

SER-301

AVALIAÇÃO DO POTENCIAL DAS IMAGENS DE LUZES DO VIIRS EM ESTIMAR A POPULAÇÃO URBANA DA REGIÃO METROPOLITANA DE SÃO PAULO, BRASIL

Vinicius Etchebeur Medeiros Dória

Trabalho desenvolvido na disciplina de Análise Espacial de Dados Geográficos

São José dos Campos

2013

AVALIAÇÃO DO POTENCIAL DAS IMAGENS DE LUZES DO VIIRS EM ESTIMAR A POPULAÇÃO URBANA DA REGIÃO METROPOLITANA DE SÃO PAULO, BRASIL.

Vinicius Etchebeur Medeiros Dória1

¹Divisão de Sensoriamento Remoto - DSR Instituto Nacional de Pesquisas Espaciais - INPE Caixa Postal 515 - 12227-010 - São José dos Campos - SP, Brasil viniciusdoria@dsr.inpe.br

Resumo. O sensoriamento remoto da Terra utiliza principalmente sensores ópticos que operam sob a luz do Sol refletida pela Terra. Os sensores ópticos de imageamento noturno, basicamente, trabalham nas regiões do infravermelho e do microondas do espectro eletromagnético. Uma pequena parcela da comunidade científica tem direcionado esforços em compreender, estimar, monitorar e mapear as dinâmicas da urbanização utilizando dados de sensores de imageamento noturno. Atualmente, a obtenção de dados demográficos oficiais para o Brasil é restrita aos dados do Censo Demográfico realizado pela Fundação Instituto Brasileiro de Geografia e Estatística (IBGE) a cada 10 anos. Diante deste contexto, este trabalho tem como objetivo avaliar o potencial das imagens de luzes do sensor Visible/Infrared Imaging Radiometer Suite (VIIRS) em estimar a população urbana da Região Metropolitana de São Paulo (RMSP) numa escala local, utilizando áreas de ponderação como unidade de análise, aplicando a regressão geograficamente ponderada. Ainda, procura-se capturar possíveis variações espaciais intra-urbanas da relação entre os dados de luzes e os dados de população. A população estimada pelo GWR se apresentou bastante consistente, mesmo que apenas 32,8% dos coeficientes tenham se apresentado estatisticamente significantes. Utilizando o GWR foi possível observar os diferentes regimes espaciais apresentados pelos coeficientes de cada modelo. Ademais, constatou-se a associação destes regimes com diferentes padrões de ocupação urbana.

Palavras-chave: luzes noturnas, VIIRS, GWR, estimativa populacional

1 INTRODUÇÃO

Dados de sensoriamento remoto e técnicas de geoprocessamento têm sido amplamente utilizados para auxiliar os estudos relacionados à urbanização. O sensoriamento remoto da Terra utiliza principalmente sensores ópticos que operam sob a luz do Sol refletida pela Terra. Os sensores ópticos de imageamento noturno, basicamente, trabalham nas regiões do infravermelho e do microondas do espectro eletromagnético. Estes sensores surgiram na década de 1960 e possibilitaram observar alguns aspectos que durante o dia dificilmente seriam perceptíveis, como, por exemplo, auroras, focos de incêndios florestais, luzes de cidades e chamas provenientes da queima de gases (FOSTER, 1983). Desde então, uma pequena parcela da comunidade científica tem direcionado esforços em compreender, estimar, monitorar e mapear as dinâmicas da urbanização utilizando dados de sensores de imageamento noturno (AMARAL et al., 2006; DOLL, 2010; SMALL; ELVIDGE, 2011; ZHANG; SETO, 2011).

Atualmente, a obtenção de dados demográficos oficiais para o Brasil é restrita aos dados do Censo Demográfico realizado pela Fundação Instituto Brasileiro de Geografia e Estatística (IBGE) a cada 10 anos. Considerando escalas regionais (níveis municipal e estadual) e globais (níveis federais) de análise, há alguns anos que a academia científica utiliza dados de luzes para estimar a população e/ou o consumo de energia elétrica (AMARAL et al., 2005; 2006; DOLL; PACHAURI, 2010; LETU et al., 2010; MA et al., 2012).

Diante deste contexto, este trabalho tem como objetivo avaliar o potencial das imagens de luzes do sensor *Visible/Infrared Imaging Radiometer Suite* (VIIRS) em estimar a população urbana da Região Metropolitana de São Paulo (RMSP) numa escala local, utilizando áreas de ponderação como unidade de análise. Ainda, procura-se capturar possíveis variações espaciais intra-urbanas da relação entre os dados de luzes e os dados de população.

2 O VISIBLE/INFRARED IMAGING RADIOMETER SUITE (VIIRS)

O Joint Polar Satellite System (JPSS) é um programa estabelecido em 2010 como resultado da reestruturação do National Polar-Orbiting Environmental Satellite System (NPOESS), para prover continuidade ao Polar-orbiting Operational Environmental Satellite System (POES) da NOAA. Como resultado, foi lançado um projeto preparatório do programa JPSS, o satélite Suomi National Polar-orbiting Partnership (S-NPP) (CAO et al., 2013b).

O S-NPP foi lançado em 28 de outubro de 2011 da base aérea estadunidense de Vandenberg, Califórnia (XIONG et al., 2012). À bordo da plataforma estão cinco sensores: 1) *Cross-Track Infrared Sounder*; 2) *Ozone Mapping and Profiling Suite*; 3) *Advanced Technology Microwave Sounder*; 4) *Cloud and Earth Radiance Energy System*; e 5) VIIRS. O VIIRS tem foco principal na observação das nuvens e de variáveis da superfície terrestre, enquanto que os outros sensores foram desenvolvidos para medir variáveis atmosféricas e o balanço radiativo da Terra (CAO et al., 2013b).

O sensor VIIRS é um radiômetro de varredura mecânica que adquire imagens diurnas e noturnas. Cada imagem recobre aproximadamente 3.000 km da superfície terrestre, provendo cobertura diária da Terra, tanto diurna quanto noturna. Possui 22 bandas espectrais distribuídas entre 0,40 e 12,43 µm. Entre elas encontra-se a banda *Day/Night Band* (DNB), a qual realiza medições durante a órbita diurna e noturna do satélite (LEE et al., 2006). Esta banda tem um intervalo espectral de 0,5 a 0,9 µm, possui um arranjo de quatro sensores CCD (*Charged-Coupled Device*) dedicados e as imagens têm resolução espacial de 750 metros. Ademais, a calibração da banda DNB realizada a bordo do satélite permite uma acurácia radiométrica bem melhor do que a do sensor OLS (LEE et al., 2006; CAO, 2013a).

