factor (sin(GA)), and the formula (Table 2) deduction for it can be found, for example, in

Shary (1991).

Slope direction (or aspect) is measured from the North clockwise and is the azimuth of

elevation gradient (Table 2); formula deduction for it can be found, for example, in Young

(1978) and Pennock et al. (1987).

Slope gradient and slope direction are components of a single entity, namely of two-

dimensional vector of elevation gradient (Evans, 1972). We imply this vector taken with a

negative sign because for southern slope aspect, gradient vector is directed to the North

(e.g., Shary, 1991). The direction of this vector is the slope direction, and the length of it is

the slope gradient.

Elevation, slope steepness and slope direction are not sufficient for land surface

description even in local classes A and C (Evans, 1972). The major reason is that land

surface form description is carried out at the local level by means of surface curvatures

(Shary, 1995). It has been proven also (Shary, 1995) that there are three independent

curvatures, not two, as is often, implicitly or explicitly, suggested in the literature (e.g.,

Evans, 1972, 1979; Evans and Cox, 1999; Krcho, 1973, 1983; Pennock et al., 1987;

Tomer and Anderson, 1995; Thomas et al., 1999), and that signs of at least five curvatures

are necessary to take into account for classification of land surface forms (Shary, 1995,

Theorem 2). On a conceptual level, this is because elevation and gradient do not describe

the two major accumulation mechanisms, which govern surface runoff of dry and liquid

materials. Consider now what are these mechanisms and how might they be described

quantitatively.

5.2. Two accumulation mechanisms

The first accumulation mechanism reflects surface flows convergence (Fig. 4, left). For

one part of the surface flow lines (shown by arrows in the figure) can converge, for

others—diverge. For areas where flow lines are convergent, the term convergent areas is

used in the literature, where they diverge—divergent areas (e.g., Evans, 1972; Shary,

1995).

It is known that divergence (div) is the quantitative measure of flow line divergence:

where div is negative, flow lines converge, where positive—diverge. It was proven (Shary,

1995, Theorem 4) that div of flow lines equals the plan curvature of a surface, kp (Table

2), that is, a correspondingly signed contour line curvature; a formula for calculating kp

can be found, for example, in Krcho (1973). This is the basis for quantitative description of

the first accumulation mechanism.

Horizontal curvature (kh, Table 2) was first introduced by Krcho (1983); it was proven

(Shary, 1995) that the signs of kp and kh coincide. For this reason, the first accumulation

mechanism can be reflected by a map of kh (Fig. 5c). Plan curvature may not be

sufficiently convenient, because it tends to infinity near top of a hill or bottom of a pit,

creating some problems in its usage (Shary and Stepanov, 1991). The infinity arises

because near a top of a hill, the radius R of a contour line circle tends to 0, and the contour

line curvature is 1/R. Unusual statistics for kp (presence of large values) were mentioned in

Evans (1979) and Shary and Stepanov (1991). The plan curvature does not belong to the

complete system of 12 curvatures described herein.
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The second accumulation mechanism reflects flows relative deceleration. On concave

parts of a slope profile, the slope steepness diminishes downslope (Fig. 4, right—lengths

of arrows are proportional to the slope steepness). Up-slope parts of profile are steeper;

therefore, particles located there may move faster than those located below. As a result,

material flows suffer relative deceleration on parts of the surface, and relative acceleration

on others.

It was proven (Shary, 1995, Theorem 5) that the derivative of gradient factor GF by

flow line length is the vertical (or profile) curvature kv (Table 2); deduction of a formula

for kv can be found in Krcho (1973). There was an error in the statement of this theorem in

Shary (1995); it follows from formula kv= (dG/du)/(1 +G2)3/2 proven in Shary (1991),

where u is flow line length, and formula GF =G/(1 +G2)1/2, which is seen from Table 2,

that kv = d(GF)/du. This is the basis for quantitative description of the second accumu-

lation mechanism. So, the second accumulation mechanism acts on profile-concave slopes,

where kv < 0 (Fig. 4, right), and can be described by a map of kv (Fig. 5d).

5.3. Four directions on a land surface

For consideration of the geometrical sense of curvature, the concept of a normal section

of the surface is useful, which is known from the differential geometry of surfaces (e.g.,

Pogorelov, 1974). Let n be a normal vector (at the point X ) to the surface S (Fig. 6). A

curve, which results from intersection of the surface S and some plane passing through the

normal n, is known as the normal section of the surface S at the point X.

Fig. 4. Two accumulation mechanisms. Left— flow convergence/divergence, right— relative flow deceleration/

acceleration. 1— divergence areas, 2— convergence areas, 3— contour lines, 4— rocks, 5— air. See text for

details.
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Fig. 5. Maps of some morphometric variables for mountainous terrain in Bavaria (surroundings of the lake Königssee), Germany. Grid mesh 60 m, the size of the terrain is

10.2� 21.3 km. a— elevations (larger elevations are shown by lighter colors), b— insolation F (azimuth of the light source is 0B, angle from horizon is 35B; lighter colors
refer to northern slopes, darker— to southern), c— horizontal curvature kh (light colors refer to positive kh, dark— to negative), d— vertical curvature kv (light colors

refer to positive kv, dark— to negative), e—maximal catchment area MCA (darker colors refer to larger MCA, the largest dark area corresponding to the lake Königssee).

