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Abstract: Although water demand theories identify price structures, technology, and individ-
ual behavior as determinants of water demand, limited theoretical or empirical evidence suggests 
a link between urban development patterns and water use. To assess the role of urban development 
patterns on water demand, we used GIS and statistical models to analyze single-family residential 
water consumption in the Portland, Oregon, metropolitan area. Our results show that residential 
water consumption per household at the census block group scale is best explained by average 
building size, followed by building density and building age, with low water consumption areas 
clustering together and typically located in high-density and older neighborhoods. Accounting 
for spatial dependence among residuals, explanatory variables explain up to 87% of variations 
in water consumption. Our results help to develop a water demand framework that incorporates 
existing factors with urban development policies to more effectively manage limited water and 
land resources. [Key words: Portland (Oregon), water consumption, urban development, spatial 
analysis, water management.]

There has been a growing interest in the sustainability of water resources in major 
metropolitan areas throughout the world. This interest stems from ongoing population 
growth and potential climate change that are posing multiple challenges for urban water 
resource managers (Morehouse et al., 2002; Ruth et al., 2007; Wentz and Gober, 2007; 
Kenney et al., 2008; Praskievicz and Chang, 2009). In order to cope with increasing water 
scarcity, many urban water managers have introduced water conservation policies and 
technologies as well as more sophisticated water demand modeling so that conservation 
programs can be more effectively targeted to specific consumer classes. As a result, many 
U.S. cities (e.g., San Francisco, Seattle, Denver, Los Angeles) were able to stabilize water 
demands over the past few decades despite significant population growth (Cooley and 
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Gleick, 2009). Whereas conservation programs have been somewhat effective in reducing 
water consumption per capita, opportunities for future conservation may be enhanced, par-
ticularly if the structural dimensions of the new developments are also considered (Saurí, 
2003; Domene et al., 2005).

Indeed, the structural features of residential developments, such as neighborhood den-
sity, lot size, and outdoor area, have been closely associated with water consumption. In 
a comparative study of two neighborhoods in Sacramento, Allen (1999) found that per 
capita water consumption was higher in a low-density development neighborhood than 
in a high-density neighborhood. In previous studies, researchers found that water con-
sumption was affected by dwelling type (Martinez-Espineira, 2002; Troy and Holloway, 
2004; Schleich and Hillenbrand, 2009), land use (Day and Howe, 2003; Durga Rao, 2005), 
neighborhood density (Balling et al., 2008), and the presence of gardens or other landscape 
features (Domene and Saurí, 2006; Wentz and Gober, 2007; see Table 1 for details). While 
these studies point to a need for examining structural variables in predicting water con-
sumption, the implications for land-use planning are only beginning to take shape (Page 
and Susskind, 2007; Woltjer and Al, 2007).

In recent years, the focus of land-use planners on urban spatial structures has gained 
considerable attention, although much of this work has not dealt with water resource plan-
ning, but rather on landscape ecology (Yeh and Li, 2001; Yang and Lo, 2002; McGarigal, 
2004), transportation efficiency (Song and Knapp, 2003; Metha, 2007), and community 
design (Randall and Baetz, 2001; Ewing et al., 2005; Clifton et al., 2007). The focus of 
these earlier studies is on reducing low-density, auto-dependent development through 
developing alternative forms of urban growth. Using sets of “smart growth” principles, 
urban planning agencies are attempting to use existing research to change land-use pat-
terns by creating more compact cites that encourage walking, biking, and the use of mass 
transit (Beatley, 2000; Barnett, 2007; Daniels, 2008). In addition, scholars argue that such 
compact patterns will use land more efficiently (increasing density); building homes, 
offices, stores, and parks within close proximity to one another (mixing uses); and that 
linking development with transportation infrastructure will enable metropolitan areas to 
accommodate growth without creating large consumption footprints or devastating local 
ecologies (Grimm et al., 2008; Conway, 2009). While several studies conclude that more 
compact cities will reduce auto dependence (NAS, 2009), improve air quality (Stone et al., 
2007), and enhance ecological conditions (Farr, 2007; Alberti, 2008), little is known about 
the role of urban spatial structure in several natural resource challenges, including urban 
water management (House-Peters et al., 2010).