2 MATERIAIS E MÉTODOS

2.1 Área de Estudo

A região de estudo escolhida para este trabalho compreende 619 áreas de ponderação consideradas urbanas pelo IBGE, presentes nos 39 municípios da RMSP, totalizando uma área de aproximadamente 6.200 km², no estado de São Paulo (Figura 1).

Figura 1 - Área de Estudo.

2.2 Materiais

Foram utilizadas as áreas de ponderação urbanas como unidade de análise, o total de população (TP) do censo demográfico do IBGE e a soma dos pixels de luzes noturnas (SPL) das imagens do VIIRS.

Um município somente possui áreas de ponderação caso possua mais do que 190 mil habitantes. Uma área de ponderação abrange, no mínimo, 400 domicílios particulares ocupados que tenham respondido ao questionário da amostra, e é constituída por setores censitários circunvizinhos. Neste trabalho, foram utilizadas somente as áreas de ponderação urbanas. Para que uma área de ponderação seja considerada urbana, é necessário que os setores censitários que a compõem atendam as seguintes situações de setor: área urbanizada de vila ou cidade; área não urbanizada de vila ou cidade; e área urbana isolada. Estas situações de setores são definidas pelo próprio IBGE e são disponibilizadas juntamente com os resultados do Universo.

O total de população para cada área de ponderação foi obtido por meio dos resultados do Universo do Censo Demográfico de 2010, realizado pelo IBGE. Os resultados do Universo são disponibilizados por setor censitário, que é a menor unidade de coleta e registro das informações obtidas no recenseamento. Assim, os estes foram agregados por áreas de ponderação, adequando esta variável à unidade de análise.

No início de 2013, o *Earth Observing Group* do *National Oceanic and Atmospheric Administration – National Geophysical Data Center* disponibilizou um produto primário de luzes noturnas do sensor VIIRS (Figura 2a). Este produto é o resultado de um mosaico de diversas imagens livres de nuvens coletadas nos meses de abril e outubro de 2012, com resolução espacial de 15 segundos de arco, o equivalente a aproximadamente 500 metros. A composição foi gerada usando dados coletados pela banda DNB. No entanto, o produto de luzes noturnas do VIIRS não foi filtrado com o objetivo de remover as luzes associadas aos eventos efêmeros, tais como auroras, vulcões, focos de incêndios florestais e tampouco foram retirados os ruídos das imagens. Estes ruídos são, aparentemente, pequenos conjuntos de pixels com valores anômalos (muito altos) espalhados aleatoriamente por toda a imagem (Figura 2b).

Figura 2 - a) Imagem de luzes do VIIRS e áreas de ponderação urbanas em vermelho; b) Imagem de luzes do VIIRS com indicação aos conjuntos de pixels ruidosos.

2.3 Metodologia

Neste trabalho, nenhum processamento foi realizado para remover as luzes associadas aos eventos efêmeros das imagens de luzes do VIIRS, uma vez que a área de estudo é uma região metropolitana de ocupação predominantemente urbana, onde as luzes presentes na imagem estão todas praticamente associadas à atividades humanas. Com relação aos ruídos presentes na imagem, os mesmos foram desconsiderados, pois alterariam significativamente a variável SPL, implicando em maiores erros nos resultados obtidos.

Para avaliar a relação entre as imagens de luzes e a quantidade de população residente na RMSP, foram utilizadas duas técnicas de regressão: a regressão linear simples (global) e a regressão geograficamente ponderada (*Geographically Weighted Regression* – GWR).

A análise de regressão tem como objetivo quantificar a relação existente entre duas ou mais variáveis, de forma que uma variável possa ser explicada (variável resposta) por outra ou outras variáveis (variáveis explicativas). No caso deste estudo, a variável resposta é a TP e a variável explicativa é a SPL. O modelo de regressão linear simples utilizado para descrever a relação entre TP e SPL é apresentado na Equação 1.

$$TP_i = \beta_0 + \beta_1 . SPL_i + \varepsilon \tag{Eq. 1}$$

onde TP_i é o total da população da i-ésima área de ponderação, β_0 é o coeficiente linear, β_1 é o coeficiente angular, SPL_i é a soma dos valores dos pixels de luzes da i-ésima área de ponderação e ε é o erro.

Os ruídos da regressão foram analisados e foram calculados os índices de Moran global e local para explorar a autocorrelação espacial existente nos mesmos. O índice global de Moran é análogo ao coeficiente de correlação convencional e quantifica o grau de correlação espacial existente. O valor deste índice varia de -1 a +1, onde -1 indica uma autocorrelação espacial negativa ou inversa, 0 indica aleatoriedade, isto é, quando não há autocorrelação espacial, e +1 indica autocorrelação espacial positiva ou direta.

O índice local de Moran pode ser considerado uma decomposição do índice global e produz um valor para cada área (polígono) da região de estudo. A interpretação deste índice está associada ao Diagrama de Espalhamento de Moran (Figura 3), o qual relata espacialmente o relacionamento entre os valores do vetor de desvios (Z) e os valores das médias locais (WZ), indicando possíveis diferentes regimes espaciais presentes nos dados. Os quadrantes Q1 (Z+, WZ+) e Q2 (Z-, WZ-) indicam pontos de associação espacial positiva, no sentido de que uma localização possui vizinhos com valores semelhantes. Já os quadrantes Q3 (Z+, WZ-) e Q4(Z-, WZ+) indicam pontos de associação espacial negativa, no sentido de que uma localização possui vizinhos com valores da associação espacial negativa, no sentido de que uma localização possui vizinhos com valores de associação espacial negativa, no sentido de que uma localização possui vizinhos com valores distintos.

Figura 3 - Modelo do Diagrama de Espalhamento de Moran.

Para lidar com a questão da não-estacionariedade do processo de ocupação humana, isto é, varia ao longo das diferentes áreas da região de estudo, foi aplicado o GWR (FOTHERINGHAM et al., 1997). Esta técnica ajusta um modelo de regressão a cada ponto observado, ponderando as demais observações em função da distância a este ponto, isto é, as observações mais próximas do ponto onde foi ajustado o modelo de regressão local terão maior peso do que as observações mais distantes. O modelo de regressão utilizado pelo GWR é apresentado pela Equação 2.

$$TP_i = \beta_0(u_i, v_i) + \beta_1(u_i, v_i). SPL_i + \varepsilon$$
 (Eq. 2)

onde u_i e v_i representam as coordenadas geográficas de cada um dos centroides das áreas de ponderação.