Curvatures were calculated by the modified Evans–Young method, curvatures and MCA are logarithmed using formula (1).
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The form of the surface itself marks two normal sections on it—that having a maximum

of its curvature (Fig. 6, curve ccV) and that having a minimum (Fig. 6, curve ddV) among all

possible normal sections at the point X. Additionally, the gravitational field marks at the

same point two other normal sections—tangential to the contour line (Fig. 6, curve bbV),
and perpendicular to it, along which water flows (Fig. 6, curve aaV). Curvatures of the first
two normal sections are known as maximal kmax and minimal kmin, correspondingly.

Shary (1995) has proved that these curvatures may be calculated from other curvatures, as

in Table 2. Curvatures of the two other normal sections of Fig. 6 are kv and kh.

The curvatures kmax and kmin can be used for construction of geometrical ridge and

valley forms (Shary, 1995), which appear effective for decoding of lineaments, central type

structures and so on in structural geology.

5.4. Other curvatures

Gauss (1827) proved that total Gaussian curvature K = kmax � kmin does not change for

any surface bending that does not change lengths of curves on it (i.e., when the surface is

not rumpled and not stretched). This theorem is widely used in geodesy and cartography,

for example, in constructing projections of objects on the Earth on surfaces like cone,

which can be unrolled onto a plane sheet without lengths changing. The formula for K in

Table 2 was firstly deduced by Gauss (1827).

According to Euler’s theorem (e.g., Pogorelov, 1974), average of curvatures of any two

mutually perpendicular normal sections at a given point equals the mean curvature, H, of

the surface, Table 2. In part, H = 1/2(kmin + kmax) = 1/2(kh + kv). The sense of this

variable (of class C) can be explained using an example. If one takes a wire outline

(not necessarily plane), when a soap film stretched on, it has minimal possible area for the

given outline because surface energy tends to a minimum, in equilibrium conditions. This

Fig. 6. The four directions naturally marked on the surface S. n—normal vector to S at the point X; aaV—gradient

line; bbV—contour line; ddV, ccV—main normal sections.
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surface is called minimal (e.g., Guisti, 1984). It has been proven (Pogorelov, 1974) that in

all points of the minimal surface, mean curvature is equal to zero. In this sense, small

values of H mean that the surface is close to minimal—‘‘equilibrium’’. The formula for H

was known to Gauss (1827). In terms of Table 2, it follows from the formula of H that

limit of this variable is � 1/2(r+ t) as p,q! 0; since the elevation Laplacian DZ = r + t, this

gives DZc� 2H for gently sloping terrains.

The unsphericity M of a surface is half of the difference between maximal and minimal

curvatures (Table 2). Because kmaxz kmin, the unsphericity is non-negative. It equals

zero on a sphere: its value shows the extent to which the geometrical form of surface is

non-spherical. It follows from the expressions H = 1/2(kmin + kmax) and K = kmax � kmin,

that kmax,kmin =HF (H 2�K)1/2, and from here M = 1/2(kmin� kmax) = (H 2�K)1/2.

Because formulae for H and K are known, we obtain the formula for M by transformation

of the expression (H 2�K)1/2 to a sum of squares; the result is shown in Table 2.

Difference curvature E is equal to half the difference between vertical and horizontal

curvatures. It shows which accumulation mechanism is more active, and is also important

for classifying land surface forms in class A (Shary, 1995). It follows from the expressions

H = 1/2(kv + kh) and E = 1/2(kv� kh), that E =H� kh; substituting known formulae for H

and kh in the latter expression, one obtains formula for E presented in Table 2.

As mentioned above, there are three independent curvatures. It has been proven (Shary,

1995) that they can be chosen as the mean curvature H, the difference curvature E, and the

unsphericity M. For such a choice, all 12 curvatures of the complete system of curvatures

are expressed through these three curvatures by means of simple relations (Table 3).

Rotor rot is the curvature of flow lines, which are perpendicular to contour lines on a

map. Rotor is positive when a flow line turns clockwise, and negative in an opposite case

(Table 2). Rotor characterizes the twisting of flow lines, and does not belong to the

complete system of curvatures. The formula for rot was first deduced in Shary (1991).

Vertical excess curvature (kve) is the difference between kv and the minimal curvature

of normal section possible at the same point, that is kmin. So, kve describes to what extent

kv is larger than kmin. Similarly, horizontal excess curvature (khe) describes to what

extent kh is larger than kmin. Note that kve and khe are non-negative because curvature of

any normal section at a given point is not less than kmin. These MVs were first introduced

in Shary (1995); the formulae of Table 2 for them follow from Table 3.

5.4.1. Total ring curvature

Total ring curvature (KR) is defined as the product of kve and khe, Table 2, and is non-

negative because kve,khez 0. It was proven (Shary, 1995, Theorem 6) that KR is equal to

Table 3

The relationships between the remaining curvatures of the complete system of curvatures and the three

independent curvatures H, E, M

Curvatures of

units 1/m

Total curvatures

(of units 1/m2)

kmax =H +M kh =H�E K=H 2�M 2

kmin =H�M kve =M+E KA=H 2�E 2

kv =H+E khe =M�E KR=M 2�E 2
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zero for any radially symmetrical form of surface with a vertical axis of symmetry. Using

deduced above formulae M= (H 2�K)1/2, E =H� kh and formula KR=M 2�E2 of Table

3, one obtains KR= 2khH� kh2�K; substituting here formulae for H, kh and K of Table 2

results in the formula for KR presented in Table 2. Comparing this with formula for rot,

Table 2, one obtains KR= rot 2G 2/(1 +G 2)2. This result means that KR characterizes flow

lines twisting without taking into account, turns a flow line clockwise or counterclockwise.