Hence, there is a need to understand the dynamics of water consumption as they relate 
to urban spatial structure and concomitant socioeconomic variables. Previous studies 
either focus on the influence of income on municipal water consumption (Moilanen and 
Schulz, 2002; Jansen and Schulz, 2006) or the effect of structural variables (Domene et 
al., 2005; Fox et al., 2009). A lesser known area of urban water management is how water 
consumption patterns vary spatially and how these variations are associated with struc-
tural, socioeconomic, or climatic variables (Balling et al., 2008). Most previous studies are 
based on either an individual household survey or geographically aggregated areas (Lee 
and Wentz, 2008), offering limited value for understanding the spatial complexity of water 
consumption at the neighborhood scale. Identifying factors affecting water consumption at 
a neighborhood level provides a spatially targeted water resource management and policy, 
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which can be coordinated with urban land-use planning. Whereas residential water con-
sumption can be subdivided into various indoor and outdoor water consumption categories 
(e.g., cooking, washing, gardening) with different price elasticities (Mayer et al., 1999; 
Arbués and Villanua, 2006; Schleich and Hillenbrand, 2009), we did not consider these 
differences because our data represent the total amount of water consumption by single-
family residential households.

Table 1. Structural and Socioeconomic Variables Used for Explaining  
Variations in Urban Residential Water Consumption

Author(s) (year) Study area

Independent variables

Structural Socioeconomic

Agthe and Ballings 
(2002)

Tucson, Arizona Number of bedrooms, 
building age, pools, indoor 
water saving devices

Water price

Balling et al. (2008) Phoenix, Arizona Pools, landscaping, lot size Income

Bradley (2004) Asian cities Property type Household size, economy, 
employment

Clarke et al. (1997) Leeds, UK Property type, property size Income, ownership

Day and Howe 
(2003)

Sydney, 
Australia

Garden, land use Water use behavior, 
demography

Domene et al. (2005) Barcelona, Spain Garden, water saving devices Income

Durga Rao (2005) India Distance from city, land use/
cover

Population density

Fox et al. (2009) Stevenage, UK Number of bedrooms, 
housing type, garden

Huei (1990) Taipei, Taiwan Number of bedrooms Household size, employment

Koo et al. (2005) Seoul, Korea Employment, population

Kenney et al. (2008) Aurora, 
Colorado

Number of bedrooms, 
building age

Household size, income, age 
of owner, ownership, water 
price, water conservation

Liu et al. (2003) China Household size, income, water 
price

Martinez-Espineira 
(2002)

Spain Housing type Occupancy

Renwick and Green 
(2000)

California Lot size, indoor water saving 
devices

Price, income

Schleich and 
Hillenbrand (2009)

Germany Housing type Household size, income, water 
price, age of population

Syme et al. (2004) Perth, Australia Garden Income, conservation attitude, 
lifestyle

Troy and Holloway 
(2004)

Adelaide, 
Australia

Housing type Household size, 

Tinker et al. (2009) Austin, Texas Building size, lot size, 
appraised value, pools
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In this study, we apply three statistical regression techniques to assess the role of spatial 
structures on residential water consumption at the census block group level in Portland, 
Oregon. We attempt to explain the variation in water consumption by single-family resi-
dential (SFR) households in block groups in terms of density, physical, and socioeconomic 
characteristics that differ across census blocks. Based on water billing data provided by 
the Portland Water Bureau (PWB), existing tax-lot records, and U.S. Census demographic 
information, we attempt to single out the importance of spatial structure in understanding 
water consumption patterns. This research is based on a collaborative effort between an 
urban university and the local water provider to better understand the spatial determinants 
of SFR water consumption patterns and to elucidate spatially explicit potential water con-
servation strategies.