Na ponderação das observações consideradas em cada modelo de regressão local, foi utilizada a função gaussiana com largura de banda adaptável, isto é, menor em áreas com alta densidade de dados e maior em áreas com menor densidade de dados. A largura de banda foi selecionada pelo software GWR4, o qual foi utilizado para executar o modelo, baseando-se no menor valor do Akaike Information Criterion. A banda adaptável escolhida pelo software foi a menor distância que abrangesse os 25 vizinhos mais próximos para fazer a estimativa do modelo.

3 RESULTADOS E DISCUSSÃO

A regressão linear simples teve como coeficiente de determinação (R^2) o valor de 0,10 (Figura 4), com estatística t igual a 8,49, bem abaixo da relação esperada entre os dois dados, isto é, o modelo estimado é capaz de descrever somente 10% da variabilidade observada na variável TP.

Figura 4 - Diagrama de dispersão entre as variáveis Luzes e População.

Por meio de análise empírica dos resíduos da regressão, constatou-se a sua distribuição aproxima-se de uma distribuição normal (Figura 5). O diagrama de dispersão dos resíduos *versus* os valores estimados de população (Figura 6) apresentou uma pequena

estrutura indicativa da heterocedasticidade dos resíduos, isto é, quanto maior a população, maior é o erro adicionado ao modelo de regressão.

Histogram of Standardized Residuals

Figura 5 - Histograma dos resíduos da regressão linear simples (a linha azul representa o histograma de uma distribuição normal).

Residual vs. Predicted Plot

Figura 6 - Diagrama de dispersão dos resíduos versus os valores estimados de população.

Adicionalmente, foi analisado o mapa dos resíduos da regressão (Figura 7). A distribuição espacial dos resíduos pode dar indícios da existência de *clusters* (agrupamentos) de regiões onde o modelo de regressão apresenta um erro, tanto para mais quanto para menos, bastante considerável. Neste caso, pode-se observar que existe uma concentração na região periférica da área de estudo, onde o erro associado é menor do que -1,5 desvios padrões. Ademais, percebem-se regiões concentradas nas áreas mais urbanizadas da RMSP, onde o erro dos resíduos está entre 0,5 e 2,5 desvios padrões.

Figura 7 - Mapa da distribuição espacial dos resíduos.

Para verificar a dependência espacial observada nos resíduos, foi aplicado o Índice Global de Moran (*I*). O índice global de Moran (*I*) obtido para os resíduos foi de 0,45, ou seja, há indícios de que existe uma autocorrelação espacial positiva, com p-valor de 0,01 indicando que o teste foi significante.

Para explorar melhor a autocorrelação espacial indicada pelo Índice Global de Moran, foi calculado o Índice Local de Moran nos resíduos da regressão linear simples. A Figura 8 apresenta o Diagrama de Espalhamento de Moran juntamente com o Box Map, que representa o diagrama na forma de uma mapa temático. Percebe-se que os indícios de aglomerações espaciais observados no mapa dos resíduos são ratificados no Box Map, com associações predominantemente positivas nas áreas mais centrais e predominantemente negativas na região periférica da área de estudo.

Diagrama de Espalhamento de Moran (Resíduos)

Figura 8 - a) Diagrama de Espalhamento de Moran dos resíduos e b) Box Map dos resíduos.

A Figura 9 apresenta o Moran Map. Este mapa é similar ao Box Map, porém, apresenta somente as áreas cujos indicadores locais foram estatisticamente significantes, considerando 5% de significância.

Figura 9 - Moran Map dos resíduos.

A partir da constatação da autocorrelação espacial dos resíduos, foi aplicada a regressão geograficamente ponderada. A Figura 10 apresenta o mapa dos R^2 locais para as áreas de ponderação da região de estudo. As áreas mais escuras indicam que com os dados de luzes foi possível explicar 50% ou mais da variação da população. O R^2 global da regressão atingiu 0,75, indicando uma melhora significativa em relação à regressão linear simples, cujo R^2 foi de 0,10.

Figura 10 - Mapa dos coeficientes de determinação locais.

A Figura 11 mostra o mapa dos coeficientes angulares locais (β_1). O mapa destes coeficientes permite explorar melhor a variação espacial da relação entre os dados de luzes do VIIRS e a população. É importante salientar que dentre todos os coeficientes da variável SPL, somente 32,8% foram estatisticamente significantes, à 5% de significância, e são apresentados pela Figura 12.

Figura 11 - Mapa de β 1 locais estimados.

Figura 12 - Mapa de β1 locais estimados considerando 5% de significância.

No caso deste estudo, observou-se que a variação espacial do β_1 local estimado indica diferentes padrões de ocupação urbana, isto é, onde o β_1 estimado é maior, existe um

maior adensamento de ocupação urbana (poucas áreas abertas), e vice-versa, como mostra o exemplo da Figura 13.

Figura 13 - Exemplo da associação entre β1 local estimado e os diferentes padrões de ocupação urbana. As figuras das imagens de satélite foram extraídas do Google Earth.

Com relação à estimação da população utilizando as imagens de luzes do VIIRS, os resultados se apresentaram bastante consistentes de modo geral, considerando que a data de obtenção das variáveis apresenta uma diferença de dois anos, isto é, o valor de população é proveniente do censo de 2010 e as imagens de luzes do VIIRS são provenientes de 2012.

Foi calculado o erro relativo de cada valor de população estimado em relação ao valor de população observado. A tabela com os resultados para cada área de ponderação encontra-se no Anexo deste trabalho por ser muito extensa. Para facilitar a apresentação e observação dos resultados, foi elaborada a Tabela 1 contendo o erro relativo absoluto das estimações estratificado em três classes (Li et al., 2013): 0-25% exatidão alta; 25-50% exatidão moderada; e >50% inexato.

Tabela 1 - Diferentes níveis de exatidão da população estimada usando o modelo GWR.

Porcentagem do Erro Relativo da População Estimada (%)			
Exatidão Alta (0 - 25%) Exatidão Moderada (25-50%) Inexato (>50%)			
77,87 18,09 4,04			

4 CONSIDERAÇÕES FINAIS

Sempre que se modela fenômenos distribuídos no espaço, é de extrema importância verificar se existe autocorrelação espacial das variáveis para que não haja problemas nos resultados. Neste caso, a autocorrelação espacial foi constatada através dos resíduos da regressão linear simples, sendo posteriormente considerada no modelo GWR.

Utilizando o GWR foi possível observar os diferentes regimes espaciais apresentados pelos coeficientes. Ademais, constatou-se a associação destes regimes com diferentes padrões de ocupação urbana. No entanto, somente 32,8% dos coeficientes foram estatisticamente significativos, indicando a necessidade de uma possível alteração da unidade de análise (p. ex. distritos da RMSP) para uma melhor adequação do modelo, mantendo ainda a escala local.