Total accumulation curvature (KA) is defined as the product of kv and kh (Table 2). It

has been proven (Shary, 1995, Theorem 7) that KA is equal to zero for any surface forms

that are described in polar coordinates as a function of polar angle, which does not depend

on radius. Many such forms may be considered as constructed by passing rays from some

point, and hence (because of straight slope profiles in such cases), the vertical curvature is

equal to zero for them; KR, too, is zero. It is important that KA is positive in relative

accumulation zones, where both the accumulation mechanisms act simultaneously, and in

relative deflection zones (Shary, 1995), where both these mechanisms do not act. It is

negative in remaining zones, where only one of these mechanisms acts. So, kv and kh

permit construction maps of relative accumulation zones for substances that migrate on the

land surface under gravity. Lanyon and Hall (1983) have used relative accumulation zones

map for soil cover instability prediction.

Sometimes specialists subdivide the land surface into a random (noise) and systematical

components (e.g., Clarke, 1988; Tomer and Anderson, 1995). For example, a weakly

expressed spur of a hill may be essentially masked by numerous smaller hills, regarded as

‘‘noise’’. The sensitivity of local MVs to the random (noise) surface component is not

equal, and increases in the following order: elevation, first derivatives, second derivatives

of units 1/m, second derivatives of units 1/m2, third derivatives (Shary and Stepanov,

1991). Application of the latter for land surface description seems to be not feasible

because of their excessive sensitivity to ‘‘noise’’.

To obtain more expressive raster maps of MVs (or for comparisons with soil proper-

ties), their values can be logarithmed using the formula:

signðkÞlnð1þ constAkAÞ; ð1Þ

where k is a morphometric variable, sign(k) = 1 for k>0, sign(k) = 0 for k = 0, and

sign(k) =� 1 for k < 0. The value of const is empirical, and may be chosen equal to 106

for curvatures of units 1/m, and 1012 for total curvatures; for slope steepness, maximal

catchment area and maximal dispersive area (see below) const = 9 may be chosen. Using

the function sign(k) permits retention of the initial sign of k, after taking logarithm. Usage

of 1 in the logarithm permits avoidance of infinity which is not acceptable for computer

calculations because ln(0) =�l.

5.5. Solar irradiation characteristics

Variables of classes A and C, described above, are designed for use in geometric land

surface form analysis and for analysis of morphometric pre-requisits of dry and liquid

surface runoff. To analyse the thermal regime of slopes, methods of classes A and B for the

system ‘‘land surface + solar irradiation’’ are useful.
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One such method consists in calculation of slope insolation F maps (Table 2). In a local

consideration, F is an MV of class A; it represents solar radiation power expressed in

percent (from 0 to 100%) of the maximally possible that is reached for a solar ray direction

perpendicular to the land surface. Due to the local nature of F, hills may have shady side,

but cannot produce shadows themselves (because shadow is a regional concept). Because

F is a variable of class A, it has no sense without taking vector field of solar irradiation

into account, and therefore depends upon the Sun’s position, described by two angles: by

an azimuth, and by an angle of Sun from the horizon. Because F is percent of flux power,

that is, from energy per unit time per unit area (W/m2), slope insolation characterizes the

instantaneous Sun position. The angle of the Sun’s position for a given latitude and time of

year is known from astronomy, so the azimuth and angle from the horizon for the Sun can

be determined by time of year and latitude. To obtain slope insolation not in percent, but in

W/m2, it is enough to multiply F/100 by Sun flux power at the land surface. For a sunny

day and Sun position near zenith, this factor is equal to 2.25 kW/m2 (Matveev, 1984).

Disadvantages of F are: (a) it is not quite clear, for which time of day insolation best

characterizes the diurnal average thermal regime of slopes, (b) F describes only direct (not

diffused) solar irradiation.

An example of a slope insolation map is shown in Fig. 5b, where this map was used to

‘‘portray’’ land surface. For this purpose, the source of light was placed to the North

(where the Sun is absent), because in the opposite case some subjective effects of poor

visual perception may arise (ridges may be seen as valleys and vice versa; turn upside

down this map to see these effects). In the GIS ‘‘ECO’’, values of all morphometric

variables are available in each matrix element, and vector layers (hydrology, vegetation,

buildings, etc.) can be displayed above a map image of most MVs.

More effective estimation of the thermal regime of slopes can be achieved by use of an

MV that may be termed daily solar radiation dose. This determines not the power of the

solar flux, but energy that the land surface receives daily, taking into account climate and

state of atmosphere. This class B MV may be deduced by integration of the Sun’s

movement relative to the Earth for a day; formulae for it can be obtained by generalization

of the astronomic theory of climate, known in meteorology (Matveev, 1984). The daily

solar radiation dose (its units are J/m2) may also use some meteorological data to account

state of atmosphere and distinguish between direct and diffused solar radiation (see details

in Matveev, 1984).