STUDY AREA

Situated at the northern end of the Willamette Valley, the Portland metropolitan area 
(PMA) has grown rapidly from a network of agricultural settlements containing just over 
500,000 inhabitants in 1950, to more than 1.4 million in 2005, and is projected to grow by 
an additional 680,000 between 2005 and 2030 (Metro, 2009). The region is unique, how-
ever, because it contains an urban growth boundary (UGB) that is managed by a regionally 
elected government known as Metro, the only one of its kind in the United States. With the 
expansion of the UGB in 2004 and the requirement to have a 20-year land supply included 
within it, the Portland area will experience infill growth as well as growth in newly added 
UGB additions as approved by Metro.

The City of Portland is supplied by water originating in the 264 km2 Bull Run 
Watershed and stored in reservoirs located east of the metropolis. The PMA overall, how-
ever, includes 24 individual water providers from cities to special districts (Fig. 1), of 
which the Portland Water Bureau (PWB) is the largest. The Bureau is responsible for 
the administrative and technical operations of providing water to approximately 860,000 
Oregonians in their retail and wholesale service areas. These combined service areas pro-
vided water to approximately 60% of the PMA in 2008. In 2006–2007, the Bureau directly 
served more than 168,000 residential households (both single- and multifamily residences) 
and approximately 20,000 commercial and industrial customers (Portland Water Bureau, 
2008). Residential water consumption comprises approximately 41% of total water con-
sumption by retail customers in Portland. Another aspect of the water system which is 
rarely found elsewhere is the fact that water is delivered from the watershed to the urban 
area’s reservoirs by force of gravity. This enables PWB to provide water at low rates to 
customers thanks to minimal pumping costs. Cheap water has encouraged water-intensive 
industries to locate in the Portland area. While per capita water consumption fell after the 
water shortage of 1992, other factors such as land use, conservation programs, and rate 
structures continued to influence further reductions in per capita water consumption ever 
since. At some point the Water Bureau would expect to see per capita water consumption 
level off, but the effects of continued infill and redevelopment, as well as wholesale con-
tracting, is expected to result in an increase in water demand over time.

The 2002 Climate Change Study (Palmer and Hahn, 2002) indicated that reductions 
in yield from the Bull Run surface water source are likely to increase water stress over 
time that will need to be met by using of Portland’s secondary groundwater source, or by 
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reduced wholesale contracting over the longer term. The increase in the number of people 
in the region and the additional challenges of anticipated climate variability due to climate 
change impacts on the hydrology of the Portland area will make understanding the role of 
urban patterns on water consumption an essential step towards ensuring sufficient water 
supplies for future growth. Moreover, Portland, like many other cities in the country, has 
only modest knowledge of the specific impacts of different land-use patterns on water 
demand changes over time, creating an administrative and operational separation between 
land-use planning and water management (Shandas and Parandvash, 2010).

DATA

We used PWB’s 2005 billing records for single-family residential (SFR) water con-
sumption to determine factors affecting the total consumption of all SFR units at the cen-
sus block group level. Individual households were geocoded in ArcMap 9.2 (ESRI, 2007) 
using address data and linked to tax-lot data provided by Metro. The integration of tax-lot 
and billing data provided a dataset from which we could test the role of structural inde-
pendent variables (lot size, building size, building density, and building age) on water 
consumption. To accomplish this, we aggregated the individual household billing data 
into census block groups (U.S. Bureau of the Census, 2007) for all areas throughout the 
Portland region, except for the central-city CBD and industrial and commercial areas. We 
excluded downtown Portland because of the high density of multifamily residential hous-
ing located there. Additionally, census blocks that contain less than 25% residential areas 

Fig. 1. Location of 24 water providers in the Portland metropolitan region.
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or less than 40 residential units are omitted from the analysis, which leaves 398 census 
blocks in the study area. Aggregating the data into census blocks has three advantages. 
First, we are able to include several sociodemographic variables and test the extent to 
which social and structural variables contribute to water consumption. Second, density 
of buildings was established by calculating the number of SFR developments with the 
area zoned as SFR in each block group. Finally, from an analytical perspective, aggregat-
ing households into census block units provides a continuous surface for assessing the 
spatial variations of water consumption across the metropolitan region. Once the tax-lots 
are aggregated to census blocks, we can integrate structural attributes, sociodemographics, 
and water consumption data. These data were then normalized by household so that we 
could create comparable units across all block groups. Water price was controlled because 
all customers are in the PWB retail service area and have the same water rates. Further-
more, due to the relatively homogeneous topography, there is less than a 5° C tempera-
ture difference across the study area (Hart and Sailor, 2007). As a result, water rates and 
weather are likely to affect all customers similarly.