A população estimada pelo GWR se apresentou bastante consistente, mesmo que poucos coeficientes tenham se apresentado estatisticamente significantes.

Este trabalho é uma contribuição científica, indicando que existe a possibilidade de se trabalhar em escalas locais utilizando os dados de luzes do VIIRS. Espera-se que estes resultados incentivem futuros outros que considerem unidades de análise menores do que os limites municipais comumente utilizados pela comunidade científica que faz uso dos dados de luzes noturnas.

5 REFERÊNCIAS

AMARAL, S.; CÂMARA, G.; MONTEIRO, A. M. V.; QUINTANILHA, J. A.; ELVIDGE, C. D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Computers, Environment and Urban Systems, v. 29, p. 179-195, 2005.

AMARAL, S.; MONTEIRO, A. M. V.; CAMARA, G.; QUINTANILHA, J. A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. International Journal of Remote Sensing, v. 27, n. 5, p. 855-870, 2006.

CAO, C.; XIONG, X.; WOLFE, R.; DELUCCIA, F.; LIU, Q.; BLONSKI, S.; LIN, G.; NISHIHAMA, M.; POGORZALA, D.; OUDRARI, H. Visible/Infrared Imager Radiometer Suite (VIIRS) Sensor Data Record (SDR) user's guide. Washington: NOAA, 2013a. 40 p. (Technical Report NESDIS 142). Disponível em:

<https://cs.star.nesdis.noaa.gov/pub/NCC/UsersGuideVIIRS/VIIRS_SDR_USERS_GU IDE_NOAA_TechReport142.pdf>. Acesso em: 02.jun.2013.

CAO, C.; DeLUCCIA, F.; XIONG, X.; WOLFE, R.; WENG, F. Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite. **IEEE Transactions on Geoscience and Remote Sensing**, 2013b (a ser publicado).

DOLL, C. N. H. Population detection profiles of DMSP-OLS night-time imagery by regions of the world. In: Asia-Pacific Advanced Network Meeting, 30., 2010, Hanoi, Vietnam. **Proceedings**... Hanoi: APAN, 2010, p. 191-207.

DOLL, C. N. H.; PACHAURI, S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy, v. 38, p. 5661-5670, 2010.

FOSTER, J. L. Observations of the Earth using nighttime visible imagery. In: Optical Engineering for Cold Environments, 0414., 1983, Arlington, EUA. **Proceedings**... Arlington: SPIE, 1983. p. 187-193.

FOTHERINGHAM, A. S.; CHARLTON, M.; BRUNSDON, C. Two techniques for exploring non-stationary in geographical data. **Geographical Systems**, v. 4, p. 59-82, 1997.

LEE, T. E.; MILLER, S. D.; TURK, F. J.; SCHUELER, C.; JULIAN, R.; DEYO, S.; DILLS, P.; WANG, S. The NPOESS VIIRS day/night visible sensor. **Bulletin of the American Meteorological Society**, v. 87, p. 191-199, 2006.

LETU, H.; HARA, M.; YAGI, H.; NAOKI, K.; TANA, G.; NISHIO, F.; SHUHEI, O. Estimating energy consumption from night-time DMSP/OLS imagery after correcting for saturation effects. International Journal of Remote Sensing, v. 31, n. 16, p. 4443-4458, 2010.

MA, T.; ZHOU, C.; PEI, T.; HAYNIE, S.; FAN, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China's cities. **Remote Sensing of Environment**, v. 124, p. 99-107, 2012.

SMALL, C.; ELVIDGE, C. D. Mapping decadal change in anthropogenic night light. **Procedia Environmental Sciences**, v. 7, p. 353-358, 2011.

XIONG, X.; CHIANG, K.; McINTIRE, J.; OUDRARI, H.; WU, A.; SCHWALLER, M.; BUTLER, J. Early assessment of VIIRS on-orbit calibration and support activities. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2012, Munich, Germany. **Proceedings**... Munich: IEEE, 2012, p. 7189-7192. ZHANG, Q.; SETO, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. **Remote Sensing of Environment**, v. 115, p. 2320-2329, 2011.

ANEXO

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3516309003002	41,001	24,444	-40.38
3516309003005	41,743	25,256	-39.50
3550308005165	48,989	31,130	-36.46
3550308005089	40,931	26,441	-35.40
3550308005251	44,459	28,968	-34.84
3518800005020	59,410	38,865	-34.58
3529401005005	29,950	19,751	-34.05
3550308005137	50,211	33,855	-32.57
3506607003001	28,541	19,284	-32.43
3550308005214	41,407	27,998	-32.38
3510609005006	74,916	51,658	-31.04
3530607005023	17,557	12,206	-30.48
3510609005004	63,694	44,436	-30.24
3516309003003	35,614	24,904	-30.07
3529401005007	29,547	20,876	-29.35
3550308005175	50,720	36,010	-29.00
3550308005212	46,523	33,077	-28.90
3547304003004	45,010	32,038	-28.82
3550308005062	53,001	38,072	-28.17
3550308005007	39,550	28,544	-27.83
3518800005025	56,809	41,067	-27.71
3550308005215	34,079	24,643	-27.69
3552809005008	41,363	29,970	-27.54
3529401005003	28,546	20,707	-27.46
3550308005086	45,700	33,187	-27.38
3548708005010	50,127	36,425	-27.33
3552502005002	82,684	60,209	-27.18
3550308005296	50,875	37,060	-27.15
3550308005047	43,083	31,420	-27.07
3550308005014	36,880	26,989	-26.82
3513009003010	31,687	23,266	-26.58
3550308005184	49,134	36,336	-26.05
3550308005166	51,169	37,853	-26.02
3550308005110	48,804	36,177	-25.87
3550308005150	51,126	38,231	-25.22
3523107005014	23,530	17,604	-25.18
3530607005008	15,724	11,785	-25.05

Tabela A 1 – População observada, população estimada pelo modelo GWR e o erro relativo da estimativa para cada área de ponderação.