5.6. Regional morphometric variables

Maximal catchment area (MCA), class B, shows for a given matrix element (square on

a map) the maximum area from which material moving downslope may be collected. In

practice, MCA (units m2) reflects both potential and realized hydrological channel network

(without distinguishing them); during calculation, locations and depths of all B-depres-

sions are also computed (Martz and de Jong, 1988; Costa-Cabral and Burges, 1994). An

example of an MCA map is shown in Fig. 5e. Note that for calculation of the maximal

dispersal area (Speight, 1974), which describes on which maximal area materials moving

downslope may be diffused, there is no need to introduce two separate algorithms, as

reported in Costa-Cabral and Burges (1994). It is enough for this purpose to invert the
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elevation matrix, and to use the same algorithm as for MCA on the inverted matrix (e.g.,

McKenzie and Ryan, 1999). Martz and de Jong (1988) have considered also a so-called

minimal catchment area, for which all flow lines that reach floors of B-depressions

disappear. This MV conceptually corresponds to the limit case of unfilled B-depressions

(water evaporates at their bottoms); its essential disadvantage is the lack of contributing

area integration along long channels and therefore excessive dependence of values on

elevation minima.

As indicated in Introduction, MVs of classes A and B are chosen vector field action

pre-requisits. Wind, snow melting, evapotranspiration, diffusion, inertia (e.g., for water

streams), human activities are commonly known examples of other pre-requisits.

6. On methods of the class B

As indicated above, regional MVs principally need the map boundary to be taken into

account for a terrain piece V, which is impossible in a planetary consideration (Maxwell,

1870) because the closed Earth surface has no boundaries. Speight (1968) has suggested

an idea of determination of the specific catchment area, SCA, which is based on a

consideration of a restricted terrain portion. Conceptually, SCA is contributing area per

unit length of contour line. It was mentioned above that contour lines have no scale-free

length, so one may use something like MCA/(grid mesh) to estimate SCA. The idea of

catchment area received further development in some later works (Beven and Kirkby,

1979; Martz and de Jong, 1988; Freeman, 1991; Costa-Cabral and Burges, 1994). Martz

and de Jong (1988) generalized Speight’s concept of catchment area by taking B-

depressions into account and re-discovering the idea of Maxwell (1870) that for each

land surface point there exists a set of connected points, from which a continuous path

with decreasing elevation can be found (the surface need not be smooth in this set

definition). This set was termed a ‘‘dead zone’’ by Martz and de Jong (1988). Freeman

(1991) and Quinn et al. (1991) suggested to take into account not only confluence, but also

branching of water flows on land surface heterogeneities; this has allowed description of

surface runoff more realistically and effectively reduced grid direction bias on MCA maps.

Grid directions are explicitly seen on catchment area maps where flow branching is not

taken into account (see Costa-Cabral and Burges, 1994). Beven and Kirkby (1979) have

developed a simple model of basin hydrology trying to separate land surface and soil water

storage effects; this has resulted in a so-called topographic index ln(SCA/tan(GA)) that

obviously tends to infinity with GA! 0, and therefore cannot be considered as a subject

of the general geomorphometry.

6.1. Scale-free property of maximal catchment area

Essentially MCA is a result of an integro-differential transformation of a DEM:

differentiation is necessary for flow direction determination, while integration is needed

to take extended basin portions into account. Because of integral properties of this MV,

one may expect that it may appear scale-free, at least in some terrain parts. Consider now

this in more detail. The dependence of maximal value of MCA on grid mesh can be
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studied using a technique of matrix thinning; the results are shown in Fig. 7, where

average slope gradient was used for a comparison (matrix size was 1033 by 1636

elements).

This result shows that max{MCA} for a given terrain does not depend on grid mesh w

for sufficiently small w. max{MCA} is essentially area of largest terrain basin; hence, this

morphometric characteristic is of integral type, not of integro-differential. This result will

be valid for any point of main water course because appropriate map boundaries always

can be chosen to make that point boundary. It is important in this consideration that MCA

map of the main stream should be one matrix element width in points of interest because in

opposite cases, max{MCA} may not represent basin area due to essential flow branching.

Excluding such cases, we may resume that at least on main water streams MCA is a scale-

free MV.

6.2. Hydrological aspects of some regional MVs

The description of surface runoff by a single morphometric variable (i.e., without

physical modeling in space and time) means the restriction of landscape processes

consideration by such situations, in which explicit dependence on time is absent. There

are two natural situations of such a kind in surface water hydrology: (1) consequences of a

single storm, and (2) steady state surface runoff characteristics that imply stationary

conditions of rainfall.

Fig. 7. The dependence of maximal value of MCA and average slope gradient on grid mesh w for mountainous

river Alma basin, southern part of Crimea Peninsula, the Ukraine. The scale of initial topographic map is

1:200,000. For both the variables, their ratios (in %) to their initial value at grid mesh 40 m (64,575 km2 and

0.08978, respectively) are shown. It is seen that max{MCA} practically does not depend on w, while the average

slope gradient essentially decreases with w.
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In the first situation, after all water has passed outside terrain boundaries, the quantity

of water that passed through each square on the terrain map (i.e., matrix element) does not

depend upon time (under some additional suggestions). Consider a case of spatially

uniform rainfall; to make this quantity independent from storm characteristics (such as

intensity and duration), volume units should be replaced by an area, on which this water

falls. This variable is just MCA; discrete forms here are B-depressions with horizontal free

water surfaces that are considered as filled by water to maximally possible depths, that is,

to the lowest outlet elevation (Fig. 1, point N). MCA calculation is usually accomplished

by calculation of B-depression depth map, so GIS ‘‘ECO’’ can show for each pixel of an

MCA map (Fig. 5e) also B-depression depth. Because MCA calculation uses essentially

only flow line directions on a map, it describes only the first accumulation mechanism, in

its regional expression.