CHOICE OF INDEPENDENT VARIABLES

We considered a number of variables that are expected to affect water consumption. 
Variables such as average building size, average number of houses per acre (building 
density), average number of rooms, and average age of the house (building age) reflect 
the land-use characteristics and development history of the census block group. They also 
provide some indications of the economic status of the households in each block group. 
Average income per household, average number of people living in a house (household 
size), average building age, and average percentage of households with college educa-
tion indicate the socioeconomic characteristics of the households. Initially, the correlation 
between water consumption and each variable was inspected to determine the direction 
and magnitude of correlations (Fig. 2). Average household size is the only variable that 
is not significantly related to water consumption. All other structural and socioeconomic 
variables are strongly associated with water consumption at the .05 significance level. 
Although building density and average building age are negatively correlated to water 
consumption, all of the other independent variables are positively correlated to water con-
sumption. These independent variables along with water consumption were used to develop 
multiple regression models. Note as well that some independent variables are also corre-
lated to each other. For example, average income, education, and average age of household 
are correlated with average building size (r = .69, .73, and .48, respectively), suggesting 
that there could be a multicollinearity problem in developing regression models.

STATISTICAL MODELS

After selecting the explanatory variables, we used three statistical models to explain 
the variations in SFR water consumption at the census block group level. Initially, a linear 
stepwise ordinary least square (OLS) regression model is used to estimate the relationship 
between water consumption and independent variables. Stepwise regression models select 
significant independent variables, removing redundancy in regression models. Second, 
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we used piecewise linear regression models to accommodate for any regime shifts in the 
relationship between dependent and independent variables so that we could better estimate 
the effect of these independent variables on water consumption. Third, we used Moran’s I 
to measure the direction and strength of spatial autocorrelation and spatial regression mod-
els to correct any spatial bias in estimating water consumption. Based on the comparison 
of the results between OLS regression models and spatial regression models, and between 
piecewise linear regression models and spatial regression models, we assess the extent to 
which one model can predict water consumption more accurately than the other.

Piecewise Linear Regression Model

There is ample literature that focuses on the treatment of structural or temporal regime 
shift in a regression model. Bookstein (1975), Bacon and Watts (1971), Ertel and Fowlkes 
(1970), Watts and Bacon (1974), Tishler and Zang (1981), Gujarati (2003), and Montgomery 
et al. (2006) represent studies using spline functions or piecewise linear regression. Typi-
cally, the point of change in the structure is known empirically or theoretically. Given the 
point of change, also called the knot, one can apply linear models to each segment along 
with constraints for continuity. The piecewise linear model has the advantage of simplicity 
of interpretation of the coefficients and simultaneously reflects the changes in the slope 
that otherwise need to be estimated with nonlinear models.

Following Bacon and Watts (1971) and Watts and Bacon (1974), we used a transi-
tion function to determine the point of regime change implicitly. The model is similar to 
the piecewise linear form. It is set up so that a transition function is used instead of the 
dummy variable and the knot is determined as a parameter in the nonlinear regression 
model. Three nonlinear regression models are used to estimate the knots for building size, 
building density, and income variables. The knots are estimated as 4 houses per acre for 
building density, 150 m2 for building size, and $45,000 for income.3 These knots are used 
in a multivariable piecewise linear model to explain the variations in water consumption 
across the blocks.