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3530607005009	18,319	13,740	-25.00
3550308005283	52,952	39,726	-24.98
3550308005039	48,911	36,733	-24.90
3550308005292	43,381	32,663	-24.71
3513801005012	25,648	19,316	-24.69
3548708005003	49,304	37,174	-24.60
3525003003004	28,573	21,722	-23.98
3550308005259	56,976	43,322	-23.96
3534401005015	48,407	37,093	-23.37
3550308005108	49,418	38,096	-22.91
3550308005164	47,564	36,719	-22.80
3547809005022	35,617	27,553	-22.64
3550308005084	44,913	34,758	-22.61
3550308005157	50,646	39,195	-22.61
3550308005061	39,574	30,702	-22.42
3550308005280	55,287	42,938	-22.34
3518800005027	57,924	45,059	-22.21
3548807003008	26,993	20,999	-22.21
3548708005014	43,850	34,267	-21.85
3510609005005	60,215	47,123	-21.74
3550308005106	42,683	33,466	-21.59
3510609005003	44,469	34,918	-21.48
3552809005007	33,688	26,476	-21.41
3548708005015	50,328	39,601	-21.32
3522208003006	28,438	22,425	-21.14
3550308005234	43,034	34,028	-20.93
3505708005006	25,142	19,899	-20.86
3550308005135	54,102	42,871	-20.76
3550308005067	46,417	36,854	-20.60
3534401005014	46,361	36,905	-20.40
3550308005069	49,250	39,212	-20.38
3550308005254	42,578	33,961	-20.24
3550308005270	38,324	30,581	-20.20
3550308005160	47,192	37,715	-20.08
3550308005243	42,965	34,421	-19.89
3550308005116	44,251	35,523	-19.72
3550308005085	44,087	35,456	-19.58
3550308005163	38,212	30,813	-19.36
3550308005122	48,642	39,367	-19.07
3550308005046	44,753	36,322	-18.84
3510609005007	52,000	42,323	-18.61

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3550308005003	34,175	27,839	-18.54
3550308005087	35,449	28,877	-18.54
3550308005293	39,267	32,032	-18.43
3550308005070	51,917	42,433	-18.27
3550308005065	46,547	38,066	-18.22
3550308005159	43,060	35,264	-18.10
3523107005013	21,593	17,695	-18.05
3550308005252	49,737	40,819	-17.93
3529401005017	23,931	19,716	-17.61
3550308005277	35,974	29,674	-17.51
3547809005007	36,587	30,204	-17.45
3516408003005	29,416	24,313	-17.35
3550308005079	46,904	38,818	-17.24
3550308005104	46,706	38,687	-17.17
3550308005185	45,107	37,370	-17.15
3550308005248	48,899	40,670	-16.83
3550308005217	45,605	37,942	-16.80
3547809005006	34,572	28,765	-16.80
3522505005004	18,163	15,115	-16.78
3544103003002	23,879	19,877	-16.76
3529401005012	24,048	20,019	-16.76
3550308005100	39,434	32,847	-16.70
3550308005156	48,763	40,619	-16.70
3548708005016	45,754	38,175	-16.57
3550308005189	55,727	46,685	-16.22
3550308005221	45,081	37,770	-16.22
3530607005015	16,091	13,498	-16.11
3522208003007	31,151	26,179	-15.96
3530607005022	19,079	16,060	-15.82
3550308005123	46,621	39,246	-15.82
3529401005011	25,760	21,726	-15.66
3550308005272	38,604	32,614	-15.52
3550308005059	35,938	30,392	-15.43
3547809005003	34,675	29,353	-15.35
3550308005012	28,877	24,453	-15.32
3550308005229	46,723	39,680	-15.07
3548708005018	42,203	35,944	-14.83
3515004005005	26,992	23,041	-14.64
3550308005260	47,369	40,583	-14.33
3550308005193	50,223	43,062	-14.26
3550308005074	39,571	33,968	-14.16

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3550308005120	45,953	39,454	-14.14
3550308005192	44,944	38,606	-14.10
3550308005197	52,648	45,229	-14.09
3550308005048	38,235	32,867	-14.04
3550308005284	45,978	39,526	-14.03
3550308005025	30,166	25,938	-14.02
3515707003008	36,204	31,166	-13.92
3550308005253	50,243	43,295	-13.83
3550308005201	47,341	40,884	-13.64
3550308005224	45,534	39,358	-13.56
3550308005208	44,413	38,487	-13.34
3548708005001	52,366	45,389	-13.32
3550308005290	32,944	28,560	-13.31
3523107005011	20,397	17,683	-13.31
3550308005091	45,774	39,689	-13.29
3534401005012	47,597	41,297	-13.24
3518800005016	47,340	41,177	-13.02
3550308005238	37,843	32,921	-13.01
3518800005019	56,863	49,469	-13.00
3550308005021	35,847	31,279	-12.74
3550308005176	44,103	38,494	-12.72
3550308005266	44,631	39,000	-12.62
3550308005195	44,710	39,082	-12.59
3550308005017	43,007	37,708	-12.32
3550308005080	43,870	38,465	-12.32
3550308005033	39,781	34,886	-12.31
3550308005035	46,712	41,086	-12.04
3550308005268	42,873	37,790	-11.86
3550308005181	37,160	32,763	-11.83
3550308005169	39,837	35,134	-11.81
3550308005024	31,816	28,063	-11.80
3550308005198	42,547	37,687	-11.42
3550308005194	47,380	42,005	-11.35
3543303003005	23,317	20,688	-11.28
3550308005199	45,331	40,224	-11.27
3550308005077	41,606	36,951	-11.19
3534401005001	39,948	35,511	-11.11
3518800005009	48,190	42,911	-10.96
3518800005015	48,764	43,462	-10.87
3550308005174	43,213	38,553	-10.78
3550308005255	30,701	27,407	-10.73

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3547304003003	31,919	28,602	-10.39
3530607005019	17,452	15,664	-10.24
3550308005083	36,710	33,005	-10.09
3550308005056	29,346	26,478	-9.77
3550308005133	49,756	44,901	-9.76
3513009003004	18,801	16,994	-9.61
3513801005004	17,732	16,062	-9.42
3518800005017	42,933	38,938	-9.30
3525003003005	33,773	30,646	-9.26
3550308005295	33,433	30,347	-9.23
3530607005011	15,830	14,395	-9.07
3529401005004	22,027	20,044	-9.00
3518800005023	47,858	43,589	-8.92
3550308005226	40,736	37,138	-8.83
3505708005010	20,296	18,506	-8.82
3513009003008	20,957	19,118	-8.78
3523107005004	26,572	24,316	-8.49
3550308005227	37,086	33,960	-8.43
3513801005022	17,124	15,770	-7.91
3550308005055	30,308	27,928	-7.85
3534401005002	36,283	33,452	-7.80
3550308005040	47,628	43,944	-7.74
3550308005093	37,570	34,681	-7.69
3518305001001	25,714	23,770	-7.56
3550308005230	49,806	46,080	-7.48
3550308005287	48,706	45,089	-7.43
3534401005008	42,414	39,312	-7.31
3530607005024	17,829	16,545	-7.20
3513801005014	21,455	19,913	-7.19
3550308005236	41,329	38,380	-7.14
3550308005004	32,366	30,087	-7.04
3550308005006	35,322	32,835	-7.04
3550308005172	38,246	35,801	-6.39
3550308005225	40,676	38,086	-6.37
3550308005148	38,732	36,295	-6.29
3547809005011	33,267	31,219	-6.16
3550308005249	44,456	41,885	-5.78
3556453003001	21,004	19,807	-5.70
3548708005012	52,185	49,214	-5.69
3550308005010	29,306	27,678	-5.56
3550308005125	39,418	37,230	-5.55