In the second situation, an opportunity appears to describe both the accumulation

mechanisms by a single MV, considering stationary runoff characteristics. Note that the

topographic index ln(SCA/tan(GA)) does not describe new discrete forms. However, the

latter are a fundamental concept of regional classes; in this case, the new discrete forms are

dynamic depressions with non-horizontal free water surfaces. Rivers may be considered as

examples of such depressions (for non-stationary conditions). Since river depths depend

upon the rainfall intensity, a corresponding morphometric model must include dependent

on this intensity parameter and describe dynamic depressions together with their depths.

Such variable may be termed hydrodynamic area (HA, units m2); more detailed

description of this variable will include difference equations outside dynamic depressions

and algorithm description inside them (Shary, in preparation). Although HA existence and

features are not sufficiently described here, we have mentioned this idea because of its

potential importance in soil science. Indeed, relatively slow slope profile changes are

known as being responsible for numerous soil and parent material property changes (e.g.,

Ruhe, 1960, 1975; Pennock and de Jong, 1990; Coppinger et al., 1991; Moore et al., 1993;

Fiez et al., 1995; Anjos et al., 1998; Bergstrom et al., 1998; Kleber et al., 1998), while

regional MVs for their description (i.e., for second accumulation mechanism description)

are not known at the time.

7. Geometrical form and memory in soils

For the climatic conditions of Israel, Sinai et al. (1981) have found a strong correlation

(r = 0.90) between soil moisture and elevation Laplacian DZ that is approximately equal to

� 2H for gently sloping terrains (as shown above); a similar result for soil moisture and H

(r =� 0.89) was obtained by Kuryakova et al. (1992) for humid climatic conditions of the

Moscow region, Russia. The latter authors also showed that H correlates with soil moisture

more strongly than kv or kh taken singly. Timlin et al. (1998) studied relationships

between corn grain yield and DZ. They found that intra-annual differences in weather had

the largest effect on grain yield at locations with DZ>0 (i.e., with H < 0), that is,

predominantly in relative accumulation zones. So, these studies have revealed strong

correlations between geometrical form attributes and some soil properties, such as soil

moisture.
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Such results may seem counter-intuitive: MVs of class C, which ‘‘ignore gravity’’,

demonstrate stronger correlations with soil moisture than MVs of class A that describe

surface runoff. Consider now a hypothetical situation that may elucidate some aspects of

possible role of geometrical forms in soil science.

7.1. A hypothetical example

Suppose that some valley was inclined by land surface formation processes, as

schematically shown in Fig. 8.

Now largest-intensity surface runoff pathway (thalweg) is changed according to the

new orientation of this valley in gravitational field. Nevertheless, some ‘‘history-specific’’

soil properties, such as fine clay percent, may remain unchanged in the old thalweg

location, because some time interval is needed for soil to ‘‘forget’’ its pre-history stored in

clay percent. In other words, comparison of geometrical form attributes (class C) and those

of surface runoff (class A) is able to provide some information on this specific mechanism

of memory in soils; note that class C MVs are invariant to surface rotations. It follows

from the equality H = 1/2(kmin + kmax) obtained above and kmax = 0, kmin < 0 for this

situation that H = kmin/2; since AkminA is now largest in the old thalweg location (in

contrast to MCA), kmin or H will probably stronger correlate with such history-specific

soil properties. From the other side, the gravitational field controls only surface runoff, not

directly soil moisture, because the latter also depends on other soil properties, such as soil

specific surface area (e.g., Petersen et al., 1996) that is a function of clay percent. As a

result, soil moisture may more strongly correlate with kmin or H than with surface runoff

attributes, such as kv, kh, or MCA.

7.2. General notes

The situation described is only one concrete example (for this hypothetical situation),

when field-invariant MVs may appear more effective in soil property prediction than field-

specific MVs. Generally speaking, in processes of land surface formation, geometrical

Fig. 8. A scheme illustrating land surface inclination; the surface as a whole was rotated clockwise around

thalweg. Left— old surface orientation, right— present one. 1—old thalweg location, 2— new one.
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forms control flows and flows modify forms; land surface formation is accomplished by

soil formation and field-invariant MVs (i.e., geometrical form attributes) seem to be useful

in soil science due to their ability (in conjunction with gravity-specific MVs) to extract

information on specific mechanisms of memory in soil, which reflect effects of temporal

shifts between land surface formation and soil formation processes. The extent of their

practical value depends on how important is this kind of memory in soils; the latter seems

to be a subject of corresponding experimental studies, not only of theoretical consid-

erations. In this context, geometrical form analysis provides new tools to obtain some facts

that refer to this kind of memory in soils.