Spatial Autocorrelation

Spatial autocorrelation refers to whether adjacent regions exhibit similar or dissimilar 
patterns. One of the most widely used indices of spatial autocorrelation is Moran’s I, a 
global measure of spatial autocorrelation. We used this to identify the degree of spatial 
dependence on residential water consumption and explanatory variables (O’Sullivan and 
Unwin, 2003). Whereas Moran’s I is useful in detecting global spatial correlation, it does 
not show where high or low water consumption census block groups are clustered or dis-
persed. Local Index of Spatial Autocorrelation (LISA) analysis calculates a spatial autocor-
relation value for each unit (i.e., census block group) by explaining the extent to which an 

3The housing industry in the United States uses the British (standard) measurement system. Lot sizes are mea-
sured in square feet or as a fraction of an acre, where each acre is 4,046.9 m2. We have used British units because 
the number of houses per acre has been used as proxy for urban housing density in urban planning. However, we 
have converted house size measured in square feet to square meters for direct comparison with the international 
literature. 
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individual group resembles its neighboring groups. This provides an evaluation of where 
unusual interactions occur, isolating either “hot” spots (areas of high local autocorrelation) 
or “cold” spots (areas of low local autocorrelation; Anselin, 1995). This will provide more 
detail on the regional water consumption around the metropolis and further identify census 
block groups based on their water consumption similarities or differences.

Spatial Regression

Compared to the OLS regression models, spatial regression models incorporate spatial 
dependence in the form of lag or error dependence (Ward and Gleditsch, 2008). In other 
words, spatial autocorrelation is allowed and accounted for explicitly by dependence 
among errors and/or dependent variables. In spatial error models, the error terms across 
different spatial units are correlated, while in spatial lag models the dependent variable is 
affected by the independent variables in adjacent places. Both models thus remove any 
biased trends in spatially dependent data. Spatial regressions have been applied in water 
quality studies in coastal areas (Ye et al., 2007) and inland water bodies (Chang, 2008) as 
well as a county water consumption study in Oregon (Franczyk and Chang, 2009). Spatial 
autocorrelation and regression were performed using GeoDa software available at https://
www.geoda.uiuc.edu/ (Anselin et al., 2006).

RESULTS

Ordinary Least Square Regression

The stepwise OLS regression model predicts up to 71% of the water consumption in all 
census block groups (Table 2). Specifically, the results show a rather strong relationship 
between consumption and building size, which corroborates previous studies for the same 
region (Shandas and Parandvash, in press). However, the relation between density and 
consumption, although significant and negative as expected, is relatively weaker than the 
one between building size and water consumption, as indicated by a lower statistical test 

Table 2. Regression Coefficients, Standard Errors, and Test Statistics  
for an Ordinary Least Square (OLS) Regression Model and a Spatial Error 

(SE) Regression Model of Census Block Group Single-Family Residential Water 
Consumption per Household in Portlanda

Variable

Coefficient Standard error t-statistic Z-value

OLS SE OLS SE OLS SE

Constant 101.834 75.475 7.869 13.056 12.901 5.781

Building size 0.783 0.942 0.033 0.047 23.361 20.166

Density – 4.904 – 6.071 1.010 1.013 – 4.858 – 5.994

Years built – 0.171 0.009 0.109 0.105 – 1.560 0.082

Lambda 0.702 0.042 16.723

aN = 398, R2 = .71 (OLS), 0.82 (SE); Log likelihood = –1,843.36 (OLS), –1,772.88 (SE).
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value (–4.858) compared to building size (23.361). Age of building, unlike other studies, 
is not significant (p = .12).

Further examination of the scatter plots of each independent variable with block group-
level water consumption shows that the relationships between water consumption and 
building structural variables are not linear. In other words, the magnitude of changes in 
water consumption depends on building size or building density (Fig. 2). For example, in 
the lower density range, the negative relationship between water consumption and density 
is much stronger. Similarly, building size shows a similar but opposite relationship with 
water consumption. In the lower range, change in building size does not have a strong 
effect on water consumption, but in the upper ranges there is a steep change in water 
consumption as building size increases. To accommodate such regime shifts, piecewise 
linear functional forms are used to better estimate the effect of these variables on water 
consumption.