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3534401005011	41,280	39,002	-5.52
3550308005242	36,997	34,981	-5.45
3550308005042	37,395	35,375	-5.40
3550308005023	26,446	25,018	-5.40
3550308005103	27,466	25,986	-5.39
3518800005008	43,564	41,273	-5.26
3513801005003	23,524	22,302	-5.20
3550308005278	31,229	29,626	-5.13
3522505005003	16,221	15,403	-5.04
3550308005152	44,795	42,541	-5.03
3550308005167	40,203	38,190	-5.01
3509205003003	24,029	22,831	-4.98
3550308005188	40,894	38,934	-4.79
3550308005098	28,699	27,388	-4.57
3550308005139	38,988	37,231	-4.51
3546801003001	25,132	24,015	-4.45
3550308005306	30,331	29,047	-4.23
3550308005064	32,907	31,520	-4.21
3510609005002	45,738	43,902	-4.01
3550308005114	38,683	37,159	-3.94
3547809005014	30,823	29,680	-3.71
3550308005153	43,656	42,047	-3.69
3513009003006	28,400	27,353	-3.69
3550308005128	41,079	39,575	-3.66
3515004005006	26,378	25,422	-3.62
3550308005076	50,074	48,289	-3.56
3550308005168	38,780	37,436	-3.47
3547809005018	27,418	26,480	-3.42
3550308005269	29,764	28,759	-3.38
3518800005005	39,096	37,820	-3.26
3544103003001	19,897	19,250	-3.25
3525003003003	15,435	14,935	-3.24
3550308005282	37,213	36,018	-3.21
3550308005289	30,145	29,177	-3.21
3522505005006	15,609	15,121	-3.13
3547809005019	27,859	27,002	-3.08
3550308005276	34,055	33,024	-3.03
3515004005004	19,442	18,854	-3.02
3550308005235	38,025	36,881	-3.01
3547809005015	30,282	29,384	-2.97
3552809005006	29,587	28,712	-2.96

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3534401005006	36,284	35,237	-2.89
3518800005021	46,189	44,858	-2.88
3550308005082	29,301	28,458	-2.88
3518800005001	44,761	43,512	-2.79
3548708005009	29,674	28,849	-2.78
3548807003007	26,372	25,642	-2.77
3550308005261	36,799	35,831	-2.63
3550308005115	39,043	38,062	-2.51
3548708005002	41,725	40,678	-2.51
3550308005182	37,090	36,204	-2.39
3548708005011	41,282	40,297	-2.39
3530607005006	17,182	16,785	-2.31
3543303003006	22,959	22,466	-2.15
3550308005179	35,912	35,148	-2.13
3515004005011	25,698	25,176	-2.03
3550308005060	40,540	39,722	-2.02
3550308005111	35,886	35,198	-1.92
3550308005220	37,697	36,988	-1.88
3530607005007	21,369	20,976	-1.84
3550308005204	37,259	36,583	-1.81
3550308005237	53,354	52 <i>,</i> 454	-1.69
3550308005275	34,204	33,633	-1.67
3550308005088	28,352	27,899	-1.60
3518800005010	40,891	40,279	-1.50
3550308005300	35,967	35,451	-1.43
3550308005044	39,612	39,048	-1.42
3522505005013	15,794	15,573	-1.40
3534401005013	42,251	41,889	-0.86
3550308005271	30,848	30,584	-0.86
3523107005006	25,502	25,302	-0.78
3550308005008	27,908	27,697	-0.75
3518800005022	36,828	36,583	-0.67
3550308005151	45,901	45,609	-0.64
3513009003005	16,848	16,762	-0.51
3550308005016	42,974	42,811	-0.38
3550308005247	32,845	32,738	-0.33
3548708005013	41,085	40,963	-0.30
3552502005001	155,001	154,681	-0.21
3550308005297	29,235	29,226	-0.03
3550308005154	43,672	43,672	0.00
3550308005211	30,169	30,194	0.08

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3550308005142	34,111	34,140	0.09
3550308005178	35,098	35,148	0.14
3513801005005	20,463	20,495	0.16
3550308005134	41,874	42,018	0.34
3529401005008	18,438	18,514	0.41
3550308005304	33,920	34,086	0.49
3550308005294	30,656	30,848	0.63
3513801005016	26,046	26,242	0.75
3556453003002	21,802	22,077	1.26
3513801005020	15,634	15,833	1.27
3550308005213	40,071	40,616	1.36
3552809005009	26,024	26,450	1.64
3550308005013	28,261	28,727	1.65
3516309003004	22,165	22,533	1.66
3550308005273	31,007	31,598	1.91
3550308005233	35,409	36,090	1.92
3550308005041	35,876	36,580	1.96
3550308005049	33,959	34,657	2.05
3550308005136	41,922	42,871	2.26
3518800005007	40,205	41,136	2.32
3548708005017	31,802	32,550	2.35
3550308005155	39,437	40,470	2.62
3550308005302	33,982	34,948	2.84
3550308005036	43,009	44,235	2.85
3546801003002	25,103	25,841	2.94
3550308005257	29,883	30,789	3.03
3550308005090	27,363	28,233	3.18
3550308005066	35,512	36,642	3.18
3518800005012	39,106	40,378	3.25
3515004005003	16,906	17,457	3.26
3518800005003	36,389	37,614	3.37
3523107005010	17,012	17,591	3.40
3550308005030	32,304	33,420	3.45
3550308005057	26,319	27,244	3.51
3522505005007	16,142	16,721	3.59
3547809005004	34,881	36,206	3.80
3534401005007	37,091	38,545	3.92
3550308005107	37,852	39,385	4.05
3550308005161	35,832	37,311	4.13
3550308005124	37,866	39,445	4.17
3516408003006	31,318	32,663	4.29