Using only gravity-specific MVs in terrain studies, soil scientists implicitly consider

land surface formation (accomplished by soil formation) as occurring under only gravity-

induced surface runoff influence; wind, tectonics and other pre-requisits of land surface

formation are essentially ignored. Gile (1999) has described a terrain, where wind impact

is considered as one of major pre-requisits of land surface formation; real contributions of

various pre-requisits often stay unknown. It seems to be too difficult task to consider all of

them separately; consequently, the following question arise: which MVs are able to take all

of them into account? We believe that field-invariant MVs are, because geometrical forms

are result of all pre-requisits of land surface formation (even of those that result in up-slope

material movement, such as wind erosion). This is an invariant, complementary to field-

specific representation of land surface analyses; in any case, morphometric analysis with

no use of field-invariant variables is not complete.

8. Discussion

The current state of general geomorphometry permits analysis at a local level of

geometrical land form, surface runoff, and the thermal regime of slopes. Although the

theory of local approaches in its major part can be considered as completed by proof of the

completeness of the system of 12 curvatures (Shary, 1995), its possibilities are far from

being sufficiently studied in soil science. It is hoped that use of this expanded system of

morphometric variables (MVs) is able to provide larger information (and show stronger

correlations) for natural relationships studying than frequently used approaches that are

based on mentioned above not substantiated notion, which the number of independent

curvatures is two, not three.

We believe that there exists a generalization to regional approaches for most local MVs

of general geomorphometry. For example, MCA generalizes in some sense to the class B

the local description of the first accumulation mechanism by the horizontal or plan

curvature. From this point of view, the theory of regional MVs is not sufficiently

developed yet; in addition, although the role of known regional MVs is sufficiently well

recognized even at present (e.g., Moore et al., 1993; McKenzie and Ryan, 1999), their

fuller introduction and systematic use may provide more powerful new tools for soil

science. The conclusion of this paper that some regional concepts (such as B-depressions,

B-hills, MCA on thalweg areas) have precise (scale-free) values is also an argument for

this belief. Scale-free property of regional MVs is of great importance in soil science

because it makes comparable results obtained at different scales. The results of this study
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show that scale-free property of new MVs is expected in regional classes B or D;

nevertheless, this property does not follows from that an MV belongs to one of these

classes. For example, scale-free property of MCA on thalwegs is lost for ln(MCA/G)

because slope gradient G is not scale-free.

As mentioned above, relatively slow profile changes are of great importance in soil

science. Consequently, the absence of regional MVs for the second accumulation

mechanism description should be considered as an essential disadvantage of present-day

general geomorphometry.

8.1. On ambiguity in land form definitions

Land form classifications have not been considered in this paper. Nevertheless, some

conclusions on land form types can be made from the above consideration of classes of

MVs.

Aandahl (1948) has defined convergent areas as concave spurs and divergent areas as

convex spurs; he termed areas of relative deceleration as concave terraces, and areas of

relative acceleration (where vertical curvature is positive) as convex terraces. Note that

these definitions refer to class A, that is, these are concave A-spurs, convex A-terraces, and

so on. Many intuitive definitions in geomorphology have up to four quantitatively

definable interpretations, not more than one in each class. So, a depression can be defined

by the main normal sections as a concave–concave part of a surface (Gauss, 1827), or as a

relative accumulation zone (Shary, 1995), or as a B-depression (Martz and de Jong, 1988),

or as a D-depression (Fig. 1a). These four definitions are essentially definitions of the four

non-overlapping classes of Table 1; they are mutually complementary, and there is a

definite relationship between them. In this concrete example, a B-depression is a part of D-

depression that is able to hold water (Fig. 1), and a C-depression is a part of an A-

depression, as have been proven in Shary (1995). Elevation matrix inversion allows four

definitions to be given for a hill also. Such ambiguity of definitions is an intrinsic feature

of geomorphometric concepts, and sometimes results in different understanding of the

same words or terms by different authors, but this ambiguity is restricted to the four non-

overlapping classes of concepts, at least, until global (planetary) concepts are not

considered.

8.2. On new morphometric variables introduction

This paper is essentially devoted to the topics related to where (in which class) and

how (by curvature concept generalization) new scale-free MVs might be introduced in

general geomorphometry, formal description of curvature was published earlier (Shary,

1995). Consider now some tasks that are to be solved for slow profile changes des-

cription.

Essentially, the general task is that of Aandahl’s A-terrace concept (or vertical curvature

concept) generalization to the class B. Terraces are perpendicular in general to slope

direction and they may have more or less frequent interrupts that may be interpreted as a

‘‘noisy’’ component of the land surface. A fixed-size filter of class A used to delineate A-

terraces may not sum non-interrupting terrace fragments because they are defined by
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terrain specifics, not by a fixed filter. A ‘‘searching’’ filter of class B should do this.

Another task is to search also B-terrace widths; with fixed filters, this is done only by maps

observer, visually. Discrete forms are subject of a special consideration; mentioned above

dynamic depressions appear as a result of morphometric modeling, being not directly

geometrical concepts: they depend on stationary rainfall intensity.