Piecewise Linear Regression

Based on the scatterplots of the variables, a piecewise linear model with predetermined 
knots for size and density was estimated as described earlier. The results indicate a sta-
tistically significant structural change in size and density. Income, although showing a 
significant nonlinear relationship with water consumption (Fig. 2), was omitted by the 
stepwise regression model because inserting the variable into the regression model does 
not significantly improve the model prediction. This is due to the fact that it is highly cor-
related to building size. As shown in Table 3, the piecewise functional form explains 79% 
of the variations in consumption, and 8% additional variation is explained by the model 
compared to the OLS regression model. The coefficient for building size range below 150 
m2 is significant and shows an increase of 194 liters per household (0.194 * 1,000 liter) for 
every 1 m2 change in average building size of the census block group. For building size 
above 150 m2, the relationship between size and water consumption is more significant 
(higher statistical test value) and indicates a 899 [(0.194 + 0.705) * 1,000] liter change 

Table 3. Regression Coefficients, Standard Errors, and Test Statistics for a Piecewise 
(PW) Regression Model and a Spatial Error (SE) Regression Model of Census Block 

Group Single-Family Residential Water Consumption per Household in Portlanda

Variable

Coefficient Standard error t-statistic Z-value

PW SE PW SE PW SE

Constant 288.570 248.106 16.556 18.646 17.430 13.306

Building size 0.194 0.470 0.079 0.090 2.446 5.233

Building size > 150 m2 0.705 0.584 0.105 0.110 6.717 5.303

Density – 34.366 – 34.320 3.443 3.060 – 9.980 – 11.216

Density>4 32.594 32.002 3.631 3.300 8.977 9.698

Years built – 0.235 – 0.194 0.093 0.092 – 2.511 – 2.110

Lambda 0.700 0.042 16.637

aN = 398, R2 = .79 (PW), 0.87 (SE); Log likelihood = –1,777.06 (PW), –1,713.55 (SE).
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in water consumption per household for every 1 m2 change in average building size. The 
results also show that a unit increase in density (i.e., an average increase of one house per 
acre) reduces annual consumption by 34,320 liters per household below the threshold of 
4 houses per acre. The effect of density increase in the range above the threshold is more 
moderate, resulting in only a decrease of 2,318 liters (–34,320 + 32,002) per household. 
The threshold designates an average lot size of 1,011.7 m2.

Global and Local Spatial Autocorrelation

There exists a moderate positive spatial autocorrelation in water consumption (Moran’s 
I = 0.54), suggesting that residential water consumption patterns are not randomly distrib-
uted across the study area. It is very unlikely that adjacent values of water consumptions 
(clustered pattern) are the result of random spatial processes. As shown in Figure 3, census 
blocks with similar water consumption rates are clustered together, suggesting that water 
consumption patterns can be grouped by different neighborhoods. The existence of spatial 
dependence provides a rationale to use spatial regression to better understand water con-
sumption patterns.

Figures 4 and 5 display LISA maps and Moran’s scatterplots, respectively. The slope of the 
line in Moran’s scatterplots is global spatial autocorrelation, namely Moran’s I. There exists 
very strong positive spatial autocorrelation for building size (Moran’s I = 0.73), building 
density (0.74), and building age (I = 0.76). In these scatterplots, the average water consump-
tion (or building size, density, age) of one’s neighboring census block (defined as Rook’s 
distance) is shown on the vertical axis, while the horizontal axis displays the value (con-
sumption or building structural variables) of each census block. Both X- and Y-axis values 
are standardized to have means of 0 and variances of 1. The observations in the first and third 
quadrants illustrate that a census block and its neighbors have higher (or lower) than average 
values of water consumption (or housing density). The observations in the second and fourth 
quadrants show that a census block and its neighbors have dissimilar characteristics.