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3525003003002	15,467	16,158	4.47
3550308005264	31,181	32,598	4.55
3547809005023	29,545	30,984	4.87
3550308005141	31,565	33,146	5.01
3522505005010	14,977	15,753	5.18
3550308005063	35,929	37,809	5.23
3550308005207	35,469	37,351	5.31
3550308005145	27,187	28,651	5.39
3550308005183	32,313	34,083	5.48
3550308005239	29,048	30,641	5.48
3529401005014	18,564	19,601	5.59
3550308005078	41,288	43,614	5.63
3550308005279	32,084	33,901	5.66
3547809005009	30,817	32,605	5.80
3550308005218	34,893	36,961	5.93
3525003003001	15,035	15,930	5.95
3550308005026	24,475	25,933	5.96
3550308005101	25,915	27,460	5.96
3505708005005	16,912	17,921	5.97
3547809005008	28,132	29,845	6.09
3547809005020	32,003	33,959	6.11
3550308005126	35,382	37,600	6.27
3539806003005	39,461	41,953	6.32
3550308005240	32,375	34,470	6.47
3518800005011	37,246	39,836	6.95
3505708005008	24,228	25,920	6.98
3513801005018	16,149	17,298	7.11
3550308005113	35,231	37,805	7.31
3515004005008	23,468	25,193	7.35
3528502003003	33,360	35,876	7.54
3550308005097	30,417	32,751	7.67
3534401005004	33,003	35,541	7.69
3550308005258	30,247	32,589	7.74
3523107005009	17,648	19,016	7.75
3548708005008	33,159	35,745	7.80
3522505005008	14,618	15,779	7.94
3550308005095	31,396	33,938	8.10
3550308005005	28,705	31,059	8.20
3550308005028	24,965	27,023	8.25
3528502003002	31,293	33,922	8.40
3530607005016	16,916	18,352	8.49

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3539103001001	15,691	17,030	8.54
3550308005196	39,187	42,552	8.59
3550308005210	32,927	35,766	8.62
3513801005015	18,791	20,431	8.73
3550308005190	33,252	36,184	8.82
3550308005147	26,535	28,889	8.87
3550308005143	28,165	30,670	8.89
3522208003004	19,286	21,005	8.92
3543303003002	17,349	19,022	9.64
3529401005016	27,381	30,087	9.88
3518800005024	30,109	33,092	9.91
3550308005022	23,785	26,165	10.01
3530607005017	13,844	15,244	10.11
3515004005002	17,827	19,631	10.12
3534401005017	30,350	33,476	10.30
3550308005146	34,319	37,883	10.38
3550308005288	30,494	33,683	10.46
3550308005058	28,968	32,000	10.47
3548708005007	37,336	41,275	10.55
3530607005010	13,930	15,403	10.58
3550308005281	29,077	32,176	10.66
3534401005003	30,245	33,488	10.72
3522505005002	14,712	16,305	10.83
3550308005274	29,046	32,202	10.87
3550308005244	36,480	40,444	10.87
3547304003001	16,075	17,822	10.87
3543303003003	18,105	20,076	10.88
3550308005206	31,381	34,859	11.08
3522208003005	22,449	24,948	11.13
3550308005043	32,711	36,378	11.21
3522505005005	13,252	14,740	11.23
3550308005162	28,350	31,574	11.37
3550308005068	34,169	38,121	11.56
3515103003003	23,976	26,765	11.63
3505708005009	17,107	19,105	11.68
3550308005002	22,283	24,899	11.74
3550308005309	34,656	38,764	11.85
3547809005012	27,895	31,221	11.92
3550308005118	34,430	38,573	12.03
3522505005011	15,977	17,902	12.05
3550308005121	34,655	38,926	12.32

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3550308005256	32,051	36,014	12.37
3550308005129	34,949	39,394	12.72
3539806003002	17,868	20,161	12.84
3522505005009	14,594	16,473	12.88
3513801005021	14,017	15,825	12.90
3515004005007	19,685	22,255	13.06
3550308005308	28,466	32,294	13.45
3550308005149	32,159	36,498	13.49
3550308005177	32,059	36,439	13.66
3530607005001	13,483	15,326	13.67
3515103003002	22,813	25,932	13.67
3522505005001	14,612	16,612	13.69
3550308005186	33,128	37,689	13.77
3550308005232	28,571	32,575	14.01
3513009003003	17,648	20,176	14.33
3550308005071	33,160	37,924	14.37
3530607005005	15,261	17,470	14.47
3550308005245	32,340	37,035	14.52
3550308005051	20,839	23,870	14.54
3523107005002	24,137	27,649	14.55
3550308005250	29,705	34,032	14.57
3550308005205	30,844	35,345	14.59
3550308005202	33,321	38,195	14.63
3550308005231	45,992	52,728	14.65
3515004005010	17,409	19,991	14.83
3529401005015	17,232	19,794	14.87
3550308005301	32,055	36,845	14.94
3530607005013	13,621	15,659	14.96
3550308005119	33,540	38,565	14.98
3550308005170	32,865	37,799	15.01
3550308005200	35,985	41,399	15.04
3550308005246	33,314	38,339	15.08
3547809005016	27,793	32,021	15.21
3550308005117	29,879	34,442	15.27
3550308005144	27,552	31,849	15.60
3550308005262	27,335	31,620	15.68
3505708005004	15,299	17,709	15.75
3509007003003	24,984	28,972	15.96
3550308005286	33,336	38,719	16.15
3550308005131	34,944	40,614	16.22
3515707003004	14,685	17,088	16.36

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3505708005007	16,877	19,641	16.38
3509007003004	26,683	31,105	16.57
3529401005009	17,433	20,505	17.62
3550308005018	30,898	36,371	17.71
3515707003007	32,715	38,593	17.97
3534401005009	31,730	37,435	17.98
3518800005002	29,956	35,392	18.15
3523107005015	21,900	25,881	18.18
3550308005203	30,526	36,136	18.38
3550308005219	33,467	39,656	18.49
3547809005017	27,024	32,033	18.53
3550308005222	31,640	37,524	18.60
3539806003001	16,263	19,296	18.65
3518800005029	34,613	41,084	18.70
3550308005096	28,810	34,284	19.00
3550308005072	30,656	36,502	19.07
3550308005073	26,986	32,163	19.18
3547809005005	23,123	27,561	19.20
3550308005171	29,521	35,188	19.20
3513801005017	15,077	17,992	19.34
3530607005003	15,244	18,196	19.37
3503901003001	15,499	18,501	19.37
3547809005010	27,512	32,878	19.51
3529401005013	16,632	19,882	19.54
3547304003002	15,743	18,836	19.65
3515004005012	14,975	17,951	19.87
3548807003004	21,926	26,295	19.93
3548708005004	28,686	34,479	20.19
3513009003009	17,550	21,116	20.32
3547809005013	16,725	20,137	20.40
3550308005052	19,687	23,743	20.60
3530607005020	16,352	19,724	20.62
3550308005138	28,697	34,642	20.72
3550308005020	24,632	29,747	20.76
3510609005001	27,988	33,818	20.83
3513801005001	17,448	21,144	21.18
3505708005013	30,519	37,031	21.34
3550308005173	27,609	33,515	21.39
3550308005054	21,973	26,682	21.43
3550308005045	23,519	28,560	21.44
3534401005016	29,758	36,142	21.45