Too small number of currently introduced scale-free MVs has resulted in that

researchers have a stable belief that for each geological structure or land form its own

scale is to be applied (Klemeš, 1983; Clarke, 1988; Phillips, 1988), or that terrain

consideration at several different scales cannot be replaced by its consideration at a single

sufficiently large scale. Although only three of curvatures are independent, an oppor-

tunity that curvature concepts generalization to classes B and D will result in a larger

number of independent MVs of a new system of regional MVs cannot be disclaimed a

priory.
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Appendix A. The modified Evans-Young method

Evans–Young method consists of the following. The second-order polynomial z= rx 2/

2 + sxy + ty 2/2 + px + qy + z0 is fitted by the least squares method to the subgrid 3� 3, with

grid mesh w and elevations in nodes z1,. . .,z9. The locations and numbering of nodes are

shown in Fig. A1.

Fig. A1. Locations and numbering of nodes in subgrid 3� 3.
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This gives the following formulae for coefficients p, q, r, s, t of the polynomial:

p ¼ ðz3 þ z6 þ z9 � z1 � z4 � z7Þ=6w;

q ¼ ðz1 þ z2 þ z3 � z7 � z8 � z9Þ=6w;

r ¼ ½ z1 þ z3 þ z4 þ z6 þ z7 þ z9 � 2ðz2 þ z5 þ z8Þ
=3w2;

s ¼ ð�z1 þ z3 � z7 þ z9Þ=4w 2;

t ¼ ½ z1 þ z2 þ z3 þ z7 þ z8 þ z9 � 2ðz4 þ z5 þ z6Þ
=3w2;

see details on deduction of these formulae in Young (1978) and Pennock et al.

(1987).

The coefficients p, q, r, s, t are partial derivatives of the polynomial at the central point

of the subgrid that has coordinates x = y = 0. Namely, p =Dz/Dx; q =Dz/Dy; r =D2z/Dx2;
s=D2z/DxDy; t =D2z/Dy2. Now, using these values of partial derivatives, one may calculate

for the central (fifth) point of the subgrid 3� 3 any local morphometric variables that are

expressed by first and second derivatives from elevations of the surface given by the

equation z = z(x,y). Then, the subgrid 3� 3 is moved by its center to another element of

the elevation matrix, and the procedure is repeated. Calculations are carried out for all but

boundary matrix elements.

The modification of Evans–Young method consists in that before calculations by this

method, a parametric isotropic smoothing of the initial elevation matrix is performed.

This smoothing is realized by replacing the elevation z5 in the central point (fifth, Fig.

A1) by a new value z5V, which is linearly expressed through 3� 3 subgrid points

elevations:

z5V ¼ a1z1 þ a2z2 þ a3z3 þ a4z4 þ a5z5 þ a6z6 þ a7z7 þ a8z8 þ a9z9: ð1AÞ

There are nine unknown weights, a1,. . .,a9, for the filter (Eq. (1A)). The first condition
for their determination consists in that (A) a plane piece of surface is transformed into a

plane one. An equation of a plane is z = ax + by + z5; substituting into this formula

coordinate values x, y of subgrid nodes (Fig. A1), one obtains:

z1V ¼ wð�a þ bÞ þ z5; z2V ¼ bwþ z5; z3V ¼ wða þ bÞ þ z5;

z4V ¼ �awþ z5; z5V ¼ z5; z6V ¼ awþ z5;

z7V ¼ wð�a � bÞ þ z5; z8V ¼ �bwþ z5; z9V ¼ wða � bÞ þ z5;

it follows from this for an arbitrary plane

z5V ¼ awð�a1 þ a3 � a4 þ a6 � a7 þ a9Þ
þ bwða1 þ a2 þ a3 � a7 � a8 � a9Þ þ z5

X
ai
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Left part of this equation must be equal to z5 because the filter does not change

elevations for the plane:

ð1�
X
aiÞz5 ¼ a wð�a1 þ a3 � a4 þ a6 � a7 þ a9Þ

þ b wða1 þ a2 þ a3 � a7 � a8 � a9Þ: ð2AÞ

Because a1,. . .,a9 are numbers and the last equality should be valid for any a, b, z5, all the
three parentheses in Eq. (2A) must be equal to zero. From here:

a1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 þ a8 þ a9 ¼ 1; ð3AÞ

a3 þ a6 þ a9 � a1 � a4 � a7 ¼ 0; a1 þ a2 þ a3 � a7 � a8 � a9 ¼ 0: ð4AÞ

The next condition is that (B) the filter is isotropic. This means that all weights are

dependent only from the distance between node and central point. One finds from here the

equalities a1 = a3 = a7 = a9, a2 = a4 = a6 = a8, from which Eq. (4A) follow automatically; the

Eq. (3A) takes now the form:

a5 ¼ 1� 4ð a1 þ a2Þ: ð5AÞ

The filter (Eq. (1A)) is now z5V = a1( z1 + z3 + z7 + z9) + a2( z2 + z4 + z6 + z8) + a5z5; substitut-
ing here a5 from Eq. (5A), one finds:

z5V ¼ a1ð z1 þ z3 þ z7 þ z9Þ þ a2ð z2 þ z4 þ z6 þ z8Þ þ ½1� 4ða1 þ a2Þ
z5: ð6AÞ

So, the conditions (A) and (B) leave unknown the two weights of the filter (Eq. (1A)):

a1 and a2. One from them can be defined by the condition of (C) linearity of weights

decreasing with a distance from the central point. Let us rewrite Eq. (6A) for this in the

form:

z5V ¼ kð z1 þ z3 þ z7 þ z9Þ=9þ sð z2 þ z4 þ z6 þ z8Þ=9þ ½1� 4ð k þ sÞ
z5;

where the smoothing parameter sa[0,1], and the condition (C) gives for k the expression:

k ¼ 1� 21=2ð1� sÞ for sa ½1� 2�1=2; 1
 and

k ¼ 0 for sa ½0; 1� 2�1=2
:

The remaining free parameter s determines extent of surface smoothing by the filter. An

absence of smoothing (z5V = z5) corresponds to the value s = 0, non-weighted average

z5V =
P
zi/9 of the grid points corresponds to the value s= 1. At s< 1� 2� 1/2i0.293, the

expression for z5V is simplified because of k = 0:

z5V ¼ sðz2 þ z4 þ z6 þ z8Þ=9þ ð1� 4s=9Þz5:
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It was empirically stated that s = 1/5 (‘‘weak’’ smoothing) gives good results for maps

of curvatures practically for any terrain. The last formula takes for this value the form:

z5V ¼ ðz2 þ z4 þ 41z5 þ z6 þ z8Þ=45:
Smoothing of 9 points of the subgrid 3� 3 by this filter with a subsequent usage of

Evans–Young method to this smoothed subgrid results in the modified Evans–Young

method.

References

Aandahl, A.R., 1948. The characterization of slope positions and their influence on the total nitrogen content of a

few virgin soils of Western Iowa. Soil Science Society of America Proceedings 13, 449–454.

Anjos, L.H., Fernandes, M.R., Pereira, M.G., Franzmeier, D.P., 1998. Landscape and pedogenesis of an Oxisol–

Inceptisol–Ultisol sequence in southeastern Brazil. Soil Science Society of America Journal 62, 1651–1658.

Bell, J.C., Cunningham, R.L., Havens, M.W., 1992. Calibration and validation of a soil-landscape model for

predicting soil drainage class. Soil Science Society of America Journal 56, 1860–1866.

Bell, J.C., Cunningham, R.L., Havens, M.W., 1994. Soil drainage class probability mapping using a soil-land-

scape model. Soil Science Society of America Journal 58, 464–470.

Bergstrom, D.W., Monreal, C.M., King, D.J., 1998. Sensitivity of soil enzyme activities to conservation pro-

cesses. Soil Science Society of America Journal 62, 1286–1295.

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology.

Hydrological Sciences Bulletin 24, 43–69.

Carter, B.J., Ciolkosz, E.J., 1991. Slope gradient and aspect effects on soils developed from sandstone in

Pennsylvania. Geoderma 49, 199–213.

Clarke, K.C., 1988. Scale-based simulation of topographic relief. The American Cartographer 15, 173–181.

Coppinger, K.D., Reiners, W.A., Burke, I.C., Olson, R.K., 1991. Net erosion on a Sagebrush steppe landscape as

determined by cesium-137 distribution. Soil Science Society of America Journal 55, 254–258.

Costa-Cabral, M.C., Burges, S.J., 1994. Digital elevation model networks (DEMON): a model of flow over

hillslopes for computation of contributing and dispersal areas. Water Resources Research 30, 1681–1692.

Evans, I.S., 1972. General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley, R.J.

(Ed.), Spatial Analysis in Geomorphology. Methuen & Co., London, pp. 17–90, Chap. 2.

Evans, I.S., 1975. The effect of resolution on gradients calculated from an altitude matrix. Report 3 on Grant DA-

ERO-591-73-G0040, ‘Statistical characterization of altitude matrices by computer’ (Appendix: Stationarity).

Department of Geography, University of Durham, England, 24 pp.

Evans, I.S., 1979. An integrated system of terrain analysis and slope mapping. Final Report (Report 6) on Grant

DA-ERO-591-73-G0040, ‘Statistical characterization of altitude matrices by computer’. Department of Geog-

raphy, University of Durham, England, 192 pp.

Evans, I.S., 1980. An integrated system of terrain analysis and slope mapping. Zeitschrift fuer Geomorphologie

N.F., Supplementband 36, 274–295.

Evans, I.S., 1990. General geomorphometry. In: Goudie, A. (Ed.), Geomorphological Techniques. 2nd edn. Allen

& Unwin, London, pp. 44–56, Chap. 2.3.

Evans, I.S., Cox, N.J. et al., 1999. Relations between land surface properties: altitude, slope and curvature.

In: Hergarten, S., Neugebauer, H.J. (Eds.), Process Modelling and Landform Evolution. Springer, Berlin,

pp. 13–45.

Fiez, T.E., Pan, W.L., Miller, B.C., 1995. Nitrogen use efficiency of winter wheat among landscape positions. Soil

Science Society of America Journal 59, 1666–1671.

Finn, R., 1986. Equilibrium Capillary Surfaces. Springer-Verlag, New York, 312 pp.

Freeman, T.G., 1991. Calculating catchment area with divergent flow based on a regular grid. Computers &

Geosciences 17, 413–422.

Gauss, C.F., 1827. Disquisitiones generales circa area superficies curvas. Gott. Gel. Anz. 177, S1761–S1768 (in

Latin).

P.A. Shary et al. / Geoderma 107 (2002) 1–3230



Gile, L.H., 1999. Eolian and associated pedogenic features of the Jornada Basin floor, southern New Mexico. Soil

Science Society of America Journal 63, 151–163.

Guisti, E., 1984. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 240 pp.
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