The LISA maps confirm these cases as they illustrate hot (darker shaded areas) and 
cold spots (lighter shaded areas) of water consumption and building structural variables. 
Black areas indicate high water consumption (building structural variables) census blocks 
surrounded by census blocks with high water consumption (building structural variables; 
observations in the 1st quadrant), while light grey areas indicate low water consump-
tion (building structural variables) census blocks surrounded by census blocks with low 
water consumption (building structural variables; observations in the 3rd quadrant). Dark 
grey areas show high water consumption (building structural variables) census blocks 
surrounded by blocks with low water consumption (building structural variables), while 
medium grey areas show low water consumption (building structural variables) blocks sur-
rounded by blocks with high water consumption (building structural variables). For water 
consumption, hot spots are clustered in the northwestern part of the city, while cold spots 
are located in northern and eastern parts of the city. The building size map shows similar 
patterns with water consumption. In contrast, building density, hot spots are dominant in 
the east-central part of the city, while cold spots are concentrated in the western and far 
eastern parts of the city. By overlaying these two maps, we can spatially corroborate the 
strong negative correlation between water consumption and building density. The building 
age LISA maps are very similar to building density LISA maps.
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Spatial Regression Models

Table 2 summarizes the results from a spatial error (SE) regression model and a stan-
dard OLS regression model. Several differences are evident between the two regression 
models, including the signs of the coefficients remaining the same in the SE regression 
model, but the magnitudes of these coefficients differing from the OLS regression model. 
The lambda value (0.702) in the SE regression model is statistically significant, confirm-
ing that spatial errors are not randomly distributed over space. SE regression models have 
higher standard error and lower test statistic values for building size and density than OLS 
regression models, suggesting that not correcting spatial dependence in building size and 
density overestimates the influence of these variables. Building age, although still not 
significant, becomes less important in the SE regression model as demonstrated by lower 
Z-value.

Table 3 compares the results from the piecewise regression model with an SE regres-
sion model using the same independent variables. As shown in this table, the lambda value 
(0.700) in the SE regression model is still significant, suggesting that there is strong spatial 
autocorrelation. The SE regression model has higher standard error and lower test statistic 
values for size than the piecewise regression model, suggesting that not correcting spatial 
dependence still overestimates the influence of housing size (although not significant). 
The standard error and the test statistic value for density and building age, however, are 
slightly lower in the SE regression model. In general, the SE regression model has a better 
fit than the piecewise regression model as indicated by lower Akaiki information criterion, 
but the difference in values of both models are very minor (3,566.12 in the PW regression 
model vs. 3,439.09 in the SE regression model). The results of this comparison suggest 
that a further refinement that takes into account spatial relationships among independent 
variables increases a model’s ability to explain the variations in water consumption.

DISCUSSION AND CONCLUSIONS

This analysis shows that SFR water consumption is mostly explained by key build-
ing structural variables, namely building size, building density, and building age. While 
income and education are useful predictors of water consumption, because these socio-
economic variables are correlated with building size, it was found that structural variables 
can be used as proxies for these socioeconomic variables in Portland. Unlike building 
structural variables that are derived from individual household data, socioeconomic data 
are estimated from data measured at the census block group level—thus the variations 
within census block groups may have been masked. This suggests that building structural 
variables typically available in a GIS format from tax assessor’s records can be used to 
predict residential water consumption levels when socioeconomic data are not available. 
It would be interesting, however, to investigate whether this is truly the case if comparable 
socioeconomic data were available from a survey.

One surprising finding of the study is the negative relationship between the age of build-
ing and water consumption. At first glance, this seems counterintuitive. This is probably 
because older houses are smaller and during the housing boom most of them were remod-
eled with more water-efficient fixtures and appliances. The passage of the Energy Policy 
Act of 1992 established national efficiency standards for toilets, faucets, and showerheads. 
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Fig. 4. Local Index of Spatial Autocorrelation (LISA) cluster maps for (A) Average water consumption. In 
census block groups shaded dark, high rate of water consumption census block groups are significantly correlated 
with high rates of water consumption in surrounding census block groups; in census block groups shaded light, 
low rate of water consumption census block groups are correlated with low rates of water consumption in sur-
rounding census block groups. (B) Average building size. (C) Average building density. (D, next page) Average 
building age. Significance level, p < .05; spatial weights matrix based on rook’s distance; test for spatial random-
ness based on 999 iterations.
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As toilets, washing machines, showers, and bathtubs account for approximately two-thirds 
of household indoor water consumption (Mayer et al., 1999), it is reasonable to assume 
that, since for the most part older houses have been remodeled and their old fixtures been 
replaced with new efficient ones and urban homes generally have smaller lots, they are 
likely to use less water than houses built in suburban areas. Additionally, older neighbor-
hoods are more likely to have a mature tree canopy than newer suburban neighborhoods, 
which leads to a reduction in outdoor water consumption. 