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3515707003003	18,813	22,869	21.56
3518800005028	35,018	42,596	21.64
3518800005018	32,343	39,363	21.70
3550308005140	29,593	36,093	21.96
3547809005021	26,837	32,776	22.13
3547809005001	24,109	29,464	22.21
3550308005209	29,588	36,166	22.23
3550308005265	28,032	34,286	22.31
3550308005305	25,797	31,561	22.34
3550308005094	26,823	32,817	22.35
3550308005263	25,751	31,520	22.40
3534401005018	32,519	39,824	22.46
3509007003002	18,637	22,827	22.48
3509205003001	18,412	22,577	22.62
3513801005019	14,337	17,585	22.65
3530607005012	17,593	21,598	22.76
3509205003002	21,603	26,604	23.15
3518800005014	34,864	43,093	23.60
3543303003001	16,290	20,138	23.62
3550308005187	30,850	38,178	23.75
3548708005005	32,981	40,904	24.02
3550308005037	25,543	31,689	24.06
3550308005223	29,816	37,029	24.19
3513801005011	16,165	20,078	24.21
3523107005005	16,827	20,910	24.27
3550308005310	28,180	35,079	24.48
3552809005004	22,601	28,153	24.57
3518800005004	28,911	36,048	24.69
3550308005241	29,387	36,681	24.82
3550308005081	28,468	35,566	24.93
3550308005216	28,637	35,796	25.00
3534401005005	29,853	37,323	25.02
3530607005021	16,129	20,178	25.10
3513801005010	16,110	20,199	25.38
3550308005001	23,595	29,590	25.41
3550308005102	20,499	25,709	25.42
3550308005032	27,599	34,670	25.62
3550308005031	26,619	33,523	25.94
3543303003004	14,732	18,564	26.01
3518800005026	30,993	39,107	26.18
3547809005002	26,901	34,107	26.79

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3550308005180	26,794	34,066	27.14
3515707003006	16,266	20,726	27.42
3548708005019	26,961	34,427	27.69
3552809005003	21,420	27,389	27.86
3534401005010	30,028	38,487	28.17
3550308005127	30,759	39,485	28.37
3550308005053	23,327	29,964	28.45
3505708005012	15,110	19,419	28.52
3550308005019	28,520	36,748	28.85
3550308005009	18,471	23,852	29.13
3513801005009	13,602	17,593	29.34
3505708005001	15,800	20,460	29.49
3548708005006	30,927	40,091	29.63
3550308005011	19,036	24,707	29.79
3550308005075	28,033	36,418	29.91
3522505005012	15,955	20,741	29.99
3515707003001	14,348	18,686	30.23
3515004005009	15,312	19,961	30.36
3550308005034	25,809	33,677	30.49
3518800005013	28,777	37,708	31.03
3518800005030	29,330	38,456	31.12
3552502005003	23,802	31,279	31.41
3503901003003	29,727	39,071	31.43
3548807003006	17,200	22,641	31.63
3550308005099	20,565	27,094	31.75
3550308005112	26,688	35,208	31.93
3529401005020	15,667	20,673	31.95
3523107005008	17,884	23,672	32.36
3550308005299	28,856	38,782	34.40
3550308005092	22,274	29,951	34.47
3550308005228	28,251	38,092	34.83
3550308005027	20,643	27,905	35.18
3523107005016	16,125	21,916	35.92
3518800005006	28,727	39,079	36.04
3539806003004	19,547	26,787	37.04
3529401005006	13,833	19,124	38.25
3552809005001	19,870	27,528	38.54
3550308005132	27,387	37,951	38.57
3516408003002	15,937	22,086	38.58
3513009003007	18,627	25,823	38.63
3530607005004	12,915	17,927	38.81

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3513801005002	14,825	20,582	38.83
3513801005006	13,583	18,867	38.90
3550308005158	26,741	37,453	40.06
3550308005105	25,841	36,209	40.12
3513801005008	16,772	23,531	40.30
3550308005038	22,588	31,715	40.41
3523107005007	16,103	22,677	40.82
3523107005001	25,153	35,562	41.38
3529401005002	14,410	20,678	43.50
3523107005012	15,181	21,798	43.59
3509007003001	16,048	23,098	43.93
3505708005011	13,763	19,839	44.15
3529401005021	15,257	22,078	44.71
3516408003003	14,984	21,701	44.83
3550308005050	23,199	33,765	45.54
3550308005109	24,865	36,359	46.23
3528502003001	15,962	23,441	46.85
3516408003004	17,372	25,532	46.97
3529401005010	15,713	23,114	47.10
3548807003002	17,639	25,958	47.16
3549953001001	13,885	20,511	47.72
3529401005018	13,802	20,561	48.97
3539806003003	12,640	18,947	49.89
3513801005013	16,981	25,461	49.94
3522208003001	14,240	21,388	50.20
3515103003001	15,657	23,624	50.89
3529401005019	13,758	20,796	51.16
3523107005003	15,820	24,231	53.17
3515707003005	16,635	25,551	53.60
3505708005003	14,237	21,971	54.33
3552809005002	17,465	26,979	54.47
3505708005002	15,305	23,885	56.06
3529401005001	13,174	20,563	56.09
3550308005015	17,164	26,964	57.10
3522208003003	17,831	28,054	57.33
3516408003001	14,440	22,804	57.92
3552809005005	18,148	28,911	59.31
3550308005029	14,152	22,586	59.59
3515004005001	15,902	25,443	60.00
3516309003001	13,629	21,961	61.13
3513801005007	14,030	23,165	65.11

Área de Ponderação	Pop. Observada	Pop. Estimada	Erro Relativo (%)
3548807003001	12,916	21,497	66.44
3522208003002	15,644	26,256	67.83
3515707003002	18,350	31,865	73.65
3548807003005	13,138	22,834	73.80
3552809005010	13,983	25,475	82.19
3548807003003	12,290	22,931	86.58
3513009003001	14,075	28,871	105.12
3513009003002	15,449	33,436	116.43