Indeed, the bulk of water consumption in metropolitan Portland occurs during summer, 
which most likely corresponds to outdoor use. Therefore, changes in urban density have 
significant implications for outdoor water conservation. In this study, the effect of change 
in density on water consumption can be explained by the fact that the blocks with larger 
average lot sizes are located in more affluent neighborhoods, as shown by the statistically 
significant correlation between lot size and income (r = .68, p < .01). Houses with big-
ger lots in the affluent neighborhoods typically have more elaborate water-intensive land-
scapes (e.g., grass lawns) than those in less affluent neighborhoods. Moreover, although 
not common, certain affluent houses in suburban neighborhoods have swimming pools, 
which consume additional outdoor water supplies. Wentz and Gober (2007) reported simi-
lar findings in their study of Phoenix: areas of higher density include smaller lot sizes with 
yards that usually do not contain lawns. This suggests that an increase in density in already 
dense areas does not appear to further reduce outdoor water consumption.

It was also found that no simple nonlinear relationships exist between structural vari-
ables and SFR water consumption. Accordingly, a piecewise linear regression model that 
breaks building size and building density into two ranges better explains the variations 
in census block group water consumption than an OLS regression model. Additionally, 
the relationships between water consumption and these structural variables show distinct 
spatial patterns. The hot spots of water consumption are typically coincide with the hot 
spots of building size and cold spots of building density and age. Building size above 150 
m2 and building age become less significant in the SE regression model, suggesting that 
census blocks with similar building sizes and ages are not randomly distributed across 

Fig. 4. D.
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urban space. This finding suggests that incorporating the spatial dimension into water 
resource planning is needed to better predict water consumption patterns. Census blocks 
with similar housing sizes and ages can be grouped together for integrated water and land-
use planning.

As smart growth strategies become further ingrained into the options available to land-
use planners, we will need better information about the relationship between urban spatial 
structure and water consumption. For example, in 1973 Oregon became the first state to 
implement urban growth boundaries (UGBs). In Portland, a new planning agency was 
created—Metro—and charged with regulating the spatial organization of the entire met-
ropolitan region (Metro, 2009). Such approaches, while novel and unprecedented, seem to 
have reinforced urban water conservation efforts.

In coming decades, more infill development is expected to occur in Portland as the 
UGB is likely to expand to accommodate population growth. Some of these new infill 

Fig. 5. Univariate Moran’s scatterplots for (A) Average water consumption. This scatterplot shows the water 
consumption of a census block group on the horizontal axis and the weighted average of water consumption 
in neighboring census block groups (spatial lag of water consumption) on the vertical axis. Both variables are 
standardized. The distribution is shown in four quadrants to indicate positive and negative spatial autocorrelation. 
(B) Average building size. (C) Average building density. (D) Average building age. Each circle represents each 
census block group. The slope of the regression line is Moran’s I.
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developments will exemplify smart growth. At the same time, suburban areas may con-
tinue their relatively low-density development, typically requiring lawn irrigation dur-
ing the summer. Ironically, water in these new development areas is currently provided 
by small local water providers that are constantly searching for new sources of water. 
With projected climate change and population growth, their water provisioning systems 
may increasingly become stressed in the future. Hence there are potential opportunities 
for future water conservation in these new development areas. Given the results of this 
study, land-use planning can be essential to developing viable climate adaptation strate-
gies, and making urban communities more resilient vis-à-vis potential water stress induced 
by climate change. For example, one strategy to reduce water demand from lawn irriga-
tion includes planting native vegetation. Implementing such strategies require behavioral 
changes as well as neighborhood design changes. Our research demonstrates that a spa-
tially targeted approach would be useful for further conservation of water in low-density, 
new suburban neighborhoods. Water resource planners and land-use planners should con-
sider better coordination of their respective efforts to ensure the sustainability of urban 
water resources.
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